999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Sentinel-2影像和BP神經(jīng)網(wǎng)絡(luò)結(jié)合的小麥條銹病監(jiān)測(cè)方法

2019-11-11 06:33:52黃林生黃文江葉回春趙晉陵馬慧琴
關(guān)鍵詞:特征模型

黃林生,江 靜,,黃文江,,葉回春,趙晉陵,馬慧琴,阮 超,

農(nóng)業(yè)信息與電氣技術(shù)

Sentinel-2影像和BP神經(jīng)網(wǎng)絡(luò)結(jié)合的小麥條銹病監(jiān)測(cè)方法

黃林生1,江 靜1,3,黃文江1,2,3※,葉回春2,3,趙晉陵1,馬慧琴3,阮 超1,3

(1. 安徽大學(xué)農(nóng)業(yè)生態(tài)大數(shù)據(jù)分析與應(yīng)用技術(shù)國(guó)家地方聯(lián)合工程研究中心,合肥 230601;2. 三亞中科遙感研究所,海南 572029;3. 中國(guó)科學(xué)院遙感與數(shù)字地球研究所,數(shù)字地球重點(diǎn)實(shí)驗(yàn)室,北京 100094)

選用包含紅邊等多種不同波段信息的多光譜衛(wèi)星數(shù)據(jù),為區(qū)域尺度上展開(kāi)作物病害監(jiān)測(cè)研究提供更加豐富有效的信息,相比于常規(guī)的寬波段衛(wèi)星遙感影像,搭載紅邊波段的Sentinel-2影像對(duì)作物病害脅迫更加敏感,能顯著提高模型精度。該文以陜西省寧強(qiáng)縣小麥條銹病為研究對(duì)象,基于Sentinel-2影像共提取了26個(gè)初選特征因子:3個(gè)可見(jiàn)光波段反射率(紅、綠、藍(lán))、1個(gè)近紅外波段反射率、3個(gè)紅邊波段反射率、14個(gè)對(duì)病害敏感的寬波段植被指數(shù)和5個(gè)紅邊植被指數(shù)。結(jié)合K-Means和ReliefF算法篩選病害敏感特征,最終篩選出3個(gè)寬波段植被指數(shù),包括:增強(qiáng)型植被指數(shù)(enhanced vegetation index,EVI)、結(jié)構(gòu)加強(qiáng)色素指數(shù)(structure intensive pigment index,SIPI)、簡(jiǎn)單比值植被指數(shù)(simple ratio index,SR),2個(gè)紅邊波段植被指數(shù):歸一化紅邊2植被指數(shù)(normalized red-edge2 index,NREDI2)、歸一化紅邊3植被指數(shù)(normalized red-edge3 index,NREDI3)。利用BP神經(jīng)網(wǎng)絡(luò)方法(back propagation neural network,BPNN),分別以寬波段植被指數(shù)和寬波段植被指數(shù)結(jié)合紅邊波段指數(shù)作為輸入變量構(gòu)建小麥條銹病嚴(yán)重度監(jiān)測(cè)模型,對(duì)比2種模型的監(jiān)測(cè)精度。結(jié)果顯示,基于寬波段植被指數(shù)結(jié)合紅邊波段植被指數(shù)的監(jiān)測(cè)模型的總體精度達(dá)到83.3%,Kappa系數(shù)0.73,優(yōu)于僅基于寬波段植被指數(shù)特征所建監(jiān)測(cè)模型的精度73.3%,Kappa系數(shù)0.58。說(shuō)明紅邊波段能夠?yàn)椴『ΡO(jiān)測(cè)提供有效信息,采用寬波段植被指數(shù)和紅邊波段植被指數(shù)相結(jié)合的方法能夠有效提高作物病蟲(chóng)害監(jiān)測(cè)模型精度。

遙感;算法;病害;Sentinel-2紅邊;小麥;條銹??;BP神經(jīng)網(wǎng)絡(luò)

0 引 言

小麥條銹病()是氣傳病害,具有發(fā)病廣、流行性強(qiáng)、發(fā)病概率高的特點(diǎn),是影響小麥減產(chǎn)的主要病害之一。小麥?zhǔn)芎髣t會(huì)引起葉片早枯,成穗數(shù)降低,減產(chǎn)嚴(yán)重[1]。傳統(tǒng)的病蟲(chóng)害監(jiān)測(cè)主要依靠地面調(diào)查,雖可信性高,但費(fèi)時(shí)費(fèi)力且較難滿(mǎn)足在大區(qū)域監(jiān)測(cè)的要求。遙感技術(shù)的飛速進(jìn)步為作物病害監(jiān)測(cè)提供了更多的可能性,能更加精確、及時(shí)地了解作物病蟲(chóng)害發(fā)生和發(fā)展的時(shí)空變化狀況,這對(duì)病害科學(xué)防控具有重大意義[2]。

