999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于改進型RLM算法的六軸機械臂運動學標定實驗

2019-09-19 12:09:14李德釗
測控技術(shù) 2019年1期
關(guān)鍵詞:機械

李德釗,鄧 華

(1.中南大學 高性能復(fù)雜制造國家重點實驗室,湖南 長沙 410083; 2.中南大學 機電工程學院,湖南 長沙 410083)

機械臂標定是離線編程技術(shù)實用化的關(guān)鍵技術(shù)之一[1],是提高定位精度的重要手段。標定過程的核心問題在于參數(shù)辨識環(huán)節(jié),參數(shù)辨識精度直接影響末端絕對定位精度。

機械臂模型的參數(shù)辨識過程是非線性優(yōu)化的過程,目前大多參數(shù)辨識算法均選擇舍棄高階項,并在求解誤差模型時反復(fù)迭代以減小不必要的誤差,因而能獲得較高的辨識精度[2]。如擴展卡爾曼濾波法、高斯-牛頓法、BP算法、LM算法、RLM算法、遺傳算法和神經(jīng)網(wǎng)絡(luò)算法等。BP算法[3]即梯度下降法,利用參數(shù)沿與誤差梯度相反的方向移動來獲得誤差函數(shù)的極小值,收斂速度較慢;LM算法[4]是一種利用標準數(shù)值優(yōu)化技術(shù)的快速算法,是梯度下降法和高斯-牛頓法的結(jié)合,兼具牛頓法的局部收斂性和梯度法的全局特性。由于利用了近似的二階導(dǎo)信息,因而比梯度法更快。但其無法滿足在線處理數(shù)據(jù)和實時優(yōu)化的情況;RLM算法[5]在其基礎(chǔ)上結(jié)合了遞推原理,不僅實現(xiàn)了實時辨識系統(tǒng)模型和檢測辨識結(jié)果優(yōu)劣,且參數(shù)化過程不敏感,減小代價函數(shù)陷入局部極小值的機率。但應(yīng)用于最速下降逼近的搜索方向使得算法過于復(fù)雜,另外,遺忘因子的非時變性也無法跟蹤時變參數(shù)。本文通過提出改進型RLM算法,提高了參數(shù)辨識過程的收斂性和魯棒性,為運動學參數(shù)辨識提供一定的理論參考。

1 機械臂的末端誤差建模

待測機械臂屬于六軸串聯(lián)式工業(yè)機械臂,重復(fù)定位精度為±30 μm,且滿足Pierper準則[6],即WCP(Wrist Center Point)處的3個關(guān)節(jié)是始終相交于一點,屬于解耦型機械臂。前3個關(guān)節(jié)確定WCP的位置,后3個關(guān)節(jié)確定WCP的姿態(tài)。本次標定的待測點為TCP(Tool Center Point),通過采集不同關(guān)節(jié)位形下的位姿樣本,并根據(jù)位姿評價體系評估標定后絕對定位精度的提高程度。

機械臂本體的幾何結(jié)構(gòu)和的關(guān)節(jié)坐標系如圖1(a)和圖1(b)所示。

圖1 待測工業(yè)機械臂

在MDH運動學模型中由ai(連桿長度)、αi(關(guān)節(jié)扭角)、di(連桿偏距)、θi(關(guān)節(jié)轉(zhuǎn)角)和βj(關(guān)節(jié)平行度),所以相鄰關(guān)節(jié)坐標系的轉(zhuǎn)換矩陣[7]為:

(1)

(2)

(3)

(4)

那么該變換算子的表達式可表示為

(5)

(6)

將式(6)展開,并且忽略二階項及高階項得

(7)

結(jié)合式(3)~式(5)和式(7)可得dTt:

(8)

任意連桿i相對于前一連桿i-1的微分運動矢量方程組為

(9)

Δδti=Γδθ(i)Δθ+Γδa(i)·Δa+Γδβ(i)·Δβ

(10)

