王秋菊,劉 峰,焦 峰,常本超,姜 輝,宮秀杰
秸稈粉碎集條深埋機械還田對土壤物理性質的影響
王秋菊1,2,劉 峰1,焦 峰3,常本超1,姜 輝4,宮秀杰5
(1. 黑龍江省農業科學院土壤肥料與資源環境研究所,哈爾濱,150086;2. 黑龍江省土壤環境與植物營養重點實驗室,哈爾濱,150086;3. 黑龍江八一農墾大學,大慶,163319;4. 黑龍江農業科學院科研處,哈爾濱,150086;5. 黑龍江省農業科學院耕作栽培研究所,哈爾濱,150086)
為明確秸稈粉碎集條深埋后土壤物理性質變化特征,為秸稈集條深還技術應用與推廣提供理論依據和技術指導。本文采用田間大區對比試驗,開展秸稈集條粉碎機械深埋對土壤物理性質的影響研究,設置正常翻耕、秸稈耕層還田、秸稈集條深還3個處理。結果表明:與對照秸稈不還田處理比,連續還田3a,秸稈集條深埋處理0~30 cm土層土壤固相比率和容重分別降低1.17%~6.21%和0.02~0.14 g/cm3、容氣度和田間持水量提高,土壤總孔隙提高幅度為0.70%~5.98%,有效孔隙增加幅度為0.22%~2.69%,差異顯著;與對照不還田處理比,耕層還田0~20 cm土層土壤固相比率和容重降低幅度分別為2.42%~4.30%和0.09~0.12 g/cm3、容氣度和田間持水量得到提高,總孔隙和通氣孔隙增加;秸稈集條深還作業土層深,每隔3年進行間隔作業,長期則可改善全田土壤物理性質,增厚耕層10 cm。
秸稈;土壤;物理性質;集條粉碎;機械深還
秸稈還田是農作物秸稈利用直接而有效的方式[1-3],長期定位研究證實秸稈還田具有培肥地力、改良土壤物理性狀的效果[4-6]。然而,秸稈還田對土壤物理性質的影響因還田模式而異,總體來說秸稈還田可以分為覆蓋還田、耕層還田和深埋還田3類模式,不同模式對土壤的容重、緊實度、溫度、孔隙度影響不同[7-9]。付強等[10]認為在東北地區秸稈覆蓋可以降低0~60 cm土層土壤的熱通量及變化,并隨土層加深而變弱;陳軍鋒等[11]認為秸稈覆蓋對0~40 cm土層水分、溫度有明顯影響;蔡太義等[12]認為秸稈覆蓋還田具有降溫效應,其中在0~25 cm土層隨覆蓋量的增加而增大,隨土壤深度增加而減小;在0~15 cm土層,生育期前期大,后期小。張敬濤等[13]也認為秸稈覆蓋明顯降低苗期土壤溫度。在對土壤物理性質方面影響因地域、土壤、年份等因素影響,問題較大,爭議也較多,王秋菊等[14]在連續8 a秸稈覆蓋還田的草甸土調查結果,認為秸稈覆蓋降低土溫、增加土壤緊實度、容重,使這類土壤地溫、緊實黏重的土壤不良物理性質沒有得到改善,物理性質變差,不利于作物生長。
耕層還田具有改善土壤理化性質的效果,降低土壤容重、增加土壤蓄水能力[15-16]。但大量研究認為耕層還田由于秸稈滯留在耕層內,使耕層土壤疏松,保墑能力差,不僅影響作物出苗,在耕層內秸稈腐爛還會消耗土壤養分,導致土壤供應作物苗期生長養分不足,影響作物產量[17-19]。但在低濕、黏重土壤耕層還田可以增加大團聚體含量,提高土壤的通透性,改善土壤冷、滯狀態,有提高作物產量的效果[20]。近幾年來提出的秸稈深埋還田技術,可以克服北方地區秸稈覆蓋和耕層還田在農業生產的弊端;朱姝等[21-23]認為秸稈深還田有利于土壤形成團聚體;鄒洪濤等[24-25]認為秸稈深還可增加深層土壤水分、養分及土壤微生物量;王秋菊等[26]認為把秸稈還田在心土層內,既可以避免寒冷地區覆蓋還田導致春季地溫低、延遲出苗問題,又避免耕層還田影響作物播種質量、出苗率低的問題,可提高深層土壤肥力,改善土壤不良物理性狀。
在秸稈深埋還田的基礎上,本文提出了秸稈集條粉碎機械深還技術,該技術通過秸稈粉碎集條機(秸稈粉碎、集條溝施)配合鏵式犁翻耕,將粉碎的秸稈集中深埋在耕層下,屬于秸稈集中還田模式。其特征是將4倍于單位面積產量的秸稈集條深還,形成間隔180 cm的培肥溝。本文通過研究秸稈集條深還技術模式對土壤物理性質影響,試圖明確其改善土壤結構、構建深厚耕層以及長期利用有機物料培肥土壤的效果,為秸稈還田提供新的技術支撐。
試驗地點設在哈爾濱市民主鄉黑龍江省農科院試驗基地內,地理坐標:N45°50′,E126°51′,屬于溫帶大陸性季風氣候,春季干旱大風,夏季多雨,冬季寒冷干燥[27]。2014~2016年3平均氣溫為5.2℃,降雨量458 mm,供試土壤類型為典型黑土,表1為土壤基礎指標。

表1 試驗土壤基礎指標
試驗共設3個處理,分別為秸稈不還田(CK)、秸稈耕層還田(TR)和秸稈集條深還田(DS),以秸稈不還田處理為對照,每個處理設置3個小區,小區面積468 m2,順次排列。
田間具體操作方法:在秋季收獲后,不還田區秸稈移出田塊,然后采用鏵式犁翻耕,耕作幅寬度1.8 m,深度25~30 cm,圖1為鏵式犁翻耕作業現場;秸稈耕層還田處理在機械收獲玉米粉碎秸稈,拋撒到田面,旋耕使表層土壤與秸稈混拌,田間作業場景如圖2a,再翻耕25~30 cm(圖2b)。
秸稈集條深還處理不需要秸稈粉碎,秸稈處于站立狀態,如圖2c、圖2d所示,作業流程為兩臺拖拉機帶動機械循環作業,先用一臺拖拉機牽引秸稈粉碎集條機清理出一條作業道,然后用另一臺拖拉機牽引翻耕犁開溝,第一臺拖拉機牽引秸稈粉碎集條機粉碎秸稈并集中施入溝中,第二臺拖拉機牽引翻耕犁翻扣土垡,將粉碎秸稈集中埋入深層土層中,循環作業,在耕層下形成了寬45 cm、深25~30 cm、間距1.8 m的秸稈深埋溝,每年秸稈還田位置一致。圖3為不同處理剖面示意圖。

圖1 正常翻耕作業

圖2 田間作業圖

圖3 土壤取樣示意