近些年來(lái),在作物病害監(jiān)測(cè)研究中廣泛地引進(jìn)及應(yīng)用遙感技術(shù),而遙感技術(shù)研究方法與內(nèi)容也在不斷的改進(jìn)和創(chuàng)新中。其中高光譜影像兼有高的空間和光譜分辨率,在研究中得到廣泛應(yīng)用。高光譜技術(shù)能探測(cè)植被光譜曲線(xiàn)在某些特定波段上的細(xì)節(jié)相應(yīng)信息,Zhang等[3]利用連續(xù)小波分析方法區(qū)分小麥病害(白粉病、條銹病)和蟲(chóng)害(蚜蟲(chóng)),將Fisher線(xiàn)性判別分析用于構(gòu)建區(qū)分模型,總體精度較高。Zheng等[4]在冠層尺度上,利用小麥條銹病監(jiān)測(cè)最佳的3波段光譜指數(shù),將光化學(xué)反射指數(shù)(photochemical reflectance index,PRI)和花青素反射指數(shù)(anthocyanin reflectance index,ARI)分別用于不同發(fā)病階段的小麥條銹病監(jiān)測(cè)與識(shí)別中,并證明了其準(zhǔn)確性。Huang等[5]應(yīng)用航空高光譜的圖像,采用回歸分析建立了小麥條銹病嚴(yán)重度反演模型,并將病害監(jiān)測(cè)模型從冠層尺度擴(kuò)展到了地塊尺度。盡管基于地面/航空等高光譜數(shù)據(jù)的作物病害監(jiān)測(cè)研究進(jìn)展有效支撐了病害遙感應(yīng)用,但受其尺度小、利用率低且高成本等因素的限制,很難滿(mǎn)足大尺度作物病害監(jiān)測(cè)。多光譜遙感數(shù)據(jù)在可接受的空間分辨率下具有衛(wèi)星數(shù)量多、影像全、成本低等優(yōu)勢(shì),適合于大區(qū)域作物病害監(jiān)測(cè)。近年來(lái)Landsat-8、GF-1、HJ-CCD、Worldview-2等遙感影像被成功應(yīng)用于作物病蟲(chóng)害的監(jiān)測(cè)預(yù)測(cè)研究。如馬慧琴等[6]利用Landsat-8遙感影像與氣象數(shù)據(jù)結(jié)合實(shí)現(xiàn)了小麥白粉病的區(qū)域尺度預(yù)測(cè)的較高精度。Yuan等[7]基于Worldview-2衛(wèi)星影像數(shù)據(jù),通過(guò)Fisher線(xiàn)性判別分析構(gòu)建了小麥白粉病和蚜蟲(chóng)的監(jiān)測(cè)模型。黃林生等[8]利用GF-1影像嘗試結(jié)合Relief-mRMR-GASVM模型有效提高了區(qū)域尺度上小麥白粉病的監(jiān)測(cè)精度。以上研究證明了多光譜衛(wèi)星數(shù)據(jù)在作物病害監(jiān)測(cè)研究中的潛力。與上述衛(wèi)星傳感器相比,Sentinel-2在保證相對(duì)較高的空間分辨率和高幅寬的同時(shí)還提供了豐富的紅邊信息,是唯一一個(gè)在紅邊范圍含有3個(gè)波段的衛(wèi)星傳感器[9],為作物長(zhǎng)勢(shì)和脅迫區(qū)分提供有效數(shù)據(jù)源,為病害健康狀況的監(jiān)測(cè)提供了更豐富的信息。如Chemura等[10]重采樣Sentinel-2影像估計(jì)咖啡葉片上銹病發(fā)病的嚴(yán)重程度。Zheng等[11]嘗試通過(guò)高光譜數(shù)據(jù)模擬 Sentine-2傳感器的紅邊波段,并通過(guò)利用紅邊波段構(gòu)建的新植被指數(shù)實(shí)現(xiàn)了小麥條銹病的監(jiān)測(cè)。以上研究證明了Sentinel-2衛(wèi)星的紅邊波段在病蟲(chóng)害監(jiān)測(cè)研究中的潛力。因此應(yīng)充分挖掘紅邊波段信息,為區(qū)域尺度上作物病害的監(jiān)測(cè)提供更多可操作的可能。

BP神經(jīng)網(wǎng)絡(luò)(back propagation neural network,BPNN)具有較強(qiáng)的非線(xiàn)性函數(shù)逼近能力,是神經(jīng)網(wǎng)絡(luò)應(yīng)用最廣泛的部分[12]。因此BPNN算法在趨勢(shì)預(yù)測(cè)、故障診斷、樣本分類(lèi)等研究中均取得了較高的精準(zhǔn)度及應(yīng)用價(jià)值[13-15],同時(shí)近期在病害監(jiān)測(cè)及農(nóng)業(yè)發(fā)展的研究中也得到了普遍應(yīng)用。采用BPNN方法預(yù)測(cè)柑橘葉片含氮量[16]和臍橙果實(shí)可溶性固形物含量[17]取得了較好的效果,并在楓楊葉綠素含量光譜反演中得到較高的精度[18]。沈文穎等[19]采用BPNN構(gòu)建了小麥葉片白粉病反演模型,反演模型對(duì)小麥白粉病整個(gè)浸染期均具有較高的應(yīng)用性。Ma等[20]利用雙時(shí)相Landsat-8影像,開(kāi)發(fā)一種SMOTE-BPNN平衡新訓(xùn)練數(shù)據(jù)集的方法,可生成區(qū)域小麥病蟲(chóng)害分布圖,區(qū)分小麥白粉病和蚜蟲(chóng)?;谝陨涎芯勘砻鰾PNN模型在病害的反演上有較高的應(yīng)用價(jià)值,將此方法應(yīng)用在區(qū)域尺度上的小麥條銹病嚴(yán)重度監(jiān)測(cè)上能取得較好的監(jiān)測(cè)精度。