末端位姿誤差和運動學參數(shù)誤差的矩陣表達式為

[ΔθΔdΔαΔβ]T

(11)

為化簡表達式(11),令

E=[ΔθΔdΔαΔβ]T,那么可得關(guān)系表達式為

e=J×E

(12)

式(12)即為機械臂末端位姿誤差模型,符號J為參數(shù)辨識的系數(shù)矩陣,E為各個關(guān)節(jié)的運動學參數(shù)誤差矩陣,e為機械臂末端的位姿誤差矩陣。

2 RLM算法的改進

RLM算法的準則函數(shù)[8]為

(13)

式中,λ(0<λ≤1)為遺忘因子,反映歷史數(shù)據(jù)的遞減遺忘速度;ε(i,ω)為殘差向量;Q為正定加權(quán)矩陣。

易得準則函數(shù)的Vt(ω)的遞推關(guān)系式為

(14)

對Vt(ω)求一階導(dǎo)數(shù)得

(15)

(16)

再對Vt(ω)求二階導(dǎo)數(shù),可得

εT(t,ω)Qε″(t,ω)

(17)

(18)

(19)

(20)

聯(lián)立式(17)~式(19)可得RLM算法為

(21)

顯然,傳統(tǒng)的RLM遺忘因子λ為定常值,當λ=1時,為保證參數(shù)收斂性,但降低了參數(shù)估計的迭代效率,當λ<1時,算法對噪聲越發(fā)靈敏,參數(shù)辨識過程極易發(fā)生振蕩,且λ的值越小,數(shù)據(jù)的遺忘速度越快,對準則函數(shù)的損失程度越大,穩(wěn)態(tài)值較實際值偏離程度越嚴重。為保證遺忘因子λ是隨時間t逐漸趨于1,且趨近速度可控,兼具在迭代初期參數(shù)估計的高效性和迭代終期的收斂性。這里定義激勵機制:

λ(t)=λ0λ(t-1)+μ(t)(1-λ0)

(22)

式中,μ(t)為修正系數(shù),且μ(0)=1,0<μ(t)≤1,常值λ0=0.99,遺忘因子λ迭代速度受修正系數(shù)μ影響,需保證修正系數(shù)μ隨系統(tǒng)變化實時更新。模糊系統(tǒng)不依賴于被控對象精確的數(shù)學模型,通過模糊化、模糊推理和去模糊化等環(huán)節(jié)可獲得模型參數(shù)[9],這里令k為模糊系統(tǒng)的清晰輸入,μ(t)為去模糊化后的輸出。確定模糊規(guī)則[10]如下:

若k>0,則μ(t)增大
若k<0,則μ(t)減小

由以上關(guān)系可得到清晰輸入k和清晰輸出h(t)之間的模糊系統(tǒng)。系統(tǒng)輸入偏差e和ec及輸出的模糊子集作如下定義:

k={NL NS ZO PS PL}

h(t)={NL NS ZO PS PL}

根據(jù)圖2中隸屬度函數(shù)可知,NL為負大,NS為負小,ZO為零,PS為正小,PL為正大。

圖2 輸出的隸屬度函數(shù)

那么模糊控制器中的Rule Base為:

Rule1:IFkis NLTHENμis NL
Rule2:IFkis NM THENμis NM
Rule3:IFkis ZO THENμis ZO
Rule4:IFkis PM THENμis PM
Rule5:IFkis PL THENμis PL

圖3 遺忘因子和修正系數(shù)相關(guān)變化曲線

為簡化控制算法,作出如下近似和假設(shè):

(23)

將式(23)代入式(21)中,那么可得到改進型RLM算法表達式為

(24)

3 標定實驗平臺和實驗原理

3.1 標定實驗平臺的搭建

本次實驗采用的測量儀器是美國第三代的API T3三維激光跟蹤儀及相關(guān)配件,其絕對定位精度為±5 ppm,重復(fù)定位精度為2.5 ppm。圖4為綜合標定實驗現(xiàn)場。

配合使用API T3 Cal儀器校準軟件以及美國New River Kinematics公司研發(fā)的Spatial Analyzer軟件,來進行空間位姿的采集、擬合和處理。

3.2 標定實驗坐標系原理

如圖5所示,以激光跟蹤儀的基坐標系{meas}為測量基準,獲取不同關(guān)節(jié)位形下末端法蘭坐標系{flange}的空間位姿,并通過機械臂的基坐標系{base}和測量坐標系{meas}之間的坐標轉(zhuǎn)換,得到基礎(chǔ)坐標系下末端法蘭位姿的實測值;另一方面,由各個關(guān)節(jié)坐

圖4 綜合標定實驗現(xiàn)場

標系得到末端法蘭坐標系{flange}相對于基坐標系{base}下的齊次坐標矩陣,可得基礎(chǔ)坐標系下末端法蘭位姿的理論值,實測值和理論值之差即為末端位姿誤差。坐標系之間存在數(shù)學關(guān)系的閉環(huán)等式:

(25)

圖5 標定實驗坐標系原理圖

圖6中篩選出具有代表性的關(guān)鍵空間位姿群,經(jīng)采集、擬合和計算可得機械臂的基坐標系{base}、測量坐標系{meas}、法蘭坐標系{flange}之間坐標轉(zhuǎn)換關(guān)系。

圖6 位姿采集過程中的關(guān)鍵關(guān)節(jié)位形

4 標定實驗結(jié)果

4.1 改進型RLM算法的參數(shù)辨識

模型參數(shù)共有42個幾何偏差參數(shù),包含18個獨立參數(shù),24個相關(guān)參數(shù),無不相關(guān)參數(shù)。由于關(guān)節(jié)的第二、三軸的軸線在理論上是互相平行的,所以Δβ1、Δβ3、Δd1、Δd2…12個參數(shù)不需要辨識,有30個待辨識的參數(shù)。圖7所示即為改進型RLM算法進行運動學參數(shù)偏差辨識[12]的迭代過程,對迭代收斂后小于一定誤差區(qū)間的參數(shù)值進行優(yōu)化處理即可得到最終辨識的幾何參數(shù)偏差值的穩(wěn)定數(shù)值,如表1所示。

圖7 運動學參數(shù)偏差的迭代過程

關(guān)節(jié)Δθi/(°)Δdi/mmΔai/mmΔαi/(°)Δβi/(°)0dTmeas/mm或(°)ndTflange/mm或(°)1000.01041-8.95578×10-30-0.03311000.0155120.0010010-0.09503-0.005120460.00263500.0320800-0.0103330.001055-0.030520.000000.012115400.00072000.0555440.000000-0.077740.08551-0.019672100.015000705-9.12280×10-40.074706.218×10-3-0.0090797700.0300072064.20881×10-5000.04324060-0.01947030.02775330

注:Δθi為關(guān)節(jié)角度誤差;Δdi為連桿偏距誤差;Δai為連桿長度誤差;Δαi為關(guān)節(jié)扭角誤差;Δβi為平行度偏差;°dTmeas為基礎(chǔ)坐標位姿誤差;ndTflange為構(gòu)造法蘭坐標系位姿誤差

RLM算法為非線性算法中極具代表性的遞進算法之一,較線性參數(shù)估計算法而言,具有更高的辨識精度,智能算法不依賴于模型本身,具有快速搜索復(fù)雜多維空間,耦合非線性等特點更適于辨識系統(tǒng)參數(shù)。這里針對遺傳算法[13](GA)、傳統(tǒng)RLM和改進型RLM算法,對比了參數(shù)θ6和d3辨識誤差的估計過程,如圖8、圖9所示。顯然,遺傳算法GA較傳統(tǒng)RLM算法的迭代過程波動性較大,收斂速度較慢,而改進型RLM由于遺忘因子λ隨系統(tǒng)的時變特性,辨識誤差逼近于零,較傳統(tǒng)RLM算法更小,抗擾動能力更強。

圖8 參數(shù)θ6辨識誤差過程

圖9 參數(shù)d3辨識誤差過程

如表2所示,在同等迭代次數(shù)下,改進型RLM算法即ImRLM迭代200次時已收斂至穩(wěn)態(tài),較傳統(tǒng)RLM、遺傳算法GA等收斂速度更快,全局優(yōu)化性能更佳,能更快到達穩(wěn)態(tài)值。由此可知,在辨識誤差和迭代速度方面,改進型RLM都具有更佳的效果。

4.2 標定實驗?zāi)┒宋蛔苏`差驗證

為驗證末端精度的提高程度,在工業(yè)機械臂工作空間中采集100個測量點,將其作為驗證末端位置精度的數(shù)據(jù)樣本。為減少激光跟蹤儀測量過程的回巢次數(shù),減少累計誤差,因而需避免測量盲區(qū),測量儀器采集一定數(shù)量的數(shù)據(jù)母本,篩選出其中可觀測性[14]較高的100個空間位置點。首先采集標定前待測點的末端位置坐標,令為實際的末端位置坐標;其次將參數(shù)辨識后的幾何偏差修正控制器中的模型參數(shù),并測量原始關(guān)節(jié)位形下標定前和標定后的末端位置坐標。分別與名義末端位置坐標作差,即得標定前后位置坐標的偏差值。

其中參數(shù)辨識環(huán)節(jié)分別采用傳統(tǒng)RLM和改進型RLM算法獲得的幾何參數(shù)偏差值作為誤差補償值,便于比較標定前后末端絕對定位精度的提高程度。

在機械臂標定中,位置誤差的誤差波動范圍遠大于姿態(tài)誤差的波動范圍,因而這里主要研究末端位置誤差波動性。圖10~圖12中描述了標定前后位置誤差的偏離程度,并比較了采用傳統(tǒng)RLM算法和改進型RLM算法標定后位置誤差的分布區(qū)間,其中X、Y、Z方向的位置誤差大都分布在0.100~0.300 mm范圍內(nèi),在標定后,改進型RLM較傳統(tǒng)RLM在X、Y、Z方向的位置誤差誤差波動性更小,抗干擾性更強,能控制在0~0.050 mm范圍內(nèi)。圖13中空間位置誤差分布在0.150~0.350 mm范圍內(nèi),而經(jīng)改進型RLM標定后,空間位置誤差也控制在0.050~0.100 mm范圍內(nèi),空間位置定位精度得到較大的提高。

表3中羅列了傳統(tǒng)RLM標定后和改進型RLM標定后的位置誤差的最大值(MAX)、 均值(AVE)和均方差(RMS),結(jié)果表明X、Y、Z和3D方向的位置精度均得到明顯提高,圖14中比較了RLM算法改進前后對于末端定位精度的提高程度。

圖10 X方向的位置誤差

圖11 Y方向的位置誤差

圖12 Z方向的位置誤差

圖13 三維空間的位置誤差

表3 標定前后的機械臂末端定位精度評價列表

5 結(jié)束語

本文基于六軸機械臂的末端誤差建模,提出了改進型RLM參數(shù)辨識算法,搭建了綜合位姿標定系統(tǒng)并對標定實驗原理進行了數(shù)學描述。比較了遺傳算法GA、傳統(tǒng)RLM和改進型RLM參數(shù)辨識過程中的收斂速度和辨識精度等指標,相比而言,改進型RLM算法具有更優(yōu)的性能。并利用傳統(tǒng)RLM算法和改進型RLM算法實現(xiàn)幾何參數(shù)辨識和誤差補償,最后采集100個位置樣本進行實驗驗證。結(jié)果表明,改進型RLM算法較傳統(tǒng)RLM算法的參數(shù)辨識精度更高,抗擾動能力更強,末端絕對定位精度得到了有效的提高,并能滿足自動化領(lǐng)域中高穩(wěn)定性和高精度的要求。