各小區處理后,在秋季再耙地、起壟,達到播種狀態,田間整地方法法參照《秸稈粉碎集條深埋機械還田模式對玉米生長及產量的影響》[26]文中方法。每年播種時間為4月下旬到5月初,玉米品種為先玉335;播種的同時施肥,施肥量:尿素(純N:46%)、二銨(純P2O5:46%,純N:18%)、氯化鉀(純K2O:50%)350、217 、200 kg/hm2。
土壤原狀土取樣方法:采用裝有100 cm3環刀的取土器采取土壤,每小區取3次重復。取樣層次為5~10、15~20、25~30 cm土層。秸稈集條深還處理取樣位置在秸稈深埋帶,秸稈耕層還田和對照處理隨即取樣。
土壤物理性質:土壤容重采用烘干法、土壤三相采用土壤三相儀(日本大起)測定;
土壤容氣度通過土壤三相數據計算得出(容氣度%=氣相/(氣相+液相)×100%)[28]。土壤水分特征曲線:0~150 cm(H2O)吸力段用DIK-3343型土壤pF測定儀(日本大起)測定,150~16 544 cm(H2O)吸力段用1500F1型壓力膜儀(美國產)測定。
土壤孔隙組成由土壤水分特征曲線取得,根據孔隙不同當量直徑條件下體積含水量求差計算得出,當量直徑使用下式算得
=/3
式中為孔隙當量直徑,mm;為土壤水吸力,cm。土壤田間持水量為水吸力在63 cm時土壤水質量與土壤干土比值(田間持水量%=(63cm-干)/干×100%,為土壤質量)[29]。
采用Microsoft Excel2003及DPS 6.85軟件處理數據及試驗數據的相關性分析。
從圖4看出,不同還田處理對土壤三相影響不同,秸稈集條深還和耕層還田處理均可降低0~10 cm土層土壤固相比率,氣相和液相比例提高,差異達到極顯著水平(固=0.005,液=0.008,氣=0.003),耕層還田和秸稈集條深還處理間沒有差異。10~20 cm土層土壤固相、液相不同處理間無差異,氣相間差異顯著(氣=0.000 3),耕層還田高于秸稈集條深還和對照。在20~30 cm土層,秸稈深埋降低了土壤的固相比例,提高了土壤液相和氣相,但各處理間差異不顯著。

圖4 土壤三相組成
土壤容氣度代表自然含水量下土壤氣相占總孔隙的比例。從表2中看出,與對照相比,0~10 cm土層秸稈集條深還和耕層還田提高土壤容氣度效果極顯著;10~20 cm土層耕層還田提高容氣度效果極顯著;20~30 cm土層,秸稈集條深還提高土壤容氣度效果不明顯。說明土壤的氣相比例大,土壤滲水能力增加。秸稈還田可以降低土壤容重,耕層還田對0~20 cm土層有降低容重的效果,降低幅度為0.09~0.12 g/cm3,差異達到極顯著水平;秸稈集條深還則可降低0~30 cm土層土壤容重,降低幅度為0.02~0.14 g/cm3,在0~10、20~30 cm土層與對照相比差異極顯著。秸稈集條深還和耕層還田均可提高土壤的田間持水量,其中秸稈集條深還對0~30 cm土層均有提高效果,對0~20 cm土層影響達差異顯著水平。土壤總孔隙度調查結果,耕層還田0~20 cm土層比對照增加6.05%~7.92%,達到差異極顯著;秸稈集條深還0~30 cm土層比對照增加0.70%~5.98%,其中20~30 cm土層達到差異極顯著水平。
從表3土壤孔隙組成看,直徑>0.05 mm大孔隙代表土壤通氣性能,耕層還田0~20 cm土層比對照增加3.85%~3.90%,差異極顯著,20~30 cm土層差異不顯著;秸稈集條深還0~20 cm土層與對照差異不明顯,20~30 cm土層比對照增加4.74%。直徑0.000 2~0.05 mm的中孔隙代表土壤保水和供水能力,耕層還田0~20 cm土層比對照增加2.81%~5.37%,差異極顯著,20~30 cm土層差異不顯著;秸稈集條深還0~20 cm土層比對照增加2.76%~2.58%,分別達到差異極顯著和顯著水平,20~30 cm土層與對照差異不顯著。從不同孔隙占總孔隙比例看,直徑>0.05 mm大孔隙比例,耕層還田0~20 cm土層比對照增加6.16%~6.83%,20~30 cm土層降低0.53%;秸稈集條深還0~20 cm土層降低0.64%~1.65%,20~30 cm土層增加9.17%。直徑0.000 2~0.05 mm中孔隙比例,耕層還田0~20 cm土層比對照增加2.58%~2.81%,20~30 cm土層降低3.59;秸稈集條深還0~20 cm土層比對照增加5.37%~5.59%,20~30 cm土層降低1.62%。

表2 不同處理土壤物理性質
注:小寫字母代表在0.05水平差異性顯著,大寫字母代表在0.01水平差異性顯著,下同。
Note: Lowercase letters represent significant differences at 0.05 levels, and uppercase letters represent significant differences at 0.01 levels,the same as below.

表3 不同當量直徑土壤孔隙分布及所占比例