根據(jù)以上分析,本文以陜西省漢中市寧強(qiáng)縣為研究區(qū),利用Sentinel-2影像反演得到與病害相關(guān)的寬波段及紅邊波段植被指數(shù)特征,通過(guò)K-Means結(jié)合ReliefF的方法進(jìn)行病害敏感寬波段植被指數(shù)特征和紅邊波段指數(shù)特征的篩選,并分別以寬波段植被指數(shù)特征和寬波段植被指數(shù)結(jié)合紅邊波段指數(shù)作為輸入變量,采用BPNN算法建立小麥條銹病嚴(yán)重度監(jiān)測(cè)模型,并對(duì)比分析2種模型的優(yōu)越性。

1 材料與方法

1.1 研究區(qū)概況

研究區(qū)位于陜西省漢中市寧強(qiáng)縣(118°35′ 9.51′′ E~37°35′ 51.75′′ N)(圖1)。該區(qū)域地處秦嶺和巴山兩大山系的交匯地帶。寧強(qiáng)雨量充沛,空氣濕潤(rùn),氣候單一且環(huán)境適宜條銹病傳播[21],是小麥條銹病發(fā)生的較典型區(qū)域[22],因此適合利用遙感衛(wèi)星影像開(kāi)展小麥條銹病嚴(yán)重度監(jiān)測(cè)。

圖1 研究區(qū)概況

1.2 數(shù)據(jù)獲取

研究數(shù)據(jù)主要分為兩部分,遙感影像和小麥條銹病野外調(diào)查數(shù)據(jù)。遙感數(shù)據(jù)為Sentinel-2衛(wèi)星遙感影像(表 1)。根據(jù)研究區(qū)天氣狀況,選擇與地面調(diào)查時(shí)間相近且影像質(zhì)量較高的衛(wèi)星影像,即2018年5月12日的Sentinel-2影像數(shù)據(jù)。小麥條銹病實(shí)地調(diào)查數(shù)據(jù)于2018年5月12日在寧強(qiáng)縣實(shí)地調(diào)查獲得。該區(qū)域?yàn)閷帍?qiáng)縣小麥種植集中的地塊,較適合衛(wèi)星影像處理,且此區(qū)域小麥條銹病發(fā)病程度均勻,比其他區(qū)域更典型。為匹配Sentinel-2影像分辨率,選取20 m×20 m的地塊開(kāi)展調(diào)查,使用全球定位系統(tǒng)(global position system,GPS)記錄樣本中心點(diǎn)經(jīng)緯度,在每塊樣地采用五點(diǎn)調(diào)查法進(jìn)行調(diào)查[6],每點(diǎn)調(diào)查面積為1/m2,即在每個(gè)調(diào)查樣方中取5個(gè)對(duì)稱(chēng)的點(diǎn),每點(diǎn)隨機(jī)取20株小麥。根據(jù)國(guó)家農(nóng)作物病害調(diào)查和預(yù)測(cè)規(guī)則(GB/T 15795-2011),嚴(yán)重度用分級(jí)法表示,共設(shè)為8級(jí),分別用1%、5%、10%、20%、40%、60%、80%、100% 表示,對(duì)處于等級(jí)之間的病情則取其接近值,嚴(yán)重度低于1%,按1% 記。采用公式(1)計(jì)算病情指數(shù)DI[23]。

總共獲得30個(gè)野外調(diào)查點(diǎn),為避免過(guò)多嚴(yán)重度等級(jí)從而增加監(jiān)測(cè)的難度,將難區(qū)分的等級(jí)合并為一級(jí)。即將發(fā)病嚴(yán)重程度分為健康(Ⅰ,DI≤5%),輕發(fā)(Ⅱ,5%<DI≤20%),重發(fā)(Ⅲ, DI>20%),總共3個(gè)等級(jí)構(gòu)建監(jiān)測(cè)模型。

表1 Sentinel-2衛(wèi)星基本參數(shù)

1.3 數(shù)據(jù)處理

首先,對(duì)Sentinel-2遙感影像預(yù)處理,包括輻射定標(biāo)、大氣校正等。主要是基于SNAP(sentinel application platform software)應(yīng)用平臺(tái)軟件進(jìn)行。依據(jù)研究區(qū)的作物種植類(lèi)型及物候歷[24],利用分類(lèi)決策樹(shù)[25]的方法提取小麥種植區(qū)域,經(jīng)地面調(diào)查點(diǎn)對(duì)該分類(lèi)進(jìn)行驗(yàn)證,小麥面積提取的總體精度達(dá)90% 以上,滿(mǎn)足后續(xù)分析的精度要求。接著,基于預(yù)處理后的遙感影像提取波段反射率及對(duì)小麥條銹病比較相關(guān)的寬波段及紅邊波段植被指數(shù)。本文提取了Sentinel-2的4個(gè)波段反射率特征(紅、綠、藍(lán)、近紅外)和3個(gè)紅邊波段反射率(B5、B6、B7),14個(gè)寬波段植被指數(shù)以及5個(gè)紅邊植被指數(shù)共26個(gè)特征因子作為條銹病監(jiān)測(cè)模型的初選特征因子。表2列舉出了各植被指數(shù)的具體名稱(chēng)及計(jì)算公式。