圖14 傳統(tǒng)RLM和改進型RLM標定后定位精度的提高程度

猜你喜歡
機械
《機械工程師》征訂啟事
太空里的機械臂
機械革命Code01
電腦報(2020年35期)2020-09-17 13:25:53
調(diào)試機械臂
當代工人(2020年8期)2020-05-25 09:07:38
ikbc R300機械鍵盤
電腦報(2019年40期)2019-09-10 07:22:44
對工程建設(shè)中的機械自動化控制技術(shù)探討
基于機械臂的傳送系統(tǒng)
電子制作(2018年14期)2018-08-21 01:38:14
簡單機械
土石方機械的春天已經(jīng)來了,路面機械的還會遠嗎?
機械班長
主站蜘蛛池模板: 欧美一级高清片欧美国产欧美| 久久综合色88| 国产乱人乱偷精品视频a人人澡| 国产在线第二页| 久久天天躁夜夜躁狠狠| 一级毛片在线直接观看| 成年A级毛片| 在线免费亚洲无码视频| 青青国产在线| 国产高潮视频在线观看| 国产高清在线观看91精品| 国产黄网永久免费| 2021国产精品自产拍在线| 四虎亚洲精品| 亚洲男人天堂久久| 99色亚洲国产精品11p| 91久久偷偷做嫩草影院免费看| 久久香蕉国产线看观看精品蕉| 特级精品毛片免费观看| 又爽又大又黄a级毛片在线视频 | 永久在线播放| 秋霞午夜国产精品成人片| 国产亚洲视频在线观看| 久久综合色播五月男人的天堂| 女人毛片a级大学毛片免费| 免费国产高清视频| 91在线无码精品秘九色APP| 99热这里只有精品在线观看| 亚洲国产中文在线二区三区免| 黄色国产在线| 欧美一级视频免费| 国产成人调教在线视频| 国产无码在线调教| 亚洲女同一区二区| 国产精品真实对白精彩久久| 激情视频综合网| 欧美成人看片一区二区三区| 免费一级毛片完整版在线看| 91黄视频在线观看| 日韩欧美高清视频| 伊人丁香五月天久久综合| 99人妻碰碰碰久久久久禁片| 91麻豆精品国产高清在线| 国产黄在线观看| 强乱中文字幕在线播放不卡| 免费精品一区二区h| 免费网站成人亚洲| 亚洲成人免费在线| 久久久久亚洲av成人网人人软件| 国产成人精品免费视频大全五级| 国产sm重味一区二区三区| 一本二本三本不卡无码| 亚洲天堂网站在线| 国产成人精品一区二区| 怡春院欧美一区二区三区免费| 亚洲一区无码在线| 国产中文在线亚洲精品官网| 国产精品视频系列专区| 伊人婷婷色香五月综合缴缴情| 老司国产精品视频91| 国模沟沟一区二区三区| 97se亚洲| 日日噜噜夜夜狠狠视频| 少妇精品在线| 22sihu国产精品视频影视资讯| 成人va亚洲va欧美天堂| 97青青青国产在线播放| 国产精品久线在线观看| 国产日本欧美亚洲精品视| 99热亚洲精品6码| 免费观看无遮挡www的小视频| 麻豆a级片| 久久91精品牛牛| 一级毛片免费高清视频| 国产草草影院18成年视频| 国产99精品久久| 久久精品aⅴ无码中文字幕 | 成年午夜精品久久精品| 免费xxxxx在线观看网站| 美女国内精品自产拍在线播放| 91av国产在线| 91成人试看福利体验区|