李 艷,馬青山
復合益生菌發酵液的功能特性及對對蝦誘食效果
李 艷1,馬青山2※
(1. 中國海洋大學海水養殖教育部重點實驗室,青島 266003;2. 中國海洋大學醫藥學院,青島 266003)
為探求復合菌發酵液的多種功能,該試驗選擇具有脫氮、產酶、抑菌等優良性能的酵母菌、乳酸菌及芽孢桿菌各1株,利用已優化的HJ培養基進行共培養,實時監測發酵過程,分時段取樣,對復合菌發酵液的脫氮、產酶、抑菌、培藻及誘食等功能進行研究。結果表明,釀酒酵母菌NJ-02、屎腸球菌SC-01及枯草芽孢桿菌M7-1能夠在HJ培養基中進行共發酵,連續培養24 h后3株微生物活菌數量分別達到3.88×108、2.41×1010、5.38×109CFU/mL。復合菌發酵液的脫氮、培藻性能同復合菌中枯草芽孢桿菌M7-1的活菌數相關較大,發酵至16 h其降解亞硝態氮和培藻性能最為理想,亞硝態氮降解率為89%,并使小球藻葉綠素a質量分數提升49.6%。復合菌發酵液具有同枯草芽孢桿菌M7-1相當的產酶(蛋白酶、淀粉酶、纖維素酶)活性及同屎腸球菌SC-01相當的抑菌(副溶血弧菌)活性。復合菌發酵液飼喂對蝦,誘食效果明顯好于對照組(<0.05),同化學誘食劑二甲基--丙酸噻亭(dimethyl-beta-propiothetin hydrochloride, DMPT)差異不顯著,其腸道中乳酸菌、酵母菌數目顯著高于對照組及化學誘食劑組(<0.05)。該研究所制備的脫氮、培藻、抑菌及誘食功能復合菌發酵液,為可持續生態水產養殖提供了新的微生物資源和技術方法。
發酵;脫氮性能;產酶性能;抑菌性能;誘食效果
中國是全球最大的水產養殖國家,養殖水產品總量逐年遞增。據統計,2018年總量已達4 906萬t,超過世界養殖水產品總量的70%[1]。水產養殖為中國優質蛋白質的供給與農業經濟的發展及國家的糧食安全做出了巨大貢獻。
目前,高密度、集約化已成為中國水產養殖的主要模式,這種模式以超量飼喂、人工增氧及抗生素的應用為主要維持手段[2],然而,養殖密度的不斷提高極易打破池塘原有的生態平衡,過多的殘餌、糞便無法被池塘中的微生物分解利用,導致氨氮、亞硝態氮等有害物質積累,影響養殖動物的健康[3];其次,化藥及抗生素的應用,導致有害耐藥細菌及有害藻類大量繁殖,同時,藥殘問題也無時不刻的影響著養殖動物的品質及安全[4]。因此,重建養殖池塘生態平衡,恢復環境中的正常菌相、藻相,通過生物手段降低抗生素及化藥的應用,乃是解決這一矛盾的主要辦法[5-6]。益生菌的應用能夠促進藻類繁殖、穩定池塘生態系統,降解池塘氨氮、亞硝態氮等有害物質,并且能夠提升水產動物攝食量、維持腸道正常菌群、保障動物腸道健康[7],可大幅度降低抗生素及化學藥物等的應用。
以往研究的益生菌主要側重于某一方面的功能或將功能性菌粉進行簡單復配[8-10],研究結果表明,復配后益生菌功效會得到提升。Hao等[11]在對蝦飼料中按2:1:1比例添加混合益生菌D4、D7 及D15,劑量為 107CFU/g,同應用單一益生菌相比,應用復合益生菌后明顯提升了對蝦的生長性能及抗病能力。但將上述脫氮、產酶、抑菌等功能的微生物進行混合發酵,賦予一種發酵液多種功能,并進一步研究復合發酵液的培養方法和用途的研究報道相對較少。多功能復合菌發酵可大幅度降低生產成本、簡化應用流程、拓寬應用范圍[7],具有潛在的應用價值,值得深入研究,益生菌的混合發酵涉及到功能性菌株活菌數的保障,菌株間的功效協作及協同效應的驗證等多方面內容。本試驗對復合菌發酵液的制備及其脫氮、培藻、抑菌及對蝦誘食、腸道菌群調控等方面進行了研究,取得了較為滿意的結果。
1.1.1 菌 種
選取實驗室保藏的脫氮、產酶、抑菌等性能優良的酵母菌、乳酸菌及芽孢桿菌各1株(表1),初始發酵的菌株接種比例為1:1:1(活菌數均為107CFU/mL)。

表1 復合菌發酵菌種信息
復合菌發酵HJ培養基:可溶性淀粉10 g/L、蛋白胨10 g/L、葡萄糖10 g/L、磷酸二氫鉀2 g/L、氯化鈉1 g/L,蒸餾水1 000 mL。
亞硝態氮降解培養基:丁二酸鈉4.72 g、亞硝酸鈉2.5 mg、磷酸二氫鉀1 g、七水硫酸鐵0.05 g、無水氯化鈣0.2 g、七水硫酸鎂1 g、蒸餾水1 000 mL。
氨氮降解培養基:丁二酸鈉4.72 g、氯化銨2.5 mg、磷酸二氫鉀1 g、七水硫酸鐵0.05 g、無水氯化鈣0.2 g、七水硫酸鎂1 g、蒸餾水1 000 mL。
小球藻培養基:糖蜜78%、硝酸銨5%、腐植酸鈉7%、硅酸鈉5%、過磷酸鈣3%、磷酸二氫鉀0.2%、硫酸錳0.6% 、硫酸銅0.25%、七水硫酸亞鐵0.5%、鉬酸銨0.1%、硼酸0.1%、硫酸鋅0.25%。
LB肉湯培養基(Luria-Bertani Broth,LB)、乳酸細菌培養基(man rogosa sharpe medium,MRS)、酵母膏胨葡萄糖培養基(yeast extract peptone dextrose medium,YPD)、硫代硫酸鹽檸檬酸鹽膽鹽蔗糖瓊脂培養基(thiosulfate citrate bile salts sucrose agar culture medium,TCBS)購于北京陸橋技術股份有限公司(北京,中國)。培養基中所應用的化學藥品購于國藥集團化學試劑有限公司(北京,中國)。
將上述3株菌應用HJ培養基分別培養后,取活菌數均為109CFU/mL的菌株種子液各10 mL,接入1 L的液體HJ培養基中進行培養,溫度35 ℃,搖床轉速120 r/min,起始pH值設置為7.2(本實驗室試驗優化,適合于3株微生物共發酵),連續培養24 h。于0、4、8、12、16、20、24 h對混合菌液取樣并梯度稀釋,分別在YPD、MRS、LB固體培養基上進行涂布,記錄酵母菌、乳酸菌及芽孢桿菌活菌數。
在超凈臺中,將0、4、8、12、16、20、24 h的復合菌發酵液接入50 mL亞硝態氮及氨氮降解培養基中,接種終濃度為5×105CFU/mL,對照組為空白,重復試驗次數為3。30 ℃、180 r/min,培養24 h后進行取樣測定。均勻吸取培養液1.5 mL至離心管中,12 000 r/min離心3 min,取上清200L加入96孔板,于550 nm比色測亞硝態氮濃度、450 nm比色測氨氮濃度。
應該多開通去這里的航班。美國北加利福尼亞沿海紫海膽泛濫成災,摧毀了那里的巨藻林,而巨藻林的消失則意味著生態系統的崩潰,許多人的生計因此受到威脅。看來中國游客還不夠多,才有了這后果。
產酶功能分析:用接種環取枯草芽孢桿菌M7-1及復合菌發酵液(HJ培養基,發酵20 h),分別點接在蛋白酶、淀粉酶、纖維素酶指示平板上,35 ℃培養20 h后,游標卡尺分別測定透明圈直徑2及菌落直徑1,計算2與1的比值(酶的相對活性)[12]。
抑菌功能分析:選用國標濾紙片法進行功能菌株的抑菌試驗[13]。指示菌為經過37 ℃培養12 h的副溶血弧菌(實驗室保藏),將其與生理鹽水 1:9稀釋,渦旋器混勻后涂布TCBS平板,加入載有屎腸球菌SC-01(HJ培養基,發酵20 h)、復合菌發酵液(發酵20 h)的濾紙片。37 ℃培養24 h,觀察指示菌生長情況,游標卡尺測量抑菌圈直徑。
取10 mL小球藻培養基到1 000 mL水中配制培藻試驗基礎培養基,滅菌后待用。設置空白對照組(培藻試驗基礎培養基)和試驗組(在培藻試驗基礎培養基中加入0、4、8、12、16、20、24 h的復合菌發酵液),重復試驗次數為3,接種終濃度為105CFU/mL。試驗前同時加入1萬個/mL的小球藻液體(實驗室保藏)。光照2 000 lx,溫度25 ℃條件下,培養72 h,培養過程中每隔4 h搖晃15次。分別從瓶中取10 mL樣品進行葉綠素a質量分數的測定。
選擇300尾體質量為15 g左右的健康南美白對蝦(正大集團,海南,中國)作為試驗對象,試驗共分5組(4個處理組及1個空白對照組),每組3個重復,每個重復20尾蝦。參照專利《一種水產動物誘食劑的篩選方法》制備有色食丸[14],食丸分別添加1%的20 h復合菌發酵液、1%的20 h釀酒酵母菌NJ-02發酵液(HJ培養基)、1%的二甲基--丙酸噻亭(dimethyl-beta-propiothetin hydrochloride,DMPT)、1%的氧化三甲胺(trimetlylamine oxide,TMAO),同時投入水池同一位置,投入食丸10 min后,統計南美白對蝦對不同顏色食丸的捕獲與采食數量,依統計結果判斷試驗品的誘食性能。
飼喂食丸2 d后無菌解剖對蝦,取出腸道,研磨后分別梯度稀釋涂布MRS、YPD平板,進行乳酸菌、酵母菌活菌計數。
亞硝態氮濃度測定采用N-(1-萘基)-乙二胺光度法,氨氮濃度測定采用納氏試劑方法,葉綠素-a測定采用分光光度法[15]。
基礎數據處理、顯著性差異分析基于SAS (statistical analysis systems)統計軟件,<0.05表示差異顯著。
復合菌發酵活菌數結果如圖1所示,可知3株菌共培養在4~10 h分別進入對數生長期,并于12~20 h酵母菌、乳酸菌及芽孢桿菌活菌數先后達到峰值,分別為3.88×108、2.41×1010、5.38×109CFU/mL。而后,逐漸進入生長平臺期,活菌數趨于穩定。復合菌發酵的pH值呈現出先降低而后回升的趨勢,發酵至12 h 時pH值回升至最高值6.34,而后發生回落。
通過結晶紫染色鏡檢觀察復合菌發酵液可知,共培養16 h后,3株益生菌共生良好,顯微鏡鏡檢可同時觀察到屎腸球菌SC-01、枯草芽孢桿菌M7-1及釀酒酵母菌NJ-02(圖2)。

圖1 復合菌發酵活菌數及pH值變化曲線

圖2 復合菌發酵液顯微鏡鏡檢圖(16 h,結晶紫染色,放大倍數:60×10)
本試驗中選擇了釀酒酵母菌NJ-02、屎腸球菌SC-01及枯草芽孢桿菌M7-1進行共發酵研究,這些菌株分別具有產酸、產多糖、脫氮、產酶、抑菌等方面的功能,但是在發酵過程中酵母菌、乳酸菌及芽孢桿菌偏好的最適pH值、培養溫度等條件都是不同的[16]。本試驗中,應用的培養基經過反復優化,并全程監控發酵過程,以保障這3株活菌的共生性,3株益生菌接種后,乳酸菌首先實現了快速生長,主要是由于試驗中應用的屎腸球菌SC-01為經過紫外誘變過的菌株,pH值適應性強、生長快速,其快速生長導致pH值下降,出現了適應酵母菌增殖的酸性條件[17],從而促進了釀酒酵母菌NJ-02(適合于偏酸性環境)的生長??莶菅挎邨U菌M7-1的生長或許同發酵體系中微生物在生長過程中產生的代謝產物有關,這些代謝產物可成為微生物生長的基質及原料,存在一種共生增殖關系,促進了彼此的生長[18]。連續發酵24 h后,釀酒酵母菌NJ-02、屎腸球菌SC-01及枯草芽孢桿菌M7-1活菌數分別達到了3.88×108、2.41×1010、5.38×109CFU/mL。以往的研究中,Manoj等應用優化的培養基,將spp.和共培養,得到了較高的生物量[19]。在不同種屬微生物共發酵方面,Liu等應用及共培養處理乳酸菌發酵廢水,結果表明2種微生物生長良好,同單菌相比,復合菌發酵大幅度的降低了廢水中總有機碳(total organic carbon,TOC)及總氮(total nitrogen,TN)濃度[20]。Pablo等將酵母菌及乳酸細菌進行共培養,監測其生長及代謝產物產生情況,發現菌種的混合發酵提升了乳酸菌及酵母菌活菌數,而且影響了代謝產物的產生情況[21]。本試驗中將乳酸菌、芽孢桿菌及酵母菌進行共發酵培養,應用優化后的培養基,全程監控活菌數及pH值,共培養的3株菌都達到了較高的活菌數,復合菌發酵菌株的共生性較好。
不同時間復合菌發酵液降解亞硝態氮及氨氮試驗結果如圖3所示。復合菌發酵液對亞硝態氮的降解率呈現出先下降后上升的趨勢,16 h的復合菌發酵液亞硝態氮降解率達到峰值(降解率達到89%),復合菌中降解亞硝態氮的菌株為枯草芽孢桿菌M7-1,這同芽孢桿菌的生長曲線一致;不同時間復合菌發酵液對氨氮降解率則一直處于上升狀態,20 h的復合菌發酵液對氨氮降解率也達到峰值(降解率達到94%),復合菌中酵母菌、乳酸菌及芽孢桿菌都可利用氨氮,因此氨氮的降解一直呈現上升趨勢。芽孢桿菌在水產養殖中應用已經較為普遍,其中枯草芽孢桿菌地衣芽孢桿菌、凝結芽孢桿菌等都具有較好的生物脫氮活性[22-24],Huang等研究一株從海水養殖樣本中分離的異養硝化-好氧反硝化海濱芽孢桿菌()時發現,該芽孢桿菌能夠在42 h完成水體中氨氮、亞硝態氮的脫除,降解率分別為86.3%和89.3%[5],可能是由于菌種的差異導致同本試驗中氨氮、亞硝態氮降解率有所區別。Song等研究發現,分離的枯草芽孢桿菌YX-6對亞硝態氮降解率在培養16 h達到峰值[25]。這同本研究的脫氮曲線類似,說明復合菌發酵液具備較好的脫氮功能。

圖3 不同時間復合菌發酵液氨氮、亞硝態氮降解率
復合菌發酵中選擇的3株益生菌中枯草芽孢桿菌M7-1功能為生物脫氮和產胞外復合酶(表1),其他2株益生菌的功效為誘食及拮抗病原菌,復合菌發酵液的胞外酶活性主要由菌株枯草芽孢桿菌M7-1產生,故而本試驗選擇枯草芽孢桿菌M7-1同復合菌發酵液進行酶活性對比試驗??莶菅挎邨U菌M7-1及復合菌發酵液蛋白酶、淀粉酶及纖維素酶活性分析結果如表2所示,通過分析數據可知,復合菌發酵液具有同枯草芽孢桿菌M7-1相當的酶活性,能夠較好的分解蛋白質、淀粉及纖維素類物質。

表2 枯草芽孢桿菌M7-1及復合菌發酵液酶活性的測定結果
如圖4可知,不同時間復合菌發酵液處理組葉綠素-a含量都高于對照組,這同發酵液中益生菌分解大分子,產生易于小球藻利用的小分子物質有關[26-27]。且隨時間推移,復合菌發酵液的培藻效果處于上升趨勢,16 h的復合菌發酵液培藻效果最為理想,小球藻葉綠素a質量分數提升了49.6%。Hirata等研究發現,在鯉魚養殖池塘中添加產酶益生菌后,同對照組相比,可明顯觀察到水色更綠,檢測到小球藻含量明顯升高,養殖的鯉魚質量增加30%[28]。本研究中,枯草芽孢桿菌M7-1具有較好的產酶活性(表2),能夠快速高效地分解有機質,促進物質的循環,提供小球藻生長所需要的營養物質。

圖4 不同發酵時間小球藻葉綠素a質量濃度
如圖5所示,統計誘食試驗剩余食丸數發現,復合菌發酵液剩余食丸顯著低于酵母菌組、氧化三甲胺(trimetlylamine oxide,TMAO)處理組及空白對照組,同化學誘食劑二甲基--丙酸噻亭(dimethyl-beta- propiothetin hydrochloride,DMPT)處理組剩余數目相當,其誘食效果顯著高于對照組(圖5)。
不同于陸生動物,水產動物處于水環境中,餌料投入水中后即開始了溶失,這不僅浪費了寶貴的飼料資源,而且嚴重污染水體環境。因此,需在飼料中添加能促進水產動物攝食的物質(即誘食劑)[29]。目前,市場上水產誘食劑主要分為如下幾種:氨基酸類、動植物提取物、生物堿、含硫化合物、中藥類、脂肪酸等[30]。而化學誘食劑如DMPT、TMAO等誘食效果突出,但成本較高,因此,開發綠色、廉價的生物水產誘食劑是必要的。以往的研究中,應用甜菜堿、?;撬帷⒔湍柑崛∥锏茸鳛檎T食物質,促進水產動物攝食取得理想的結果[31-32]。陳昌福等研究發現,餌料中添加2 000 mg/kg的酵母水解物(富含核苷酸)后,中華鱉的攝食速度提升了 39.2%、攝食量提高了34.8%[33]。另有試驗表明,將不同種類誘食劑進行復配,能夠起到協同增效的作用,復合誘食劑(甜菜堿∶DMPT∶鹽酸三甲胺∶檸檬酸∶甘氨酸∶?;撬幔汗劝彼徕c=5∶2∶10∶1∶1∶1∶1)按1%的比例添加到飼料中,結果表明,同對照相比能夠明顯提升牙鲆對飼料的攝食率,促進了牙鲆的生長[34]。本研究中,復合菌發酵液中的釀酒酵母菌NJ-02能夠產生誘食核苷酸,同時屎腸球菌SC-01能夠產生誘食氨基酸、有機酸等。含有多種誘食組分使得復合菌發酵液誘食效果優于釀酒酵母菌NJ-02,具備開發成為生物誘食劑的潛力。

Note: DMPT: Dimethyl-beta-propiothetin hydrochloride; TMAO: Trimetly-lam-ine oxide; Different letters mean significantly different (P<0.05).
復合菌發酵中選擇的3株益生菌中屎腸球菌SC-01功能主要為拮抗病原菌(表1),其他2株益生菌的功效主要為生物脫氮、分泌胞外酶及提升養殖動物免疫力,復合菌發酵液的抑菌功能主要由菌株屎腸球菌SC-01產生,故而本試驗選擇屎腸球菌SC-01同復合菌發酵液進行抑菌活性對比試驗。屎腸球菌SC-01及復合菌發酵液抑菌活性分析結果如表3所示,通過分析數據可知,復合菌發酵液具有同屎腸球菌SC-01相當的抑菌活性,能夠較好的抑制副溶血弧菌生長。
復合菌發酵液、酵母菌發酵液、DMPT、TMAO投喂處理組及空白對照組對蝦腸道中乳酸菌和酵母菌活菌計數如圖6所示,由圖可知,應用復合菌發酵液拌料2 d后,對蝦腸道中乳酸菌、酵母菌活菌數顯著高于化學誘食劑及空白對照組。

表3 屎腸球菌SC-01及復合菌發酵液抑菌活性
注:“+++”表示抑菌作用顯著,抑菌圈≥12 mm.
Note: “+++” : Inhibition zone≥12 mm (Significant inhibition).

圖6 對蝦腸道中乳酸菌及酵母菌計數
作為水產養殖中廣泛應用的益生菌,屎腸球菌能夠調節水產動物腸道菌群平衡、拮抗病原菌,釀酒酵母菌能夠提升水產動物免疫力、降低疾病發生[35]。已有研究表明,副溶血弧菌為對蝦早期死亡綜合征(early mortality syndrome,EMS)的主要病原菌,席卷全球的EMS給對蝦養殖業造成了重大損失[36]。對蝦腸道中存活的乳酸菌能夠分泌乳酸,酸化腸道,降低pH值,而導致對蝦EMS發生的病原菌—副溶血弧菌在酸性條件下生長會受到抑制[37]。已有研究表明,多數屎腸球菌具有較好的抑菌活性,作為益生菌制劑在人類醫學上用來拮抗腸聚集性大腸桿菌[38]。Sun等于石斑魚腸道中分離得到一株具有拮抗,及的屎腸球菌MM4,該菌能夠顯著提升石斑魚免疫性能及生長性能[39]。此外,對蝦腸道中的酵母菌能夠提高對蝦的免疫力,降低對蝦發病[40]。He等研究表明,應用釀酒酵母菌后顯著的提升了羅非魚免疫性能[41]。Huang等研究發現日糧中添加1 g/kg Saccharoculture(包含活菌J 8734)可以明顯提升鯉魚腸道絨毛高度及免疫活性[42]。本試驗中復合菌發酵液中的屎腸球菌SC-01具有良好的抑制副溶血弧菌活性(表3)、釀酒酵母菌NJ-02具有潛在的免疫提升活性,復合菌發酵液或許能夠在提升對蝦抗弧菌感染方面發揮較好作用。
脫氮、產酶、抑菌等性能優良的3株酵母菌、乳酸菌及芽孢桿菌能夠在同一培養基HJ下共培養,連續發酵24 h,活菌數分別達到3.88×108、2.41×1010、5.38× 109CFU/mL,具備理想的脫氮、培藻性能(亞硝態氮降解率89%、氨氮降解率94%、小球藻葉綠素a質量分數提升49.6%),及同枯草芽孢桿菌M7-1、屎腸球菌SC-01相當的產酶、抑菌活性。飼喂對蝦,顯示出同化學誘食劑相當的誘食效果以及良好的腸道菌群調控作用。
綜上,本研究成功制備了具備脫氮、培藻、抑菌及生物誘食健腸等多方面功能的復合菌發酵液。該復合菌發酵液有望應用于水產養殖中,改善水質、促進動物攝食、保持腸道健康,降低抗生素及化學藥品等的應用,為水產養殖業綠色健康可持續的發展提供了新的微生物資源和方法。
[1] 農業部漁業漁政管理局.2018中國漁業統計年鑒[R].北京:中國農業出版社,2018.
[2] Liu Xiao, Steele J C, Meng Xiangzhou. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review[J]. Environmental Pollution, 2017, 223: 161-169.
[3] He Zhengxiang, Cheng Xiangrong, Kyzas G Z, et al. Pharmaceuticals pollution of aquaculture and its management in China[J]. Journal of Molecular Liquids, 2016, 223: 781-789.
[4] Zhao Yanting, Zhang Xuxiang, Zhao Zhonghua, et al. Metagenomic analysis revealed the prevalence of antibiotic resistance genes in the gut and living environment of freshwater shrimp[J]. Journal of Hazardous Materials, 2018, 350: 10-18.
[5] Huang Fei, Pan Luqing, Lü Na, et al. Characterization of novelstrain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification[J]. Journal of Bioscience and Bioengineering, 2017, 124 (5): 564-571.
[6] Wan Wenjie, He Donglan, Xue Zhijun. Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacteriumHW-15[J]. Ecological Engineering, 2017, 99: 199-208.
[7] Wang Anran, Ran Chao, Wang Yanbo. Use of probiotics in aquaculture of China: A review of the past decade[J]. Fish and Shellfish Immunology, 2019, 86: 734-755.
[8] He Ruipeng, Feng Jie, Tian Xiangli, et al. Effcts of dietary supplementation of probiotics on the growth, activities of digestive and non-specifi immune enzymes in hybrid grouper (male×female)[J]. Aquaculture Research, 2017, 48 (12): 5782-5790.
[9] Wu Zhuoqi, Jiang Chao, Ling Fei, et al. Effcts of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease resistance of grass carp ()[J]. Aquaculture, 2015, 438: 105-114.
[10] Li Jianguang, Xu Yongping, Jin Liji, et al. Effcts of a probiotic mixture (YB-1 andYB-2) on disease resistance and non-specifi immunity of sea cucumber,(Selenka)[J]. Aquaculture Research, 2015, 46 (12): 3008-3019.
[11] Hao Kai, Liu Jiayan, Ling Fei, et al. Effcts of dietary administration ofD4,D7 andD15, single or combined, on the growth, innate immunity and disease resistance of shrimp,[J]. Aquaculture, 2014, 428/429: 141-149.
[12] 張紀忠.生物分類學[M].上海:復旦大學出版社,1990.
[13] 黃秀梨.微生物學[M].北京:高等教育出版社,1998.
[14] 蔡春芳,葉元土.一種水產動物誘食劑的篩選方法[P].200510038890.6,2005-04-12.
[15] 海洋調查規范:GB/T 12763.6-2007 [S].
[16] Holt J. Bergey's Manual of Determinative Bacteriology, Ninth Edition[M]. Philadelphia Lippincott: Williams & Wilkins, 1994.
[17] 賀銀鳳.傳統發酵乳制品中乳酸菌和酵母菌的互作關系[J].中國乳品工業,2010,38(10):43-45. He Yinfeng. Interaction between lactic acid bacteria and yeastsin traditional fermented milks[J]. Dairy Industry, 2010, 38(10): 43-45. (in Chinese with English abstract)
[18] 張克強,野李.復合枯草芽孢桿菌和乳酸菌微生物制劑的制備方法[P].200510136003.9,2005-12-28.
[19] Manoj J, Prasanna D, Larysa B, et al. Multi strain probiotic production by co-culture fermentation in a lab-scale[J]. Engineering in Life Sciences, 2016, 16(3): 247-253.
[20] Liu Jiyun, Shi Peifu, Ahmad S, et al. Co-culture ofandefficiently treatsfermentation wastewater[J]. AMB Express, 2019, 9(1): 15-21.
[21] Pablo á M, Ana B F, Ana H B, et al.Interaction between dairy yeasts and lactic acid bacteria strains during milk fermentation[J]. Food Control, 2008, 19(1): 62-70.
[22] Arig N, Suzer C, Gokvardar A, et al. Effects of probioticsp) supplementation during larval development of gilthead sea bream ()[J]. Turkish Journal of Fisheries & Aquatic Sciences, 2013, 13(3): 407-414.
[23] Nimrat S, Suksawat S, Boonthai T, et al. Potentialprobiotics enhance bacterial numbers, water quality and growth during early development of white shrimp ()[J]. Veterinary Microbiology, 2012, 159 (3/4): 443-450.
[24] Zokaeifar H, Babaei N, Che R S, et al. Administration ofstrains in the rearing water enhances the water quality, growth performance, immune response, and resistance againstinfection in juvenile white shrimp,[J]. Fish & Shellfish Immunology, 2014, 36 (1): 68-74.
[25] Song Zengfu, An Jian, Fu Guanghui, et al. Isolation and characterization of an aerobic denitrifyingsp. YX-6 from shrimp culture ponds[J]. Aquaculture, 2011, 319 (1): 188-193.
[26] Ferrier M, Martin J L, Rooney-Varga J N. Stimulation of Alexandrium fundyense growth by bacterial assemblages from the Bay of Fundy [J]. Journal of Applied Microbiology, 2002, 92(4): 706-716.
[27] Guillermo Q, Juan S A, Germán B. Microalgal-bacterial aggregates: Applications and perspectives for wastewater treatment[J]. Biotechnology Advances, 2017, 35(6): 772-781.
[28] Hirata H, Tei T, Niiro M. Effects of probiotic additive feeding on water quality an algal growth potential in an culture of the Carp[J]. Memoirs of the Faculty of Agriculture of Kinki University, 2001, 34: 89-93.
[29] 羅實亞.誘食劑在水產養殖中的應用研究進展[J].貴州農業科學,2012,40(9):183-185. Luo Shiya. Research progress of application of attractant in aquaculture[J]. Guizhou Agricultural Sciences, 2012, 40(9): 183-185. (in Chinese with English abstract)
[30] 王安利,苗玉濤,王維娜,等.水產動物誘食劑的研究進展[J].中國水產科學,2002,9(3):265-268. Wang Anli, Miao Yutao, Wang Weina, et al. Research progress on feed attractant for aquatic animals[J]. Journal of Fishery Sciences of China, 2002, 9(3): 265-268. (in Chinese with English abstract)
[31] Felix N, Sudharsan M. Effect of glycine betaine, a feed attractant affecting growth and feed conversion of juvenile freshwater prawn[J]. Aquaculture Nutrition, 2015, 10(3): 193-197.
[32] Hartati R, Briggs M R P. Effect of feeding attractants on the behaviour and performance of juvenileFabricius[J]. Aquaculture Research, 2010, 24(5): 613-624.
[33] 陳昌福,王紹輝,王茜,等.餌料中添加酵母水解物對中華鱉成鱉的誘食效果[J].養殖與飼料,2007(4):54-56.
[34] 陳京華,張文兵,麥康森,等.復合誘食劑對牙鲆攝食生長的影響[J].中國水產科學,2006,13(6):959-965. Cheng Jinghua, Zhang Wenbing, Mai Kangsen, et al. Effects of a compound feeding attractant on feed intake and growth of Japanese flounder(Temminck et Schlegel)[J]. Journal of Fishery Sciences of China, 2006, 13(6): 959-965. (in Chinese with English abstract)
[35] Wang A R, Ran C, Wang Y B, et al. Use of probiotics in aquaculture of China: A review of the past decade[J]. Fish & Shellfish Immunology, 2018, 86: 734-755.
[36] Lea?o E M, Mohan C V. Early mortality syndrome threatens Asia’s shrimp farms[J]. Global Aquaculture Advocate, 2012, 2012(7/8): 38-39.
[37] Vanderzant C, Nickelson R. Survival ofin shrimp tissue under various environmental conditions[J]. Journal of Applied Microbiology, 1972, 23(1): 34-37.
[38] Miyazaki Y, Kamiya S, Hanawa T, et al. Effect of probiotic bacterial strains of,, andenteroaggregative[J]. Journal of Infection & Chemotherapy, 2010, 16(1): 10-18.
[39] Sun Yunzhang, Yang Hongling, Ling Zechun, et al. Gut microbiota of fast and slow growing grouper[J]. African Journal of Microbiology Research, 2009, 3 (11): 713-720.
[40] Deng Deng, Mei Chengfang, Mai Kangsen, et al. Effects of a yeast-based additive on growth and immune responses of white shrimp,(Boone, 1931), and aquaculture environment[J]. Aquaculture Research, 2013, 44(9): 1348-1357.
[41] He Suxu, Zhou Zhigang, Liu Yuchun, et al. Effects of dietaryfermentation product (DVAQUA*) on growth performance, intestinal autochthonous bacterial community and non-specific immunity of hybrid tilapia (♀×♂) cultured in cages[J]. Aquaculture, 2009, 294(1): 99-107.
[42] Huang Lu, Ran Chao, He Suxu, et al. Effects of dietaryculture or live cells withspores on growth performance, gut mucosal morphology, hsp70 gene expression, and disease resistance of juvenile common carp ()[J]. Aquaculture, 2015, 438: 33-38.
Functional properties of mixed probiotics fermentation broth and its feeding attractant effects
Li Yan1, Ma Qingshan2※
(1.(),,266003,; 2.,,266003,)
With the rapid development of aquaculture farming industries, high density farming techniques are now widely adopted in China, facilitated by a raft of approaches including oxygenation enhancement, intensive feeding and the frequent addition of antibiotics for disease control. Such intensive industrialized farming methods have improved yields from aquatic farming of animals. As repeatedly noted, they may also lead to the buildup of unused feed, excreta and other biological residues, as well as the accumulation of harmful chemicals such as nitrite, and the application of chemical drugs and antibiotics has led to the proliferation of harmful and resistant bacteria and harmful algae, meanwhile, drug residues also affect the products quality and aquatic animals safety. Probiotics, such as,lactic acid bacteria and yeast have been widely used in aquaculture and yielded beneficial effects, mainly in improving water quality, growth performance and reducing the mortality rate by degradation nitrite, inhibiting pathogens, regulating intestinal flora and stimulating the immune system. It is well known that different types of probiotics can express different functions, such as denitrification, enzyme production and antibacterial activity. Mixed strain fermentation, giving multiple functions of fermentation broth, which can reduce production cost, simplify the process and broaden the application range. In this study, we explored the feasibility of multi-functional mixed strain fermentation, 3 strains of probiotics included yeast, lactic acid bacteria andwith excellent performances (NJ-02: producing exopolysaccharide, vitamin, nucleotide, etc;SC-01: producing acetic acid, lactic acid and other organic acids, inhibition of pathogens;M7-1: degradation of ammonia nitrogen and nitrite nitrogen, producing extracellular enzymes). After 24 h incubations, the number ofNJ-02,SC-01 andM7-1 viable bacteria counts reached 3.88×108, 2.41×1010, and 5.38×109CFU/mL, respectively. The results also showed that the biological denitrification and promoted algae () growth performance of the mixed fermentation broth were directly related to the number ofM7-1 viable bacteria. Further into the process, it was observed that 16 h was the best fermented time for degradation nitrite and algae cultivation. It also showed that the nitrite nitrogen degradation rate reached 89% and thechlorophyll-a concentration increased by 49.6%. Additionally, mixed strain fermentation broth showed the same enzymatic activity (protease, amylase, cellulase) and antibacterial activity () when it was compared toM7-1 andSC-01. Furthermore, the feeding attractant effect was significantly improved than that of the control group and chemical attractanttrimethylamine oxide (TMAO) (<0.05), and was equivalent to that of dimethyl-beta-propiothetin(DMPT) based on the feeding behavior of shrimp.The number oflactic acid bacteria and yeast in shrimp intestinal tract was significantly higher (<0.05) than that of the control group and the chemical attractant group. In summary, we obtained multi-functional mixed strain fermentation broth such as biological denitrification, promoting algae cultivation, antibacterial activity and biological attractant, this fermentation broth was expected to be used in aquaculture to improve water quality, enhance animal appetite and feed intake and maintain intestinal health. The study provides a microbial resource and technical method for sustainable ecological aquaculture.
fermentation; denitrification; enzymatic activity; antibacterial activity; attractant effect
2019-03-19
2019-07-28
廣西科技重大專項項目“廣西主導與特色水產品種生態養殖模式與技術創新(AA17204095-11)”
李 艷,博士后,主要從事水產動物腸道健康研究。Email: liyan-602@163.com
馬青山,博士,主要從事海洋微生物與營養代謝相關研究。 Email: horsegreenhill@163.com
10.11975/j.issn.1002-6819.2019.16.027
Q939; S96
A
1002-6819(2019)-16-0242-07
李 艷,馬青山.復合益生菌發酵液的功能特性及對對蝦誘食效果[J]. 農業工程學報,2019,35(16):242-248. doi:10.11975/j.issn.1002-6819.2019.16.027 http://www.tcsae.org
Li Yan, Ma Qingshan.Functional properties of mixed probiotics fermentation broth and its feeding attractant effects[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 242-248. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.16.027 http://www.tcsae.org