1.4 建模特征選擇

模型構(gòu)建時(shí)篩選出對(duì)病害發(fā)生較敏感的特征變量,可提高小麥條銹病嚴(yán)重度分類(lèi)精度。合適的特征選擇方法可以有效去除不相關(guān)變量和冗余變量,提升模型的性能。K-Means算法是一種常見(jiàn)的聚類(lèi)算法[43],可通過(guò)聚類(lèi)分析提高特征之間聚類(lèi)精度,但該算法對(duì)初始中心的選取要求較高,若初始中心選擇不合適時(shí)會(huì)影響聚類(lèi)過(guò)程及效果。ReliefF算法是一種特征權(quán)重算法(feature weighting algorithms),根據(jù)植被指數(shù)特征及病害嚴(yán)重度的相關(guān)性給予特征相應(yīng)的權(quán)重,對(duì)病害相關(guān)性強(qiáng)的特征賦予更高的權(quán)重[8]。因此,為了避免K-Means算法進(jìn)行特征篩選時(shí)初始中心選取不恰當(dāng)對(duì)結(jié)果的影響,本文采用K-Means結(jié)合ReliefF算法的方式進(jìn)行最優(yōu)特征的選取。首先通過(guò)ReliefF算法計(jì)算出各個(gè)特征對(duì)小麥條銹病嚴(yán)重度發(fā)生的權(quán)重。由于該算法在運(yùn)行過(guò)程中隨機(jī)選擇樣本,因此會(huì)導(dǎo)致結(jié)果權(quán)重的誤差,因此本文采取多次平均的方法,將主程序運(yùn)行20次后的平均結(jié)果作為各個(gè)特征的最終權(quán)重。之后,以權(quán)重值最大的特征作為K-Means算法的初始中心,并按照特征權(quán)重從高到底的順序依次進(jìn)行聚類(lèi),若該特征對(duì)聚類(lèi)精度的貢獻(xiàn)為正,則保留該特征,否則去除該特征,最后將聚類(lèi)精度最高的特征組合作為最終的模型輸入變量。

表2 選取的植被指數(shù)計(jì)算公式

注:NIR為近紅外波段;R為紅波段;R為綠波段; R為藍(lán)波段;Re1為紅邊波段1;Re2為紅邊波段2;Re3為紅邊波段3。

Note:NIRis near-infrared band;Ris red band;Ris green band;Ris blue band;Re1is red edge band 1;Re2is red edge band 2;Re3is red edge band 3.

1.5 監(jiān)測(cè)模型的構(gòu)建方法

通過(guò)BPNN來(lái)構(gòu)建小麥條銹病的遙感監(jiān)測(cè)模型。BPNN是一種信號(hào)前向傳遞、誤差反向回饋的有監(jiān)督的神經(jīng)網(wǎng)絡(luò),具有自學(xué)學(xué)習(xí)能力的優(yōu)勢(shì)[44]。小麥條銹病的發(fā)病嚴(yán)重度與特征因子的關(guān)系是一個(gè)非線(xiàn)性問(wèn)題,而B(niǎo)PNN具有處理復(fù)雜非線(xiàn)性函數(shù)的能力。

本研究中用于小麥條銹病監(jiān)測(cè)模型的BPNN結(jié)構(gòu)如圖2所示,BPNN網(wǎng)絡(luò)由3層組成,分別為輸入層、輸出層和隱藏層。BPNN網(wǎng)絡(luò)訓(xùn)練是一個(gè)不斷訓(xùn)練數(shù)據(jù),調(diào)整權(quán)重和閾值使網(wǎng)絡(luò)誤差減少到最小值或停在預(yù)設(shè)值的過(guò)程。圖中輸入層x為輸入的特征因子,為輸入變量的個(gè)數(shù),即為通過(guò)ReliefF結(jié)合K-Means篩選的2組特征集。隱藏層中的a( j),=1,2,3,即3個(gè)隱藏層,為每層的神經(jīng)元個(gè)數(shù),隱藏層神經(jīng)元的個(gè)數(shù)由經(jīng)驗(yàn)公式確定[45],3層的神經(jīng)元個(gè)數(shù)分別為{10,10,3},激活函數(shù)分別為{‘logsig’,‘logsig’,‘logsig’}。學(xué)習(xí)規(guī)則采用traingdx(梯度下降自適應(yīng)學(xué)習(xí)率訓(xùn)練函數(shù)),該方法能夠自適應(yīng)調(diào)整學(xué)習(xí)率,極大加速收斂速度,增加穩(wěn)定性,提高速度與精度[46]。設(shè)置最大迭代次數(shù)為5000,訓(xùn)練的目標(biāo)誤差為0.000001。輸出層中的神經(jīng)元代表監(jiān)測(cè)的小麥條銹病嚴(yán)重等級(jí)(健康、輕發(fā)、重發(fā))。

注:x1~ xi代表輸入的特征變量;an( j)中,j代表隱藏層的層數(shù),n代表每層神經(jīng)元的個(gè)數(shù);y代表監(jiān)測(cè)的小麥條銹病嚴(yán)重等級(jí)。

2 結(jié)果與分析

2.1 特征變量的選取

圖3給出了通過(guò)ReliefF計(jì)算20次平均后各個(gè)特征的權(quán)重分布的降序排列結(jié)果。從圖3中可以看出,SIPI為權(quán)重值最高的特征,即與病害最相關(guān)的特征,因此以SIPI為K-Means聚類(lèi)的起始中心。為了減少運(yùn)算量,本文依據(jù)各個(gè)特征權(quán)重值降序的變化情況,只對(duì)權(quán)重值排在前10的特征即與病害最相關(guān)的10個(gè)特征依次進(jìn)行K-Means聚類(lèi)分析,篩選出聚類(lèi)精度最高的特征組合。表3為各個(gè)特征的組合聚類(lèi)精度。最終篩選出3個(gè)寬波段植被指數(shù)EVI、SIPI、SR及2個(gè)紅邊波段植被指數(shù)NREDI2和NREDI3用于小麥條銹病嚴(yán)重度監(jiān)測(cè)模型的構(gòu)建。

圖3 基于ReliefF算法的不同特征權(quán)重平均值

表3 基于K-Means算法的各個(gè)特征組合聚類(lèi)精度

2.2 模型的評(píng)估與驗(yàn)證

研究采用2018年5月12日的條銹病的地面調(diào)查數(shù)據(jù)對(duì)模型監(jiān)測(cè)結(jié)果進(jìn)行評(píng)價(jià)。因研究所用實(shí)地野外調(diào)查點(diǎn)數(shù)量較少,則采用留一交叉法進(jìn)行監(jiān)測(cè)結(jié)果的精度驗(yàn)證。分別以寬波段植被指數(shù)特征集及寬波段和紅邊植被指數(shù)特征結(jié)合的特征集作為輸入變量,通過(guò)BPNN方法構(gòu)建2種監(jiān)測(cè)小麥條銹病嚴(yán)重程度的模型。各監(jiān)測(cè)方法所得監(jiān)測(cè)結(jié)果的漏分誤差、錯(cuò)分誤差、總體精度、Kappa系數(shù)見(jiàn)表4。

分析2種模型的監(jiān)測(cè)情況發(fā)現(xiàn),寬波段植被指數(shù)加紅邊植被指數(shù)特征的監(jiān)測(cè)模型精度比僅有寬波段植被指數(shù)特征的模型總體精度提高10個(gè)百分點(diǎn),達(dá)到83.3%,Kappa系數(shù)為0.73。從模型的漏分和錯(cuò)分情況來(lái)看,2種模型均表現(xiàn)為把輕發(fā)地塊分到健康或者重發(fā)地塊的情況較為嚴(yán)重,但總體比較,無(wú)論是健康地塊還是病害浸染地塊,加紅邊波段指數(shù)特征的監(jiān)測(cè)模型的錯(cuò)分誤差和漏分誤差都低于僅基于寬波段植被指數(shù)特征構(gòu)建的監(jiān)測(cè)模型。從病理的角度分析,小麥?zhǔn)軛l銹病菌浸染后破壞了葉片的結(jié)構(gòu),導(dǎo)致紅邊波段產(chǎn)生較大響應(yīng)。綜合以上結(jié)果可表明與僅有傳統(tǒng)寬波段指數(shù)特征構(gòu)建的模型相比,寬波段植被指數(shù)特征結(jié)合紅邊指數(shù)特征的方法能夠?yàn)椴『ΡO(jiān)測(cè)提供更豐富的信息。因此加入紅邊波段特征后能更加全面的反映小麥的長(zhǎng)勢(shì)及發(fā)病情況,有效改善監(jiān)測(cè)模型精度。

2.3 小麥條銹病嚴(yán)重度監(jiān)測(cè)

利用研究區(qū)2018年5月12日遙感影像數(shù)據(jù),以單個(gè)像元為基本處理單元,采用K-Means算法與ReliefF算法相結(jié)合的方式篩選出3個(gè)寬波段植被指數(shù)EVI、SIPI、SR和2個(gè)紅邊波段指數(shù)NREDI2、NREDI3,分別以寬波段植被指數(shù)為特征集(EVI、SIPI、SR)、寬波段植被指數(shù)結(jié)合紅邊植被指數(shù)為特征集(EVI、SIPI、SR、NREDI2、NREDI3)作為BPNN方法的2組輸入變量構(gòu)建模型,并對(duì)研究區(qū)小麥病害進(jìn)行監(jiān)測(cè),得到小麥條銹病嚴(yán)重程度的空間分布情況(如圖4所示)。從監(jiān)測(cè)結(jié)果分布圖中可以看出,2種模型監(jiān)測(cè)結(jié)果中條銹病空間分布整體趨勢(shì)是一致的,即東南地區(qū)發(fā)病較嚴(yán)重,病害浸染面積較多,且呈現(xiàn)整片區(qū)域連續(xù)分布,健康與發(fā)病區(qū)域分布較為均勻。但2種模型監(jiān)測(cè)結(jié)果在細(xì)節(jié)和發(fā)病程度上差異較大。圖4a重發(fā)麥區(qū)明顯低于圖4b,而輕發(fā)麥區(qū)所占比例較大。圖4a在采樣點(diǎn)的區(qū)域分布中,發(fā)病麥區(qū)面積分布較為零散且比健康麥區(qū)面積少,而圖4b東部地區(qū)發(fā)病較為嚴(yán)重,北部較輕。健康、輕發(fā)、重發(fā)麥區(qū)面積比例分布合理。為更明確地顯示2種模型監(jiān)測(cè)結(jié)果之間的差異,表5列出了實(shí)地調(diào)查,寬波段植被指數(shù)模型、寬波段植被指數(shù)結(jié)合紅邊波段指數(shù)模型的健康、輕發(fā)、重發(fā)3種不同浸染狀況下的小麥面積百分比。從表中數(shù)據(jù)來(lái)看,圖4a和圖4b條銹病發(fā)生面積相差不大,分別為47.9%和49.1%,但圖 4a中輕發(fā)麥區(qū)所占比例為35.3%,遠(yuǎn)大于圖4b的20.5%。且圖4a的重發(fā)麥區(qū)僅占12.6%,遠(yuǎn)小于圖4b的28.6%。圖4b與實(shí)地調(diào)查的病害浸染比例更相近。結(jié)合圖4模型結(jié)果中病害的空間分布情況和表5病害浸染統(tǒng)計(jì)情況來(lái)看,圖寬波段+紅邊波段植被指數(shù)模型整體更符合實(shí)際情況,對(duì)小麥嚴(yán)重度的區(qū)分能力要優(yōu)于寬波段植被指數(shù)模型,更能合理的反映小麥條銹病真實(shí)發(fā)病情況。

表4 BPNN監(jiān)測(cè)模型的總體驗(yàn)證結(jié)果

圖4 BPNN模型監(jiān)測(cè)小麥條銹病嚴(yán)重度空間分布圖

表5 各模型病害浸染比例統(tǒng)計(jì)

3 結(jié) 論

本文基于Sentinel-2遙感數(shù)據(jù)建立了小麥條銹病的嚴(yán)重度監(jiān)測(cè)模型,通過(guò)K-Means 結(jié)合ReliefF算法的方式篩選出3個(gè)寬波段指數(shù)特征EVI、SIPI、SR和2個(gè)紅邊波段指數(shù)特征NREDI2、NREDI3作為模型的輸入變量,采用BPNN方法構(gòu)建條銹病的2種監(jiān)測(cè)模型,對(duì)陜西寧強(qiáng)縣的小麥條銹病發(fā)生嚴(yán)重度進(jìn)行監(jiān)測(cè),且對(duì)2種數(shù)據(jù)所構(gòu)建模型的結(jié)果進(jìn)行了比較分析。結(jié)果表明:采用寬波段植被指數(shù)結(jié)合紅邊波段植被指數(shù)特征作為輸入變量的BPNN模型的監(jiān)測(cè)效果優(yōu)于僅以寬波段指數(shù)特征作為輸入變量的模型,其總體精度達(dá)到83.3%。與常規(guī)的寬波段植被指數(shù)特征模型相比,寬波段植被指數(shù)特征與紅邊波段植被指數(shù)特征結(jié)合更能全面反映小麥的長(zhǎng)勢(shì)及病害光譜信息的變化,使模型在輸入?yún)?shù)中融合了更多的有效信息,對(duì)小麥條銹病更敏感,有效提高了小麥條銹病嚴(yán)重度監(jiān)測(cè)模型的精度,進(jìn)一步加深了實(shí)際監(jiān)測(cè)和病害防治中的可靠性。

實(shí)地調(diào)查數(shù)據(jù)的質(zhì)量對(duì)模型的精度有較大影響,本研究在野外調(diào)查開(kāi)展中因各種不可控因素的影響,采樣數(shù)量較少,僅獲取了陜西寧強(qiáng)縣的小范圍地面調(diào)查數(shù)據(jù),因此模型的通用性有待提高和驗(yàn)證。另外,本文所選特征全部為遙感數(shù)據(jù),未選擇其他可能影響小麥條銹病嚴(yán)重度的數(shù)據(jù),因此所構(gòu)建的模型精度必會(huì)存在一定誤差。在今后的研究中盡可能多融合各類(lèi)數(shù)據(jù),構(gòu)建一個(gè)融入多源數(shù)據(jù)的小麥條銹病嚴(yán)重度監(jiān)測(cè)模型,從而提高小麥條銹病嚴(yán)重度監(jiān)測(cè)的精度。

[1] 黃文江. 作物病害遙感監(jiān)測(cè)機(jī)理與應(yīng)用[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2009.

[2] 王利民,劉佳,楊福剛,等. 基于GF-1/WFV數(shù)據(jù)的冬小麥條銹病遙感監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(5):153-160. Wang Limin, Liu Jia, Yang Fugang, et al. Remote sensing monitoring of winter wheat stripe rust based on GF-1/WFV data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 153-160. (in Chinese with English abstract)

[3] Zhang J, Wang N, Yuan L, et al. Discrimination of winter wheat disease and insect stresses using continuous wavelet features extracted from foliar spectral measurements[J]. Biosystems Engineering, 2017, 162: 20-29.

[4] Zheng Qiong, Huang Wenjiang, Cui Ximin, et al. Identification of wheat yellow rust using optimal three-band spectral indices in different growth stages[J]. Sensors, 2019, 19(1):35.

[5] Huang W, Lamb D W, Niu Z, et al. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging[J]. Precision Agriculture, 2007, 45 (8): 187-197.

[6] 馬慧琴,黃文江,景元書(shū),等. 遙感與氣象數(shù)據(jù)結(jié)合預(yù)測(cè)小麥灌漿期白粉病[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):165-172. Ma Huiqin, Huang Wenjiang, Jing Yuanshu, et al. Wheat powdery mildew forecasting in filling stage based on remote sensing and meteorological data [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 165-172. (in Chinese with English abstract)

[7] Yuan L, Bao Z, Zhang H, et al. Habitat monitoring to evaluate crop disease and pest distributions based on multi-source satellite remote sensing imagery[J]. Optik-International Journal for Light and Electron Optics, 2017, 145: 66-73.

[8] 黃林生,阮超,黃文江,等. 基于GF-1遙感影像和relief-mRMR-GASVM模型的小麥白粉病監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):167-175. Huang Linsheng, Ruan Chao, Huang Wenjiang, et al. Monitoring of wheat powdery mildew based on GF-1 remote sensing image and relief-mRMR-GASVM model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 167-175. (in Chinese with English abstract)

[9] Hedley J, Roelfsema C, Koetz B, et al. Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection[J]. Remote Sensing of Environment, 2012, 120(6): 145-155.

[10] Chemura A, Mutanga O, Dube T. Separability of coffee leaf rust infection levels with machine learning methods at Sentinel-2 MSI spectral resolutions[J]. Precision Agriculture, 2016(10): 1-23.

[11] Zheng Qiong, Huang Wenjiang, Cui Ximin, et al. New spectral index for detecting wheat yellow rust using Sentinel-2 multispectral imagery[J]. Sensors, 2018, 18(3): 868-887.

[12] Wang L, Zeng Y, Chen T, et al. Back propagation neural network with adaptive differential evolution algorithm for time series forecasting[J]. Expert Syst Appl, 2015, 42: 855-863.

[13] 沈澤君,楊文元. 粒計(jì)算思維下的BP神經(jīng)網(wǎng)絡(luò)在金融趨勢(shì)預(yù)測(cè)中的應(yīng)用[J]. 小型微型計(jì)算機(jī)系統(tǒng), 2019,40(3):527-532. Shen Zejun, Yang Wenyuan. Application of BP neural network under grain computing thinking in financial trend prediction[J]. Small Computer Systems, 2019, 40(3): 527-532. (in Chinese with English abstract)

[14] 俞瑋捷,劉光宇. 基于BP神經(jīng)網(wǎng)絡(luò)的光伏系統(tǒng)故障診斷方法[J]. 杭州電子科技大學(xué)學(xué)報(bào):自然科學(xué)版,2018,38(4):56-61,93. Yu Yujie, Liu Guangyu. Fault diagnosis method of photovoltaic system based on BP neural network[J]. Journal of Hangzhou dianzi University, 2018, 38(4): 56-61, 93. (in Chinese with English abstract)

[15] 高斌,趙鵬飛,盧昱欣,等. 基于BP神經(jīng)網(wǎng)絡(luò)的血液熒光光譜識(shí)別分類(lèi)研究[J]. 光譜學(xué)與光譜分析,2018,38(10):154-161. Gao Bin, Zhao Pengfei, Lu Yuxin, et al. Classification of blood fluorescence spectral recognition based on BP neural network[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 154-161. (in Chinese with English abstract)

[16] 李金夢(mèng),葉旭君,王巧男,等. 高光譜成像技術(shù)的柑橘植株葉片含氮量預(yù)測(cè)模型[J]. 光譜學(xué)與光譜分析,2014,34(1):212-216. Li Jinmeng, Ye Xujun, Wang Qiaonan, et al. Development of prediction models for determining N content in citrus leaves based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 2014, 34(1): 212-216. (in Chinese with English abstract)

[17] Liu Yande, Sun Xudong, Ouyang Aiguo. Nondestructive measurement of soluble solid content of navel orange fruit by visible-NIR spectrometric technique with PLSR and PCA-BPNN[J]. LWT- Food Science and Technology, 2010, 43(4): 602-607.

[18] 李文敏,魏虹,李昌曉,等. 基于高光譜參數(shù)的楓楊葉綠素含量估算模型優(yōu)化[J]. 林業(yè)科學(xué),2014,50(4):55-59. Li Wenmin, Wei Hong, Li Changxiao, et al. Optimization of a model for estimating pterocarya stenoptera chlorophyll concentration with hyperspectral parameters[J]. Scientia Silvae Sinicae, 2014, 50(4): 55-59. (in Chinese with English abstract)

[19] 沈文穎,李映雪,馮偉,等. 基于因子分析-BP神經(jīng)網(wǎng)絡(luò)的小麥葉片白粉病反演模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(22):183-190. Shen Wenying, Li Yingxue, Feng Wei, et al. Inversion model of wheat leaf powdery mildew based on factor analysis-BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 183-190. (in Chinese with English abstract)

[20] Ma Huiqin, Huang Wenjiang, Jing Yuanshu, et al. Integrating growth and environmental parameters to discriminate powdery mildew and aphid of winter wheat using bi-temporal Landsat-8 imagery[J]. Remote Sensing, 2019, 11(7): 846.

[21] 彭昌家,馮禮斌,白體坤,等. 小麥條銹病發(fā)生流行趨勢(shì)及其成因探討[J]. 農(nóng)學(xué)學(xué)報(bào),2015,5(5):39-47. Peng Changjia, Feng Libin, Bai Tikun, et al. The prevalence trend of wheat stripe rust and its genesis[J]. Acta Agriculturala Sinica, 2015, 5(5): 39-47. (in Chinese with English abstract)

[22] 謝飛舟. 陜西省小麥條銹病流行規(guī)律進(jìn)一步研究[D].楊凌: 西北農(nóng)林科技大學(xué),2011. Xie Feizhou. Further Research on the Epidemic Law of Wheat Stripe Rust in Shaanxi Province[D]. Yangling: Northwest A&F University, 2011. (in Chinese with English abstract)

[23] 小麥條銹病測(cè)報(bào)調(diào)查規(guī)范:GB/T 15795-2011[S].

[24] 許青云,楊貴軍,龍慧靈,等. 基于MODIS NDVI多年時(shí)序數(shù)據(jù)的農(nóng)作物種植識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(11):134-144. Xu Qingyun, Yang Guijun, Long Huiling, et al. Crop planting identification based on MODIS NDVI time- series data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(11): 134-144. (in Chinese with English abstract)

[25] Zhang J, Pu R, Yuan L, Wang J, et al. Monitoring powdery mildew of winter wheat by using moderate resolution multi-temporal satellite imagery[J]. PLoS ONE 2014, 9: e93107.

[26] Baret F, Guyot G. Potentials and limits of vegetation indices for LAI and APAR assessment[J]. Remote Sensing of Environment, 1991, 35(2/3): 161-173.

[27] Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer[J]. New Phytologist, 2010, 143(1): 105-117.

[28] Gitelson A A. Novel Algorithms for Remote Estimation of Vegetation Fraction[J]. Remote Sens Environ, 2002, 80(1): 76-87.

[29] Huete A, Didan K, Miura, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1): 195-213.

[30] Person R S, Kudina L P. Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle[J]. Electroencephalogr Clin Neurophysiol, 1972, 32(5): 471-483.

[31] Merzlyak M N, Chivkunova O B, Gitelson A A, et al. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening[J]. Physiologia Plantarum, 2010, 106(1): 135-141.

[32] Zhao Chunjiang, Huang Wenjiang, Liu Liangyun, et al. Analysis of winter wheat stripe rust characteristic spectrum and establishing of inversion models[C]// IEEE International Geoscience & Remote Sensing Symposium. IEEE, 2004: 4318-4320.

[33] Verstraete M M, Pinty B, Myneni R B. Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing[J]. Remote Sensing of Environment, 1996, 58(2): 201-214.

[34] Roujean J L, Fran?ois Marie Breon. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment, 1995, 51(3): 375-384.

[35] Yang C M, Cheng C H, Chen R K. Changes in Spectral characteristics of rice canopy infested with brown planthopper and leaffolder[J]. Crop Science, 2007, 47(1): 329-335.

[36] Geneviève Rondeaux, Steven M, Frédéric Baret. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55(2): 95-107.

[37] Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.

[38] Chen S F, Goodman J. An empirical study of smoothing techniques for language modeling[C]//Proceeding of the 34th annual meeting on Association for Computational Linguistics. Association for Computational Linguistics, 1996: 310-318.

[39] Kononenko I. Estimating attributes: Analysis and extensio reliefF[C]//MachingLearning: ECMIL-94. Springer Berlin Heideberg,1994: 71-182.

[40] Schell J A. Monitoring vegetation systems in the great plains with ERTS[J]. Nasa Special Publication, 1973, 351: 309-317.

[41] Gitelson A, Merzlyak M N. Quantitative estimation of chlorophyll-a using relectance spectra: Experiments with autumn chestnut and maple leaves[J]. Photochem Photobiol B Biol, 1994, 22: 247-252.

[42] Alfonso Fernández-Manso, Oscar Fernández-Manso, Quintano C. Sentinel-2A red-edge spectral indices suitability for discriminating burn severity[J]. International Journal of Applied Earth Observation & Geoinformation, 2016, 50: 170-175.

[43] 陳平華,黃輝,麥淼,等. 結(jié)合ReliefF和互信息的多標(biāo)簽特征選擇算法[J]. 廣東工業(yè)大學(xué)學(xué)報(bào),2018(5):20-25,50. Chen Pinghua, Huang Hui, Mai Wei, et al. Multi-label feature selection algorithm combining ReliefF and mutual information[J]. Journal of Guangdong University of Technology, 2018(5): 20-25, 50. (in Chinese with English abstract)

[44] Wang L, Zeng Y, Chen T. Back propagation neural network with adaptive differential evolution algorithmfor time series forecasting[J]. Expert Syst Appl, 2015, 42, 855-863.

[45] 沈花玉,王兆霞,高成耀,等. BP神經(jīng)網(wǎng)絡(luò)隱含層單元數(shù)的確定[J]. 天津理工大學(xué)學(xué)報(bào),2008,24(5):13-15. Shen Huauu, Wang Zhaoxia, Gao Chengyao, et al. Determining the number of BP neural network hidden layer units[J]. Journal of Tianjin University of Technology, 24(5): 13-15. (in Chinese with English abstract)

[46] Shi Yue, Zhao Xin, Zhang Bing, et al. Back propagation neural network (BPNN) prediction model and control strategies of methanogen phase reactor treating traditional Chinese medicine wastewater (TCMW)[J]. Biotechnol, 2009,144: 70-74.

Wheat yellow rust monitoring method based on Sentinel-2 image and BPNN model

Huang Linsheng1, Jiang Jing1,3, Huang Wenjiang1,2,3※, