李海鑫,劉秀紅,楊忠啟,劉潤雨,武文君,楊 慶
調整氣水比優化高氨氮廢水BAF一體化脫氮
李海鑫,劉秀紅*,楊忠啟,劉潤雨,武文君,楊 慶
(北京工業大學,城鎮污水深度處理與資源化利用技術國家工程實驗室,北京 100124)
為實現常溫下高氨氮廢水中氮的高效去除,選取8:1、12:1和15:1等3個氣水比(GWR)條件,考察常溫下曝氣生物濾池(BAF)短程硝化-厭氧氨氧化(ANAMMOX)一體化自養脫氮工藝穩定運行的性能.研究結果表明:進水氨氮(NH4+-N)濃度為400mg/L、回流比為1:1的條件下,GWR為15:1脫氮效果最好,氨氮去除率(ARE)達90%以上,總氮(TN)去除負荷為1.1kgN/(m3·d),去除率達83%.GWR為15:1時,溶解氧(DO)為2.41~4.22mg/L,進水NH4+-N轉化為亞硝(NO2--N)量增加,ANAMMOX活性增強.對生物膜進行功能菌種實時熒光定量PCR(qPCR)分析得出,GWR為15:1時,ANAMMOX和氨氧化菌(AOB)兩者豐度均最高,高達1012copies/g dry sludge以上,一體化脫氮效果最好.同時,研究表明提高GWR后ANAMMOX反應增強,而過程中無N2O生成,GWR為15:1時,N2O總釋放量最小,釋放因子為0.0012.
曝氣生物濾池;生物膜;高氨氮廢水;氣水比;分子生物學;氧化亞氮
高氨氮廢水成分復雜,處理難度大且成本高.目前,處理高氨氮廢水的實際工程項目常用工藝類型主要包括SBR[1]、UASBB[2]、UASB-A/O[3]、A/O+ MBR[4]、A/O-CSTR[5]、升流式微氧生物膜反應器[6]、A/O+BAF[7]、ABR[8]等.這些處理工藝停留時間長,占地面積大,流程復雜并且啟動較難.而短程硝化-厭氧氨氧化一體化脫氮工藝流程短、占地面積小、系統操作容易、運行費用低、低能高效、易啟動等優勢成為目前脫氮技術的研究熱點[9-13].
短程硝化和厭氧氨氧化細菌均為自養微生物,世代時間長,因此實現一體化脫氮工藝需有效防止好氧氨氧化菌和厭氧氨氧化菌的流失.而BAF系統不但能夠有效保留好氧氨氧化菌和厭氧氨氧化菌,而且避免了生物濾池頻繁反沖洗的問題[14-15],但目前BAF穩定運行一體化脫氮工藝的相關報道較少[16].
GWR是一體化自養脫氮系統中影響DO變化的關鍵參數,而DO是ANAMMOX過程的限制因素.一方面,GWR的研究不僅要考慮脫氮效果,同時也要考慮能耗問題.有研究表明, GWR為2:1時,TN平均去除率僅為50.02%[17].雖然GWR較低使得能耗降低,但脫氮效果較差.還有研究發現在一體化工藝中, GWR應控制在28:1~40:1,TN去除效率為89.5%[18].雖然較高的GWR能夠有效脫氨,但同時也會造成不必要的能源浪費;另一方面,考慮脫氮效果和能耗的同時還要注意是否增加對環境的污染.污水生物脫氮過程會造成N2O的釋放,導致N2O釋放量升高的因素包括:低DO[20]、反硝化過程C/N比過低[21]、高亞硝積累率和較短的水力停留時間等[22-23].
基于上述考慮,本文以模擬高氨氮廢水為研究對象,采用火山巖作為BAF濾料,常溫條件下,針對高氨氮廢水短程硝化-厭氧氨氧化一體化自養脫氮工藝的GWR因素進行研究,并結合功能菌群豐度的變化和基于同位素技術的N2O釋放量及產生途徑的變化分析,研究目的旨在為實際工程提供最佳運行參數的同時減少溫室氣體的排放.
1.1.1 試驗裝置 本研究采用上流式BAF,反應器主體由有機玻璃制成,濾池底部設置曝氣盤,濾柱直徑14cm,總高196cm,其中濾料層高110cm,有效容積為19.2L,濾柱每隔20cm設1個取樣口,共設有8個取樣口.試驗所用火山巖濾料直徑為3~5mm.采用上向流方式進水,濾池部分出水通過回流管回到濾池底部錐形區域,池底底部裝有反沖裝置.
