999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于機器視覺圖像提取的馬鈴薯內部病蟲害特征識別

2019-10-15 08:36:22
食品與機械 2019年9期
關鍵詞:特征檢測方法

王 奕

(石家莊職業技術學院,河北 石家莊 050081)

馬鈴薯內部病蟲害的隱蔽性較強,對馬鈴薯的產量具有很大的影響,常規的病蟲害檢測防治技術對馬鈴薯內部病蟲害的治理效果不佳。隨著圖像處理技術和機器視覺信息處理技術的發展,采用機器視覺分析方法進行植物的病蟲害防治成為可能。在計算機視覺下進行馬鈴薯內部病蟲害檢測識別,構建馬鈴薯內部病蟲害的圖像信息處理模型,采用機器視覺圖像處理方法進行馬鈴薯內部病蟲害檢測識別[1],能提高對馬鈴薯內部病蟲害的區域性防治能力[2],相關的馬鈴薯內部病蟲害特征識別方法研究對促進馬鈴薯內部病蟲害的防控和治理方面具有重要意義[3]。

傳統方法中,對馬鈴薯內部病蟲害的檢測方法主要有小波檢測方法、區域分塊檢測方法以及分組融合濾波檢測方法等[4],構建馬鈴薯內部病蟲害的分塊區域視覺特征檢測模型,提高對馬鈴薯內部病蟲害的檢測和識別能力,Pipaud等[5]提出了一種基于Splines小波特征分解的馬鈴薯內部病蟲害視覺圖像異常特征點提取方法,采用Snake算法對馬鈴薯內部病蟲害視覺信息增強,結合特征分解方法進行病蟲害特征識別,但該方法的計算處理速度較慢,檢測的時效性差。Litjens等[6]提出了一種基于多重分形的馬鈴薯內部病蟲害視覺圖像特征提取技術,采用分區域特征匹配方法進行二維馬鈴薯內部病蟲害視覺圖像的分塊融合性檢測,采用綠葉素紋理分形實現特征提取,但該方法的抗干擾性差。

針對上述問題,提出基于機器視覺圖像的馬鈴薯內部病蟲害特征識別方法。試驗擬通過構建二維馬鈴薯內部病蟲害視覺圖像采集模型,結合圖像的分塊融合檢測方法進行特征識別和提取,采用顏色提取分解和紋理分割技術,實現對馬鈴薯內部病蟲害的特征識別,并進行仿真試驗分析,以期建立一種準確性高、實時性好的馬鈴薯內部病蟲害特征識別方法。

1 機器視覺圖像采集模型和預處理

1.1 病蟲害視覺圖像采集模型

(1)

式中:

xi——像素強度,d;

xj——邊緣輪廓長度,cm;

dist(xi,xj)——特征點xi和xj之間歐式距離,cm;

σ——馬鈴薯內部病蟲害的分布密度,個/cm2。

構建二維馬鈴薯內部病蟲害視覺圖像采集模型,對采集的馬鈴薯內部病蟲害視覺圖像進行分塊融合檢測[8],得到馬鈴薯內部病蟲害的紋理特征渲染信息特征分量為:

P(yw3|xw3,θ,β)∝

P(yw3|xw3,θ)(yw3|βi)∝

(2)

在4×4子塊的局部區域內建立馬鈴薯內部病蟲害視覺圖像采集模型,結合病害區域紋理異常特征檢測方法提取馬鈴薯內部病蟲害視覺特征量[9],如式(3)所示。

(3)

考慮馬鈴薯內部病蟲害視覺特征分量在有限論域E上的差異值,得到馬鈴薯內部病蟲害圖像二維特征F:E→R3,設T:E→PDS(2),對馬鈴薯內部病蟲害視覺特征值進行信息重構,實現對馬鈴薯內部病蟲害的采集和特征重組。

1.2 馬鈴薯內部病蟲害視覺圖像分塊融合

在構建二維馬鈴薯內部病蟲害視覺圖像采集模型的基礎上,對采集的馬鈴薯內部病蟲害視覺圖像進行分塊融合檢測,根據馬鈴薯綠葉素紋理分布進行病蟲害的特征檢測和紋理匹配,得到馬鈴薯內部病蟲害視覺圖像的紋理分割函數為:

D(x,y,σ)=[G(x,y,kσ)-G(x,y,σ)]·I(x,y)=L(x,y,kσ)-L(x,y,σ),

(4)

L(x,y,σ)=G(x,y,σ)?I(x,y),

(5)

式中:

I(x,y)——(x,y)處的分塊系數;

L(x,y,σ)——多重分形系數;

G(x,y,σ)——關聯像素值,dpi。

關聯像素值的計算式如式(6)所示。

(6)

(7)

式中:

x1,x2,x3,…,xT——每個子塊的模板匹配集;

T——紋理分布的像素集。

采用分塊融合匹配方法,建立馬鈴薯內部病蟲害視覺圖像的統計形狀模型,在分塊融合模板中,得到馬鈴薯內部病蟲害內部的邊緣像素集為:

(8)

其中:

(9)

v(x)=∑yk(x,y)。

(10)

根據上述分析,采用綠葉素紋理區域性檢測方法,實現馬鈴薯內部病蟲害視覺特征分塊融合處理,根據分塊檢測結果實現內部病蟲害的特征識別。

2 馬鈴薯內部病蟲害特征識別優化

2.1 馬鈴薯病蟲害的特征標定

在上述構建二維馬鈴薯內部病蟲害視覺圖像采集模型,并對采集的馬鈴薯內部病蟲害視覺圖像進行分塊融合檢測的基礎上,進行病蟲害的特征識別,提取馬鈴薯內部病蟲害視覺分形特征量,采用表面紋理配準和分塊自適應檢測方法進行病蟲害的特征點標定[10],馬鈴薯內部病蟲害視覺信息分布的能量函數如式(11)所示。

(11)

式中:

采用動態特性監測方法,分析病蟲害分布的區域性,采用多重分形方法進行馬鈴薯內部病蟲害的相似性紋理區域重建[11],得到區域重建模型描述為:

(12)

(13)

式中:

δ——馬鈴薯內部病蟲害視覺性采樣的先驗特征系數;

ε——馬鈴薯內部病蟲害視覺性采樣的關聯系數。

在局部區域中通過分區域特征匹配方法進行二維馬鈴薯內部病蟲害分塊檢測和融合處理,提取馬鈴薯內部病蟲害視覺分形特征量,采用表面紋理配準和分塊自適應檢測方法進行病蟲害的特征點標定,得到特征點標定輸出為:

P(yw3|xw3,θ,β)=

(14)

式中:

根據上述分析,采用多重分形技術進行馬鈴薯內部病蟲害視覺重構[12],重構輸出的迭代式見式(15)。

(15)

式中:

η——視覺信息重構的分形維數;

φ——偏移值。

根據空間區域重構結果,得到馬鈴薯內部病蟲害特征標定在每個尺度σ(n)(1,2,…,n)上的信息熵分布如式(16) 所示。

H(x,y,σ)=JJT=

(16)

根據信息熵強度,對馬鈴薯內部病蟲害特征標定點進行排序,進行病蟲害區域分布視覺重建和識別。

2.2 馬鈴薯內部病蟲害特征檢測

結合小波變換方法進行馬鈴薯內部病蟲害視覺圖像的特征分解,對馬鈴薯內部病蟲害視覺圖像的特征分解的小波函數為:

R(x,y)=x2+y2+dx+ey+f。

(17)

在最大值搜索區域內,提取馬鈴薯內部病蟲害視覺圖像的灰階不變矩滿足式(18)。

(18)

根據誤差分布情況,構建馬鈴薯內部病蟲害視覺圖像的分塊區域重構模型[13],得到馬鈴薯內部病蟲害視覺圖像的特征分辨強度為:

(19)

根據顏色梯度變化的差異性實現機器視覺下的馬鈴薯內部病蟲害特征識別,馬鈴薯內部病蟲害視覺圖像的幾何結構重組模型滿足式(20)。

(20)

在近鄰點中對馬鈴薯內部病蟲害視覺特征進行圖像重構,采用機器視覺分析方法[14-15],得到馬鈴薯內部病蟲害視覺圖像的邊緣尺度為:

(21)

式中:

σ——尺度空間,cm3;

Δx——Hessian-Laplace角點視覺差,(o)。

考慮角點的顯著性進行馬鈴薯內部病蟲害視覺圖像的深度學習,以t(x)表示馬鈴薯內部病蟲害視覺重建的函數,令t(x)=e-βd(x),其中0

(22)

L(x,y,σ)=G(x,y,σ)·I(x,y),

(23)

式中:

G(x,y,σ)——尺度σ的灰度像素差異值。

在灰度像素區域內根據馬鈴薯內部病蟲害視覺圖像的紋理特征,進行灰度直方圖提取,實現馬鈴薯內部病蟲害視覺特征識別和重建,根據重建結果,實現馬鈴薯內部病蟲害的特征識別。

3 仿真試驗結果與分析

為了測試試驗方法在實現馬鈴薯內部病蟲害特征識別中的應用性能,進行仿真試驗。

3.1 試驗設備及試驗參數

試驗的仿真軟件平臺為C++,試驗中對馬鈴薯內部病蟲害視覺圖像采樣采用光學傳感器LBP Sensors,利用Visual C++6.0 MFC 編寫處理馬鈴薯內部病蟲害圖像信息處理程序,在機器視覺下進行馬鈴薯內部病蟲害特征識別,對病蟲害區域的內部特征初始采樣像素強度為120 d,像移值為1.24,在病蟲害區域的能量強度為1.56 kJ,圖像的分辨率為430×210,對病害蟲檢測的初始評價參數為3.5,信噪比為-30 dB,其他參數設置見表1。

表1 仿真參數設置

根據表1參數設定,進行馬鈴薯內部病蟲害特征識別和提取研究,選擇的樣本馬鈴薯是從某農場購買,且選擇的是出土之后就存在病蟲害的馬鈴薯,其質量為200 g。通過構建二維馬鈴薯內部病蟲害視覺圖像采集模型,對采集的馬鈴薯內部病蟲害視覺圖像進行分塊融合檢測,得到圖像采集結果如圖1所示。

圖1 馬鈴薯內部病蟲害視覺圖像采集結果

3.2 試驗分析

以圖1采集的圖像為樣本,提取馬鈴薯內部病蟲害視覺分形特征量,采用表面紋理配準和分塊自適應檢測方法進行病蟲害的特征點標定,得到圖像融合結果如圖2所示。

分析圖2得知,試驗方法能有效實現對馬鈴薯內部病蟲害視覺的特征重構,根據重構結果進而實現馬鈴薯

圖2 馬鈴薯內部病蟲害融合結果

內部病蟲害特征提取和識別,得到特征提取結果如圖3所示。

圖3中,分別對各個像移參數下的馬鈴薯病蟲害特征進行有效識別,提高了對馬鈴薯內部病蟲害的特征檢測和識別能力。為了對比性能,采用試驗方法、文獻[5]方法和文獻[6]方法進行對比試驗,在不同的像移分布下進行馬鈴薯內部病蟲害特征識別,測試對馬鈴薯內部病蟲害的誤檢率(正確數量與數據樣本總數的比值),得到對比結果如圖4所示。

分析圖4得知,試驗方法進行馬鈴薯內部病蟲害特征檢測識別的誤檢率最低可至10%,而其他兩種方法下的誤檢率最低為20%和26%,高于試驗方法。說明試驗方法的準確率接近90%。測試不同方法進行馬鈴薯內部病蟲害特征識別的時間開銷,得到對比結果如圖5所示,試驗方法進行馬鈴薯內部病蟲害特征識別的時間開銷較短。

圖3 馬鈴薯內部病蟲害特征識別結果

圖4 誤檢率對比

圖5 時間開銷對比

4 結論

試驗提出基于機器視覺圖像的馬鈴薯內部病蟲害特征識別方法,采用灰度直方圖特征分解方法,進行馬鈴薯內部病蟲害視覺特征重構,根據馬鈴薯綠葉素紋理分布進行病蟲害的特征檢測和紋理匹配,建立馬鈴薯內部病蟲害視覺圖像的統計形狀模型,根據顏色梯度變化的差異性實現機器視覺下的馬鈴薯內部病蟲害特征識別。研究得知,構建馬鈴薯內部病蟲害的圖像信息處理模型,采用機器視覺圖像處理方法進行馬鈴薯內部病蟲害檢測識別,能提高對馬鈴薯內部病蟲害的區域性防治能力。

猜你喜歡
特征檢測方法
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
如何表達“特征”
不忠誠的四個特征
當代陜西(2019年10期)2019-06-03 10:12:04
抓住特征巧觀察
小波變換在PCB缺陷檢測中的應用
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
捕魚
主站蜘蛛池模板: 99精品在线看| 91在线激情在线观看| 狠狠操夜夜爽| 欧美激情综合| 亚洲欧美另类日本| 国产va在线观看| 伊人激情综合| 在线观看网站国产| 无码高潮喷水专区久久| 亚洲AV电影不卡在线观看| 午夜精品国产自在| 欧美视频在线不卡| 国产免费怡红院视频| 国产精品无码AV片在线观看播放| 亚洲成a人片77777在线播放| 99久久精品无码专区免费| 亚洲成a人在线观看| 免费A级毛片无码免费视频| 久久人妻xunleige无码| 日韩精品一区二区深田咏美 | 精品91自产拍在线| 国内精品久久久久久久久久影视 | 久久综合伊人77777| 欧洲高清无码在线| 麻豆AV网站免费进入| 漂亮人妻被中出中文字幕久久| 亚洲成a人片| 久久久久国产一级毛片高清板| 99资源在线| 国产毛片基地| 欧美在线三级| 久久精品免费看一| 亚洲三级影院| 欧美成人综合在线| 51国产偷自视频区视频手机观看| 亚洲人成网站在线观看播放不卡| 青草视频在线观看国产| 亚洲综合专区| 黄色网址手机国内免费在线观看| a级毛片在线免费| 亚洲国产欧美国产综合久久 | 特级欧美视频aaaaaa| 国产一区二区色淫影院| 91口爆吞精国产对白第三集| 久久免费视频6| 中字无码精油按摩中出视频| 国产精品2| 亚洲人成在线免费观看| 一级毛片免费高清视频| 91精品视频网站| 国产97视频在线观看| 国产精品熟女亚洲AV麻豆| 国产一区二区免费播放| 欧洲欧美人成免费全部视频| 自拍偷拍欧美| 成人年鲁鲁在线观看视频| 亚洲成a∧人片在线观看无码| 欧美激情第一区| 91精品视频在线播放| 国产精品手机视频一区二区| 在线色国产| 中文字幕不卡免费高清视频| 亚洲精品在线91| 国产一区二区网站| 内射人妻无套中出无码| 国产毛片久久国产| 国产成人三级| 欧美日韩国产系列在线观看| 亚洲日产2021三区在线| 制服丝袜无码每日更新| 婷婷色在线视频| 精品撒尿视频一区二区三区| 亚洲精品另类| 亚洲成人高清无码| 久久精品最新免费国产成人| 国产成人精品18| 日韩乱码免费一区二区三区| 重口调教一区二区视频| 香蕉久久国产精品免| 国产综合亚洲欧洲区精品无码| 久久青草精品一区二区三区| 五月天久久婷婷|