上述研究說明連續秸稈還田對土壤物理性質有明顯影響,但不同秸稈還田模式對土壤物理性質影響的程度和范圍不同,而且秸稈還田后物理性質變化對作物產量的影響具有雙面性。秸稈還田可以增加土壤孔隙量,使土壤變得疏松,增加土壤的蓄水能力;秸稈直接還田在耕層會導致土壤跑風透墑,在有“十春九旱”的東北地區,易造成種子出苗率低下。另一方面,分布在耕層的秸稈在腐解過程與作物爭奪養分,導致作物苗期缺氮而減產。這是因為秸稈中大量有機碳的介入會使土壤氮礦化和固持時間發生重大變化,作物生育前期將進行強烈的氮素生物固持作用,使土壤微生物與作物爭氮素,作物生長過程產生“氮饑餓”現象[30-32]。前期調查得出,耕層還田使玉米出苗率降低3.3%~3.5%,連續3a期間產量降低幅度為3.95%~8.84%,隨還田年限增加減產幅度逐漸變低。秸稈集條深還將秸稈埋到深層土壤中,提高的是深層土壤大孔隙,降低小孔隙,在干旱時期可以降低毛管上升水到地表,抑制土壤水分蒸發,具有保墑和提高土壤抗旱能力,且秸稈連續集條深還并通過連年深翻,增加了土壤有效孔隙量,能提高土壤對秋季降水或冬季溶雪的儲存量,提高土壤有效水分量,對防春旱有一定的作用。秸稈深耕還田可以提高土壤的通氣、透水性,在多雨季節,秸稈集條深還可以促進地表水下滲,秸稈集中埋在深層,能夠形成天然的蓄水溝,可以緩解多雨季節的澇害問題和干旱地區的干旱問題[33-34];耕層還田由于涉及土層深度為0~20 cm,下層土壤容重較高,固相率大,土壤緊實,不利于水分下滲,使土壤水分多停留在耕層,在緩解旱、澇問題上不如秸稈集條深還處理。
秸稈深還避免了秸稈腐解與作物生長過程中的爭養的問題,不會影響作物前期生長,且后期作物根系下扎到深層,可以吸收秸稈腐解后釋放的營養,促進作物后期生長,連續還田可使作物產量增加[35-36]。本研究技術模式玉米產量也是逐年增加趨勢[26],長期秸稈集條深還,通過連續的翻耕作業,可以使土壤耕作層增厚,整個土層肥力逐漸提高,形成肥沃、深厚的土壤耕作層。前期通過在田間不同采樣點采樣分析發現,連年秸稈還田區域土壤的化學性質與對照相比發生很大變化,而無秸稈分布的區域土壤的化學性質與對照相比沒有明顯差異。秸稈集條深還技術如果每隔3年機械錯位作業,經歷3個或4個周期,可使全田土壤肥力提高,各土層土壤肥力分布均勻,按照增加10 cm厚的耕作土層來計算,土壤養分庫容可提高原來的50%。秸稈集條深還是屬于將3個壟寬(約1.9 m)的秸稈集中放到45 cm的深翻溝中,秸稈在田間呈現間隔分布狀態,經過連續3 a的深耕還田,對有秸稈分布區的土壤物理性質改善明顯,但沒有秸稈的區域土壤結構與對照土壤相比不會有變化。所以,秸稈集條深還也需要3到4個周期,可改善全田的物理性質。
秸稈還田培肥改良土壤是一項長期的工程,國內外在秸稈還田改良土壤的過程中做了大量工作,一般都需要在10a以上才會有個明顯的改良效果[37-38]。本研究的技術也需要9~12年對整個田塊進行全面的培肥改良,本技術是較為適合東北地區的各類土壤。每種秸稈還田技術都具有一定的氣候、土壤的適應性。秸稈耕層還田技術比較適合降雨量較多地區,質地黏重的土壤類型,可以改善耕層土壤的黏重狀態,增強通氣、透水性,因為秸稈粉碎耕層還田后,使土壤中的大孔隙,也就是通氣孔隙顯著提高,促進土壤散墑;而在積溫較高、干旱、少雨的地區,大孔隙增加,土壤跑墑嚴重,會導致干旱問題,所以此類地區比較適合秸稈覆蓋還田,有利于土壤保水、保墑、防止干旱;秸稈覆蓋在積溫較低、多雨地區不適合,張敬濤等研究在三江地區,在春季播種期,秸稈覆蓋降低地溫達2~4℃,使作物出苗晚7d左右,在三江平原地區作物晚出苗7d,減產幅度可達15%[39-40]。針對不同的土壤,秸稈還田所起到的效果也不同,在三江平原地區,秸稈覆蓋連續7a,對土壤物理性質沒有正面影響,使土壤容重增加,孔隙度降低[14]。白雪峰[41]研究則認為秸稈覆蓋還田對0~40 cm土層土壤物理性質均有影響,同類技術在不同地區得到不同的結果,有待于深入的分析和思考。秸稈深還各研究結果基本一致,秸稈深還雖然效果好,適用地區和范圍較廣,但深耕作業成本高也是一個需要關注的問題,還有配套機械的完善和改進都是深耕作業需要進一步關注的問題,不同的深耕作業需要不同的機械配套,任何一種秸稈還田技術是需要農藝與農機的配套和結合,因此,要注重農藝、農機的配套與結合,因地制宜選擇適合當地或某類土壤的技術模式。
秸稈集條深還屬于秸稈深埋技術的一種新的模式,是將4倍于單位面積產量的秸稈集條深埋,形成間隔1.8 cm的培肥溝,克服了在本地區秸稈覆蓋還田和耕層還田的弊端。
集條深還區土壤物理性質得到改善,0~30 cm土層固相比率降低,土壤三相組成趨于合理化;土壤容氣度提高,容重下降,土壤的持水力提高;耕層還田只對0~20 cm土層土壤物理性質有影響,對深層土壤無影響。
秸稈集條深還可以增加0~30 cm土層土壤的總孔隙和有效孔隙量,耕層還田可增加0~20 cm土層土壤總孔隙量、大孔隙量和有效孔隙量,大孔隙增加,土壤易跑墑,不利于保持適宜的播種狀態。
秸稈集條深還機械作業涉及土層深,連續作業具有增厚耕層、培肥土壤、改善剖面結構的作用,每間隔幾年機械錯位作業,可使全田物理性質得到改善。
[1] 張曉先. 黑龍江省農作物秸稈資源化工程發展方略研究[D]. 哈爾濱:哈爾濱工業大學,2016. Zhang Xiaoxian. General Plan on Development of Crop Straw Reuse in Heilongjiang Province[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese with English abstract)
[2] 朱建春. 陜西農業廢棄物資源化利用問題研究[D]. 楊凌:西北農林科技大學,2014. Zhu Jianchun. Study on the Problem of Shanxi Agricultural Wastes Resource Utilization[D]. Yangling: Northwest Agiculture and Forest University, 2014. (in Chinese with English abstract)