運行參數:進水流量50.77L/d,反沖洗周期為16d,采用氣水聯合反沖洗,反沖洗時間為15min.通過調節轉子流量計改變曝氣量來控制GWR.
1.1.2 試驗用水 本研究采用向北京工業大學家屬區生活污水中投加(NH4)2SO4和NaHCO3的方法,模擬高氨氮廢水,其中NH4+-N濃度為400mg/L, COD、堿度和pH值分別為140mg/L、2.14g/L(以CaCO3計),7.0~8.0.
1.2.1 水質分析方法 試驗中NH4+-N、NO2--N和NO3--N等分析均按照國家環境保護局發布的標準方法測定[24].采用DO測定儀檢測反應過程中DO 的變化情況(德國,WTW3420).采用DNA提取與實時熒光定量PCR分析方法分析功能菌群結構[25].
1.2.2 氣態及溶解態N2O測定方法
(1)氣態N2O(N2OG)測定:反應裝置密閉,所產氣體經U型干燥管干燥除水后收集于氣體采樣袋中.采用Agilent7890氣相色譜儀測定 N2O,所用色譜柱為HP-Plot/分子篩(30m′0.53mm內徑′25mm膜),色譜條件為:進樣口110℃;爐溫180℃;ECD檢測器300℃,所有氣體樣品均經多次測定,直至重現性較好為止.
(2)溶解態N2O(N2OD)測定:采用上部空間法測定[26].在密閉條件下,取BAF沿程水樣.為抑制殘余微量微生物的活性,向12mL頂空瓶中加入0.5mL濃度為1000mg/L的HgCl2溶液,然后加入4.5mL經0.45mm濾膜過濾后的水樣.將制好的樣品放入恒溫磁力攪拌器中震蕩1h,測定上部氣體中的N2O濃度,根據測得的N2O濃度及亨利定律計算出溶解態N2O濃度.N2O產生量(produced)包括試驗過程釋放到大氣中的N2O-N(off)和溶解于水中的N2O-N(dis);本試驗N2O濃度以處理單位體積污水產生的N2O-N含量表示.N2O-N釋放量和溶解態 N2O-N濃度根據Noda提供的方法計算[27],N2O-N產生量按照下式計算.
produced=off+dis(1)
1.2.3 同位素測定方法 采用Isoprime100穩定同位素質譜分析系統對所集氣體進行同位素分析,抽空20ml頂空瓶,立即注入待測氣體,通過自動進樣器用約25mL/min的He氣流將待測樣品吹進含燒堿石棉的化學阱,99.99%的CO2被吸收.N2O和其他空氣組份被捕集在-196℃的冷阱T2中.吹掃300s后,T2自動移出液氮罐,并通過六通閥的轉換,將被分析組份轉移至-196℃的T3冷阱內,轉換閥的另一頭與色譜柱相連接.待T3移出液氮容器即開始進行GC分析,之后進行質譜分析,用99.99%的N2O氣體做參考氣,測定結果用反硝化法得到的N2O標準氣體校正,即用USGS32、USGS34 和IAEA-N1產生的標準氣體校準樣品N2O中氮的bulk值和α值,用USGS34,USGS35和IAEA-N1產生的標準氣體校準氣體N2O中氧的同位素值.最終根據所得數據計算出15Nbulk、15Nα及SP值.
本試驗通過調整GWR優化常溫下高氨氮廢水短程硝化-厭氧氨氧化一體化自養脫氮工藝穩定性,研究內容可分為2個部分.第1部分:探究改變GWR條件時一體化系統脫氮效率情況,結合不同GWR條件下沿程水質變化和典型功能菌群豐度變化對濾池內部反應機理進行分析.第2部分:探究改變GWR條件時濾池內N2O釋放量的變化情況,結合N2O產生途徑進行分析.
如圖1所示,基于進水氨氮濃度為400mg/L, HRT為4h,回流比為1:1的運行參數,當GWR為8:1時,BAF內平均DO濃度為2.72mg/L,出水NH4+-N濃度為64.78mg/L,ARE為84%,一體化脫氮效果穩定.增加GWR至12:1時,出水NH4+-N濃度為66.79mg/L,ARE為83%.氨氮去除效果無明顯變化.第29d再次升高GWR為15:1,BAF內平均DO濃度升至3.32mg/L,DO充足,出水NH4+-N濃度降為40.671mg/L,NH4+-N去除率上升至90%,系統內NH4+-N轉化量增加,為ANAMMOX提供足夠的底物使得反應增強.

圖1 不同GWR條件下,系統內NH4+-N、TN去除情況

當GWR為8:1時,出水TN濃度為89.43mg/L, TN去除率為77%.GWR升至12:1時,出水TN濃度為82.16mg/L,TN去除率為79%.再次提高GWR為15:1時,出水TN濃度降至65.5mg/L,TN去除率升高至83%,TN去除負荷達到1.1kgN/(m3·d),一體化脫氮效率明顯提高.有研究發現上向流濾池CANON反應器中, GWR高于15:1時脫氮效果較高,TN去除率為75%,TN去除負荷為1.1kg/ (m3·d)[28].但在本研究中,當系統內GWR為15:1時,TN去除率已穩定達到80%以上,TN去除負荷也已經高達1.1kg/(m3·d),因此無需再提高GWR運行造成不必要的能源浪費.
2.2.1 提高氣水比促進沿程污染物降解速率加快 如圖2所示,NH4+-N降解因GWR增大而呈現出不同規律.待GWR為8:1條件下穩定運行后,增加GWR為12:1時,濾層0.15m處,游離氨(FA)濃度為38.89mg/L時并未對一體化系統內AOB產生抑制,NH4+-N降低了160mg/L,層高0.75m~1.15m處由于DO濃度較小,硝化作用較弱,因此NH4+-N下降趨勢較緩,同時濾池沿程NO3--N產生速率較緩,由于COD濃度較高,ANAMMOX菌競爭NO2--N的能力弱于反硝化菌,反硝化能力增強,ANAMMOX反應較弱.

圖2 不同GWR條件下生物濾池沿程水質變化

當再次提高GWR為15:1時,水中DO濃度較高, NH4+-N降解速率較快,池體內NH4+-N濃度下降趨勢較明顯,層高0.15~0.35、0.55~0.95和1.35~1.55m處,降解速率是GWR為8:1時的1.5倍以上.而0.95~ 1.15m處近3倍,NH4+-N處理效果較好.層高0~ 0.35m處,硝態氮(NO3--N)濃度明顯增加,這是由于系統內DO較高,硝化過程中產生NO2--N充足,從而使ANAMMOX反應增強.
2.2.2 提高GWR使得厭氧氨氧化活性增強 由表1可知,當GWR由8:1提高到12:1時,由于供氧量依舊不足使得NH4+-N未充分轉化為NO2--N,脫氮效果無明顯增加.再次升高GWR為15:1時,BAF內DO濃度升高,水力沖刷作用加強,加快生物膜的更新速度,使生物膜對氧的利用率增加[29],硝化作用增強,進水NH4+-N轉化為NO2--N量增加.ANAMMOX反應底物充足,ANAMMOX反應強化導致一體化脫氮效率提高.

表1 不同GWR條件下污染物平均去除情況
注:①反應器底部進水混合處的DO濃度; ②表示曝氣生物濾池去除系統內75%TN時的濾層深度.
提高GWR為15:1后,濾池內部DO濃度較高,平均在2.41mg/L~4.22mg/L之間,濾池濾層0.95m處即能處理75%的總氮.說明本系統在較高的DO條件下,短程硝化更加穩定,同時本生物膜系統內ANAMMOX菌種對于高DO有一定的承受力,短程硝化為ANAMMOX反應提供了充足的NO2--N, ANAMMOX反應增強從而使一體化效果得到增強.表中ΔNH4+-N/ΔNO3--N均大于理論值3.85,說明TN通過多種途徑去除,結合前面沿程水質情況可知包括ANAMMOX、反硝化和N2O釋放等途徑.
2.2.3 提高GWR使得生物膜系統內有利菌群豐度增加 由于一體化濾池中短程硝化反應和ANAMMOX反應同時進行,同時還有反硝化反應的發生,池體內生物膜組成較復雜,因此本文在不同GWR條件下針對濾池內部生物膜進行功能菌種qPCR定量分析.

圖3 不同GWR條件下生物濾池上部菌群豐度變化

如圖3所示,不同GWR條件下濾池菌種豐度存在一定變化,AOB菌種豐度隨GWR增大而升高,從(1.32×1011±1.67×1010)copies/g dry sludge升至(1.86× 1011±2.50×1010)copies/g dry sludge.氣水比為15:1時,ANAMMOX菌種數量顯著升高,達1012copies/g dry sludge以上,說明本系統內一定存在短程硝化和ANAMMOX反應.

濾池下部生物膜功能菌種qPCR定量分析結果如圖4所示,濾池全菌(ALL)、氨氧化古菌(AOA)和亞硝酸鹽氧化菌(NOB)隨GWR升高呈顯著降低的趨勢,提高GWR至15:1時,菌種豐度分別為(1.53× 1015±9.43×1013)copies/g dry sludge、(1.66×107±1.20× 106)copies/g dry sludge和(1.56×108±1.97×107) copies/g dry sludge. GWR增加, DO較高,而高DO可能不利于AOA的生存[30].濾池AOB菌種變化很小,而NOB菌種豐度明顯降低,可能是受較高DO影響,說明在高DO條件下反而不利于NOB的繁殖,更易維持穩定的短程硝化.濾池中反硝化菌(nirK和nirS)豐度也隨GWR增大而降低,因為增大GWR后池體內DO濃度升高,生物膜內部厭氧區減小,不利于反硝化菌生長.而反硝化菌(nosZ)在GWR12:1時豐度最小.
對比改變GWR條件時濾池上部和下部菌種豐度變化情況得出,濾池各個菌種豐度變化不大,群落結構較穩定.由于濾池微生物菌種較豐富, GWR的變化并未對其造成較大影響,因此濾池成熟的生物膜可以抵抗一定水力負荷的沖擊.不同GWR條件下濾池菌種豐度定量分析結果與相應條件下池體出水水質分析情況一致,在GWR為15:1時, ANAMMOX和AOB兩者豐度均最高,因此出水水質最好.
一體化系統脫氮過程中會產生N2O,主要通過羥胺(NH2OH)氧化、硝化細菌反硝化和反硝化等3種途徑產生,而N2O的釋放會造成環境的破壞,因此優化一體化系統脫氮效果的同時需要減少N2O的釋放,為此研究不同GWR條件下N2O的釋放量和產生途徑,通過調整GWR來實現N2O的減排.

圖5 不同GWR條件下生物濾池N2O釋放量
2.3.1 提高GWR降低N2O總釋放量 在增強GWR條件時,對BAF一體化自養脫氮工藝內N2O含量進行檢測,如圖5所示.當GWR由8:1增加到15:1時,N2OD含量隨GWR增大而減少,由0.31N mg/L降至0.13N mg/L.N2OG釋放量卻隨GWR增加而增加,由0.16N mg/L增至0.25N mg/L.系統內N2O總量隨GWR增加而降低,從0.47N mg/L降至0.38N mg/L.通過N2O釋放因子的計算得出[31],3種GWR條件下N2O釋放因子分別為0.0015、0.0013和0.00085.因此當GWR為15:1時,系統內N2O的釋放量最低.
2.3.2 不同GWR 條件下N2O產生途徑 在GWR為8:1、12:1和15:1條件下,對一體化自養脫氮工藝中N2O產生途徑進行研究.分別對BAF中收集的氣體進行穩定同位素測定,得到N2O氣體的SP值,從而判斷反應過程N2O產生途徑,結果如表2所示.

表2 不同GWR條件下長期運行過程同位素測定結果
已有研究結果表明[32],假定NH2OH氧化過程生成N2O氣體的SP值(SPNN)平均為28.5‰,硝化細菌反硝化過程生成N2O氣體的SP值(SPND)平均為-2‰,這2種反應生成的N2O占總生成量的比例分別為NN和ND,盡管存在生成N2的未知反應,仍可通過下式計算兩者所占比例[33]:
ND=(1?NN)=(SPTOT?SPNN)/(SPND-SPNN) (2)
由表2可知,3種GWR條件下,大部分N2O是通過硝化細菌反硝化過程產生的.當GWR較低時,80%左右的N2O是由硝化細菌反硝化過程生成的.由于生物膜內部存在厭氧區域,一些好氧硝化菌會在DO較低的條件下將NO2--N還原為N2O,即硝化細菌的反硝化作用.但提高GWR時,池體內DO濃度升高,硝化細菌活性增強,通過NH2OH氧化過程生成的N2O增加.當GWR為8:1和12:1時,DO不足,由于反硝化作用導致N2O生成量增加,同時濾池底部氧化亞氮還原酶基因型反硝化菌種在GWR為12:1時豐度最小,只有小部份的N2O被還原.當再次提高GWR為15:1時,除NH2OH氧化生成的N2O外,由于反硝化作用減弱,而ANAMMOX反應增強但過程中無N2O產生,故總量減小,與出水水質分析一致.
綜合考慮脫氮效果、N2O釋放量和能量消耗等問題,本研究常溫下BAF高氨氮廢水一體化自養脫氮工藝的最佳GWR為15:1,TN去除率為83%,TN去除負荷達到1.1kgN/(m3·d),N2O釋放因子為0.0012.
3.1 常溫下BAF高氨氮廢水一體化自養脫氮,當系統內進水氨氮濃度為400mg/L,回流比為1:1條件下,GWR為8:1和12:1時,一體化系統中TN去除率為分別為77%和79%.提高GWR為15:1時,TN去除率升至83%,一體化脫氮效率明顯提高,TN去除負荷達到1.1kgN/(m3·d).
3.2 GWR為15:1時,沿程污染物降解速率較快,濾池層高0.95~1.15m處氨氮降解速率是8:1時的2.5倍以上; DO在2.41~4.22mg/L之間,NO2--N生成量增加,ANAMMOX活性增強;系統內有利菌群豐度增加,ANAMMOX和AOB兩者豐度均最高, ANAMMOX菌種隨GWR增加從(4.07×1011± 5.11×109)copies/g dry sludge升至(1.14×1012±6.45× 109)copies/g dry sludge.
3.3 系統內N2O總釋放量隨GWR增加而降低,GWR為15:1時,ANAMMOX反應增強而過程中無N2O產生,N2O總釋放量最小,釋放因子為0.0012.
[1] Guerrero L, Montalvo S, Huili?ir C, et al. Simultaneous nitrification– denitrification of wastewater: effect of zeolite as a support in sequential batch reactor with step-feed strategy [J]. International Journal of Environmental Science and Technology, 2016,13(10): 2325-2338.
[2] 李亞峰,馬晨曦,張 馳.UASBB厭氧氨氧化反應器處理污泥脫水液的影響因素研究[J].環境科學, 2014,35(8):3044-3051. Li Y F, Ma C X, Zhang C. Influencing Factors of Sludge Liquor Treatment in UASBB [J]. Environmental Science, 2014,35(8):3044- 3051.
[3] 孫洪偉,彭永臻,時曉寧,等.UASB-A/O工藝處理垃圾滲濾液短程生物脫氮的實現[J]. 中國環境科學, 2009,29(10):1059-1064. Sun H W, Peng Y Z, Shi X Y, et al. Achieving nitrogen removal from landfill leachate via UASB-A/O process [J]. China Environmental Science, 2009,29(10):1059-1064.
[4] 趙 晴,梁俊宇,呂 慧,等.AO-MBR工藝短程硝化反硝化處理垃圾滲濾液中試研究 [J]. 北京工業大學學報, 2018,44(1):45-49. Zhao Q, Liang J Y, Lv H, et al. Pilot-scale Study on nitritation– Denitritation of Landfill Leachate by an AO-MBR Process [J].Journal of Beijing University of Technology, 2018,44(1):45-49.
[5] 張 亮,王淑瑩,張樹軍,等.高氨氮污泥脫水液短程硝化反硝化的啟動及穩定[J]. 環境工程學報, 2012,6(4):1064-1068. Zhang L, Wang S Y, Zhang S J, et al. Start up and maintenance of partial nitrification-denitrification of high strength ammonia sludge dewatering water [J]. Chinese Journal of Environmental Engineering, 2012,6(4):1064-1068.
[6] 王 成,孟 佳,李玖齡,等.升流式微氧生物膜反應器處理高氨氮低C/N比養豬廢水的效能[J].化工學報, 2016,67(9):3895-3901. Wang C, Meng J, Li J L, et al. Pollutant removal efficiency in upflow microaerobic biofilm reactor treating manure-free piggery wastewater with low COD/TN ratio and high NH4+-N [J]. CIESC Journal, 2016,67(9):3895-3901.
[7] 俞 彬,陳廣升,王玉慧,等.A/O+BAF工藝處理高氨氮煤化工廢水[J]. 中國給水排水, 2013,29(6):81-83+88. Yu B, Chen G S, Wang Y H, et al. A/O+BAF Process for Treatment of Coal Chemical Wastewater with High Ammonia Nitrogen [J]. CHINA WATER & WASTEWATER, 2013,29(6):81- 83+88.
[8] 吳 鵬,張詩穎,宋吟玲,等.ABR工藝ANAMMOX耦合短程硝化協同脫氮處理城市污水[J]. 環境科學, 2016,37(8):3108-3113. WU P, ZHANG S Y, SONG Y L, et al. Nitrogen Removal of Municipal Wastewater by ANAMMOX Coupled Shortcut Nitrification in Anaerobic Baffled Reactor [J]. Environmental Science, 2016, 37(8):3108-3113.
[9] Lackner S, Gilbert E M, Vlaeminck S E, et al. Full-scale partial nitritation/Anammox experiences – An application survey [J]. Water Research, 2014,55:292-303.
[10] Gao D, Lu J, Liang H. Simultaneous energy recovery and autotrophic nitrogen removal from sewage at moderately low temperatures [J]. Applied Microbiology and Biotechnology, 2014,98(6):2637-2645.
[11] Wen X, Zhou J, Wang J, et al. Effects of dissolved oxygen on microbial community of single-stage autotrophic nitrogen removal system treating simulating mature landfill leachate [J]. Bioresource Technology, 2016,218:962-968.
[12] Vo T T, Nguyen T P. Nitrogen removal from old landfill leachate with SNAP technology using biofix as a biomass carrier [J]. Journal of Bioscience and Bioengineering, 2016,122(2):188-195.
[13] Daverey A, Su S, Huang Y,. Partial nitrification and Anammox process: A method for high strength optoelectronic industrial wastewater treatment [J]. Water Research, 2013,47(9):2929-2937.
[14] Liu X, Wang H, Long F, et al. Optimizing and real-time control of biofilm formation, growth and renewal in denitrifying biofilter [J]. Bioresource Technology, 2016,209:326-332.
[15] 楊 慶,谷鵬超,劉秀紅,等.兩種典型濾料厭氧氨氧化效果與工藝運行優化[J]. 化工學報, 2015,66(1):455-463. Yang Q, Gu P C, Liu X H, et al. Comparison of performance and optimizing process for two typical filter medias of ANAMMOX biofilters [J]. CIESC Journal, 2015,66(1):455-463.
[16] 楊 慶,周 桐,劉秀紅,等.常溫下接種回流污泥實現BAF一體化自養脫氮工藝[J]. 化工學報, 2017,68(5):2081-2088. Yang Q, Zhou T, Liu X H, et al. Implementation of integrated autotrophic nitrogen removal system at normal temperature by returned sludge [J]. CIESC Journal, 2017,68(5):2081-2088.
[17] 楊長生.氣水比對曝氣生物濾池SND的影響[J].工業水處理, 2011,31(8):63-66. YANG C S. Influence of air/water ratio on the performance of SND in BAF [J]. Industrial Water Treatment, 2011,(8):63-66.
[18] Liang Y, Li D, Zhang X, et al. Performance and influence factors of completely autotrophic nitrogen removal over nitrite(CANON) process in a biofilter packed with volcanic rocks [J]. Environmental Technology, 2015,36(8):946-953.
[19] 路俊玲,陳慧萍,肖 琳.溫度和氨氮濃度對水體N2O釋放的影響 [J]. 中國環境科學, 2019,39(1):330-335. Lu J L, Chen H P, Xiao L. Coupling effect of temperature and ammonia on N2O emission in surface water [J].China Environmental Science, 2019,39(1):330-335.
[20] Rathnayake L, Ishii S, Satoh H. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules [J]. Bioresource Technology, 2015,197:15-22.
[21] Itokawa H, Hanaki K, Matsuo T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition [J]. Water Research, 2001,35(3):657-664.
[22] Qing Y, Xiuhong L, Chengyao P, et al. N2O Production during Nitrogen Removal via Nitrite from Domestic Wastewater: Main Sources and Control Method [J]. Environmental Science & Technology, 2009,43(24):9400-9406.
[23] Noda N, Kaneko N, Mikami M, et al. Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system [J]. Water Science & Technology, 2003,48(11/12):363-370.
[24] 張鈴敏,常青龍,史 勤,等.CANON 工藝短程硝化恢復調控及微生物種群結構變化[J]. 中國環境科學, 2019,39(6):2354-2360. Zhang L M, Chang Q L, Shi Q,et al.The recovery regulation of a CANON system and variations in the microbial community [J]. China Environmental Science, 2019,39(6):2354-2360.
[25] Zhou X, Liu X, Huang S, et al. Total inorganic nitrogen removal during the partial/complete nitrification for treating domestic wastewater: Removal pathways and Main influencing factors [J]. Bioresource Technology, 2018,256:285-294.
[26] Yang Q, Liu X, Peng C, et al. N2O Production during Nitrogen Removal via Nitrite from Domestic Wastewater: Main Sources and Control Method [J]. Environmental Science & Technology, 2009, 43(24):9400-9406.
[27] Noda N, Kaneko N, Milkami M, et al. Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system [J]. Water Science and Technology, 2003,48(11/12):363-370.
[28] 劉 濤,李 冬,曾輝平,等.常溫下CANON反應器中功能微生物的沿程分布[J]. 哈爾濱工業大學學報, 2012,44(10):22-27. Liu T, Li D, Zeng H P, et al. Distribution of functional bacteria alone bio-filter of CANON reactor at room temperature [J]. Journal of Harbin Institute of Technology, 2012,44(10):22-27.
[29] Cema G, P?aza E, Trela J,et al. Dissolved oxygen as a factor influencing nitrogen removal rates in a one-stage system with partial nitritation and Anammox process [J]. Water Science & Technology, 2011,64(5):1009-1015.
[30] Park H D, Wells G F, Bae H, et al. Occurrence of Ammonia-Oxidizing Archaea in Wastewater Treatment Plant Bioreactors [J]. Applied and Environmental Microbiology, 2006,72(8):5643-5647.
[31] Hu M P, Chen D J, Dahlgren R A. Modeling nitrous oxide emission from rivers: a global assessment [J].Global Change Biology, 2016,22(11):3566-3582.
[32] Wunderlin P, Lehmann M F, Siegrist H,et al. Isotope Signatures of N2O in a Mixed Microbial Population System: Constraints on N2O Producing Pathways in Wastewater Treatment [J]. Environmental Science & Technology, 2013,47(3):1339-1348.
[33] Frame C H, Casciotti K L. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium [J]. Biogeosciences, 2010,9(7):2695-2709.
Optimization of the integrated nitrogen removal process of high ammonia nitrogen wastewater in BAF by adjusting the gas water ratio.
LI Hai-xin, LIU Xiu-hong*, YANG Zhong-qi, LIU Run-yu, WU Wen-jun, YANG Qing
(National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Techndogy, Beijing University and Technology, Beijing 100124, China)., 2019,39(9):3807~3813
In order to achieve efficient removal of nitrogen from high ammonia nitrogen wastewater at room temperature, this study selected three gas water ratio conditions, 8:1、12:1 and 15:1 respectively. It investigated the stable operation performance of partial nitrification-ANAMMOX integrated autotrophic nitrogen removal process of biological aerated filter (BAF) at room temperature. The results showed that gas water ratio (GWR) at the optimal operation time was 15:1under the condition of inlet ammonia nitrogen (NH4+-N) concentration of 400mg/L and reflux ratio of 1:1, ammonia nitrogen removal rate (ARE) was over 90%,total nitrogen (TN) removal load was 1.1kgN/(m3·d), and TN removal rate could reach 83%. When the GWR is 15:1,the DO is controlled around 2.41mg/L and 4.22mg/L, the amount of NH4+-N converted into nitrite (NO2--N) in water increased, and the ANAMMOX activity is enhanced. The real-time fluorescence quantitative PCR (QPCR) analysis of functional strains on the biofilm showed that when the GWR was 15:1, both ANAMMOX and AOB had the highest abundance, more than 1012copies/g dry sludge. Therefore, integrated nitrogen removal has the best effect. At the same time, studies have shown that the ANAMMOX reaction is strengthened after increasing the gas water ratio and N2O is not generated in the ANAMMOX process. When the GWR is 15:1, the total release amount of N2O is the smallest, and the release factor is 0.0012.
BAF;biofilm;high ammonia nitrogen wastewater;GWR;molecular biology;N2O
X703.1
A
1000-6923(2019)09-3807-07
李海鑫(1994-),女,黑龍江伊春人,碩士研究生,主要從事污水生物脫氮研究.
2019-02-28
國家自然科學基金資助項目(51878011);北京市自然科學基金資助項目(8182012)
* 責任作者, 副研究員, lxhfei@163.com