[3] 高雪峰,夏紅巖,王剛. 內蒙古秸稈養畜現狀及發展建議[J].當代畜禽養殖業,2015(6):3-5. Gao Xuefeng, Xia Hongyan, Wang Gang. Status and development suggestions of livestock breeding with straws in Inner Mongolia Autonomous Region[J]. Modern Animal Husbandry, 2015(6): 3-5. (in Chinese with English abstract)
[4] Zhao Shicheng, He Ping, Qiu Shaojun, et al. Long-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in North-Central China[J]. Field Crops Research, 2014, 169: 116-122.
[5] Liu Enke, Yan Changrong, Mei Xurong, et al. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China[J]. Geoderma, 2010, 158: 173-180.
[6] Humberto Blanco-Canqui, Lal R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till[J]. Soil and Tillage Research, 2007, 95: 240-245.
[7] 李新華,郭洪海,朱振林,等. 不同秸稈還田模式對土壤有機碳及其活性組分的影響[J]. 農業工程學報,2016,32(9):130-135. Li Xinhua, Guo Honghai, Zhu Zhenlin, et al. Effects of different straw return modes on contents of soil organic carbon and fractions of soil active carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 130-135. (in Chinese with English abstract)
[8] 竇森,陳光,關松,等. 秸稈焚燒的原因與秸稈深還技術模式[J]. 吉林農業大學學報,2017,39(2):127-133. Dou Sen, Chen Guang, Guan Song, et al. Reasons for corn stover burning in fields and technical models for its deep incorporation to subsoil[J]. Journal of Jilin Agricultural University, 2017, 39(2): 127-133. (in Chinese with English abstract)
[9] 楊旭,高梅香,張雪萍,等. 秸稈還田對耕作黑土中小型土壤動物群落的影響[J]. 生態學報,2017,37(7):2206-2216. Yang Xu, Gao Meixiang, Zhang Xueping, et al. Effect of straw-returning management on meso-micro soil fauna in a cultivated black soil area[J]. Acta Ecologica Sinica, 2017, 37(7): 2206-2216. (in Chinese with English abstract)
[10] 付強,顏培儒,李天霄,等. 凍融期不同覆蓋和氣象因子對土壤導熱率和熱通量的影響[J]. 農業工程學報,2017,33(20):98-105. Fu Qiang, Yan Peiru, Li Tianxiao, et al. Influence of different coverage and meteorological factors on soil thermal conductivity and hear flux during freezing and thawing period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 98-105. (in Chinese with English abstract)
[11] 陳軍鋒,鄭秀清,秦作棟,等. 凍融期秸稈覆蓋量對土壤剖面水熱時空變化的影響[J]. 農業工程學報,2013,29(20):102-110. Chen Junfeng, Zheng Xiuqing, Qin Zuodong, et al. Effects of maize straw mulch on spatiotemporal variation of soil profile moisture and temperature during freeze-thaw period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(20): 102-110. (in Chinese with English abstract)
[12] 蔡太義,陳志超,黃會娟,等. 不同秸稈覆蓋模式下農田土壤水溫效應研究[J]. 農業環境科學學報,2013,32(7):1396-1404. Cai Taiyi, Chen Zhichao, Huang Huijuan, et al. Effects of different modes of cropping systems using straw mulch on the soil temperature and soil water on the Weibei highland region of china[J]. Journal of Agro-Environment Science, 2013, 32(7): 1396-1404. (in Chinese with English abstract)
[13] 張敬濤,劉婧琦,趙桂范,等. 免耕栽培不同秸稈覆蓋量下土壤溫度變化研究[J]. 中國農學通報,2015,31(27):224-228 Zhang Jingtao, Liu Jingqi, Zhao Guifan. Study on soil temperature variation of no-till cultivation with different amounts of stalk mulch[J]. Chinese Agricultural Science Bulletin, 2015, 31(27): 224-228 (in Chinese with English abstract)
[14] 王秋菊,張敬濤,蓋志佳,等. 長期免耕秸稈覆蓋對寒地草甸土土壤物理性質的影響[J]. 應用生態學報,2018,29(9):2943-2948. Wang Qiuju, Zhang Jingtao, Gai Zhijia, et al. Effect of long-term straw mulching and no-tillage on physical properties of meadow soil in cold region[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2943-2948. (in Chinese with English abstract)
[15] 慕平,張恩和,王漢寧,等. 連續多年秸稈還田對玉米耕層土壤理化性狀及微生物量的影響[J]. 水土保持學報,2011,25(5):81-85. Mu Ping, Zhang Enhe, Wang Hanning, et al. Effect of continuous returning straw to maize tilth soil on chemical character and microbial biomass[J]. Journal of Soil and Water Conservation, 2011, 25(5): 81-85. (in Chinese with English abstract)
[16] 趙家煦. 東北黑土區秸稈還田深度對土壤水分動態及土壤酶、微生物C、N的影響[D]. 哈爾濱:東北農業大學,2017. Zhao Jiaxu. Effects of Different Location of Straw Incorporation on Soil Water Dynamics, Soil Enzymes, Microbial C and N[D]. Harbin: Dongbei Agricultural University, 2017. (in Chinese with English abstract)
[17] 趙宏波,何進,李洪文,等. 秸稈還田方式對種床土壤物理性質和小麥生長的影響[J]. 農業機械學報,2018,49:60-67. Zhao Hongbo, He Jin, Li Hongwen, et al. Effect of straw returning manners on seedbed soil physical properties and winter wheat growth[J]. Journal of Agricultural Mechanical, 2018, 49: 60-67. (in Chinese with English abstract)
[18] 張琛. 稻草還田對小麥抗性生理、出苗及產量的影響[D]. 揚州:揚州大學,2013. Zhang Chen. Effects of Rice Straw Returning on Resistance Physiology, Seeding Emergence and Yield of Wheat[D]. Yangzhou: Yangzhou University, 2013.(in Chinese with English abstract)
[19] 殷文,陳桂平,柴強,等. 河西灌區不同耕作與秸稈還田方式對春小麥出苗及產量的影響[J]. 中國生態農業學報,2017,25(2):180-187. Yin Wen, Chen Guiping, Chai Qiang, et al. Effect of tillage and straw retention mode on seedling emergence and yield of spring wheat in the Hexi irrigation area[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 180-187.(in Chinese with English abstract)
[20] 周連仁,國立財,于亞利. 秸稈還田對鹽漬化草甸土有機質及微團聚體組分的影響[J]. 東北農業大學學報,2012,43(8):123-127. Zhou Lianren, Guo Licai, Yu Yali. Effect of straw returning on organic matter and micro-aggregate in salinized meadow soils[J]. Journal of Northeast Agricultural University, 2012, 43(8): 123-127. (in Chinese with English abstract)
[21] 朱姝,竇森,關松,等. 秸稈深還對土壤團聚體中胡敏素結構特征的影響[J]. 土壤學報,2016,53(1):126-136. Zhu Su, Dou Sen, Guan Song, et al. Effect of corn stover deep incorporation on composition of humin in soil aggregates[J]. Acta Pedologica Sinica, 2016, 53(1): 126-136. (in Chinese with English abstract)
[22] 董珊珊,竇森,邵滿嬌,等. 秸稈深還不同年限對黑土腐殖質組成和胡敏酸結構特征的影響[J]. 土壤學報,2017,54(1):150-159. Dong Shanshan, Dou Sen, Shao Manjiao, et al. Effect of corn stover deep incorporation with different years on composition of soil humus and structural characteristics of humic acid in black soil[J]. Acta Pedologica Sinica, 2017, 54(1): 150-159. (in Chinese with English abstract)
[23] 王小華. “秸稈集中溝埋還田”新型耕作技術土壤理化性狀和有機碳研究[D]. 南京:南京農業大學,2014. Wang Xiaohua. The Study of a New Tillage Technology with “Ditch-buried Straw Return” on Soil Physicochemical Characteristics and Organic Carbon[D]. Nanjing: Nanjing Agricultural University, 2014.(in Chinese with English abstract)
[24] 鄒洪濤,王勝楠,閆洪亮,等. 秸稈深還田對東北半干旱區土壤結構及水分特征影響[J]. 干旱地區農業研究,2014,32(2):52-60. Zou Hongtao, Wang Shengnan, Yan Hongliang, et al. Effects of straw deep returning on soil structure moisturein semiarid region of Northeast China[J]. Agricultural Research in the Arid Areas, 2014, 32(2): 52-60. (in Chinese with English abstract)
[25] 鄒洪濤,馬迎波,徐萌,等. 遼西半干旱區秸稈深還田對土壤含水量、容重及玉米產量的影響[J]. 沈陽農業大學學報,2012,43(4):494-497. Zou Hongtao, Ma Yingbo, Xu Meng, et al. Effect of corn stalk returning to soil on soil water content, bulk density and corn yields in semiarid area of western Liaoning province[J]. Journal of Shenyang Agricultural University, 2012, 43(4): 494-497. (in Chinese with English abstract)
[26] 王秋菊,焦峰,劉峰,等. 秸稈粉碎集條深埋機械還田對玉米生長及產量的影響[J]. 農業工程學報,2018,34(9):153-159. Wang Qiuju, Jiao Feng, Liu Feng, et al. Effect of straw pulverization and concentrated deep-buried into field on growth and yield of maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 153-159. (in Chinese with English abstract)
[27] 黑龍江省土地管理局,黑龍江省土壤普查辦公室. 黑龍江土壤[M]. 北京:農業出版社,1992.
[28] 日本土壌肥料學會北海道支部編.北海道農業と土壌肥料[M]. 札幌:北農會刊行,1987.
[29] 翁德衡. 土壤物理性測定法[M]. 重慶:科學技術文獻出版社重慶分社,1979.
[30] 李貴桐,趙紫娟,黃元仿,等. 秸稈還田對土壤氮素轉化的影響[J]. 植物營養與肥料學報,2002,8(2):162-167. Li Guitong, Zhao Zijuan, Huang Yuanfang, et al. Effect of straw returning on soil nitrogen transformation[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 162-167. (in Chinese with English abstract)
[31] 王鵬,曾玲玲,王發鵬,等. 秸稈還田對烤煙氮積累、分配及利用的影響[J]. 中國土壤與肥料,2008(4):43-46. Wang Peng, Zeng Lingling, Wang Fapeng, et al. Effects of wheat straw returning soil on N accumulation distribution and utilization of flue-cured tobacco[J]. Soil and Fertilizer Sciences in China, 2008(4): 43-46. (in Chinese with English abstract)
[32] Collins W K, Hawks S N. Principles of Flue-cured Tobacco Production[M]. NC State University, Raleigh, 1993.
[33] Yang Haishui, Jinxia Fenga, Zhai Silong, et al. Long-term ditch-buried straw return alters soil water potential, temperature, and microbial communities in a rice-wheat rotation system[J]. Soil & Tillage Research, 2016, 163: 21-31.
[34] Wang Xiaojuan, Jia Zhikuan, Liang Lianyou, et al. Changes in soil characteristics and maize yield under straw returning system in dryland farming[J]. Field Crops Research, 2018, 218: 11-17.
[35] Xu Xu, Pang Dangwei, Chen Jin, et al. Straw return accompany with low nitrogen moderately promoted deep root[J]. Field Crops Research, 2018, 221: 71-80.
[36] 邱立春,孫躍龍,王瑞麗,等. 秸稈深還對土壤水分轉移及產量的影響[J]. 玉米科學,2015,23(6):84-91. Qiu Lichun, Sun Yuelong, Wang Ruili, et al. Influence of deep-buried maize stalks on soil moisture transfer and maize yield[J]. Journal of Maize Sciences, 2015, 23(6): 84-91. (in Chinese with English abstract)
[37] Wang Shichao, Zhao Yawen, Wang Jinzhou, et al. The efficiency of long-term straw return to sequester organic carbon in Northeast China’s cropland[J]. Journal of Integrative Agriculture, 2018, 17(2): 436-448.
[38] Malhi S S, Nyborg M, Solberg E D, et al. Improving crop yield and N uptake with long-term straw retention in two contrasting soil types[J]. Field Crops Research, 2011, 124: 378-391.
[39] 李青松,高立起,石愛麗. 地溫與玉米品種出苗關系的研究[J]. 作物雜志,2011,4(2):89-92. Li Qingsong, Gao Liqi, Shi Aili. Relationships between soil temperature and emergence of maize[J]. Crops, 2011, 4(2): 89-92. (in Chinese with English abstract)
[40] 董紅芬,李洪,李愛軍,等. 玉米播期推遲與生長發育、有效積溫關系研究[J]. 玉米科學,2012,20(5):97-101. Dong Hongfen, Li Hong, Li Aijun, et alRelations between delayed sowing date and growth, effective accumulated temperature of maize[J]. Maize Science, 2012, 20(5): 97-101. (in Chinese with English abstract)
[41] 白雪峰. 黑土區秸稈覆蓋耕作技術保墑機理及生態效益研究[D]. 哈爾濱:東北林業大學,2015. Bai Xuefeng. Black Soil Area Keep Moisture Mechanism and Ecological Research at the Straw Mulching Cultivation Technology[D]. Harbin: Northeast Forestry University, 2015. (in Chinese with English abstract)
Effects of strip-collected chopping and mechanical deep-buried return of straw on physical properties of soil
Wang Qiuju1,2, Liu Feng1, Jiao Feng3, Chang Benchao1, Jiang Hui4, Gong Xiujie5
(1.,,150086,;2.,150086,; 3.,,163319,;4.,,150086,;5.,150086,)
As a direct and effective way to utilize crop straw, long-term straw returning has the effect of improving soil fertility and physical properties. Straw returning in Heilongjiang Province can be divided into three types: mulching return, plough-layer return and deep-buried return, with different models having different effects on the soil. Covering soil with straw significantly increases humidity of the soil but reduces the soil temperature during seedling stage, thus, it has both positive and negative effects on soil physical properties, with different results in different researches. The return of straw to the plough layer can improve the physical and chemical properties of the soil, reducing the soil bulk density and increasing the soil water-storage ability. However, a large number of studies have concluded that plough-layer return can cause the soil to be fluffy and reduce water-retaining property because of the accumulating of the straw in the plough layer. It may cause the delay of crop emergence as well as reducing the crop yield for that the straw corruption may consume soil nutrients, resulting in insufficient soil nutrient during seedling growth. The technology of deep-buried return of straw can overcome the drawbacks of straw mulching and plough-layer return in agricultural production in North China. This technique can avoid problems of low ground temperature and delayed emergence of seedlings caused by mulching return in spring in cold areas and avoid problems of low quality of mechanical sowing and low emergence rate resulted from plough-layer return. Meanwhile, it can improve deep soil fertility and improve the soil physical properties. On the basis of deep-buried return, this paper puts forward the technology of strip-collected chopping and mechanical deep-buried return. The straw smashing and strip-collected machine is used together with moldboard plow to deeply bury the smashed straw under the plough layer. It can return the straw strips that are four times of the per unit yield deeply to the soil, forming the fertilization ditch which is separated by 180 cm. In the early stage, the effects of strip-collected chopping and mechanical deep-buried return of straw on crop growth and soil fertility change are studied. In order to clarify the soil physical properties after straw being concentrated into a strip returning, three treatments for comparative studies are carried out in this paper: normal tillage, plough-layer return and straw concentrated into a strip returning. The results show that after 3 years of continuous returning to the field, the soil consolidation rate and bulk density of 0-30 cm soil layer decrease by 1.17%-6.21% and 0.02-0.14 g/cm3respectively, with gas tolerance and water holding capacity increased. The total soil porosity increases by 0.70%-5.98% and the effective porosity increases by 0.22%-2.69%, the difference being significant than the control group. As in the control group, the soil consolidation rate and bulk density of 0-20 cm soil layer decrease by 2.42%-4.30% and 0.09-0.12 g/cm3respectively, with gas tolerance and water holding capacity increased. The total soil porosity and the effective porosity increase as well. The soil layer of straw concentrated returning is deep and interval work is conducted every three years. In the long run, the physical properties of the whole soil can be improved and the tillage layer can be thickened about 10 cm.
straw; soils; physical property; strip-collected chopping; mechanical deep-buried return
2019-03-01
2019-08-25
黑龍江省重大攻關項目(GA16B401)。
王秋菊,博士,副研究員,從事土壤改良研究。Email:bqjwang@126.com.中國農業工程學會會員:王秋菊(E041200848S)
10.11975/j.issn.1002-6819.2019.17.006
S3
A
1002-6819(2019)-17-0043-07
王秋菊,劉 峰,焦 峰,常本超,姜 輝,宮秀杰. 秸稈粉碎集條深埋機械還田對土壤物理性質的影響[J]. 農業工程學報,2019,35(17):43-49. doi:10.11975/j.issn.1002-6819.2019.17.006 http://www.tcsae.org
Wang Qiuju, Liu Feng, Jiao Feng, Chang Benchao, Jiang Hui, Gong Xiujie. Effects of strip-collected chopping and mechanical deep-buried return of straw on physical properties of soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 43-49. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.17.006 http://www.tcsae.org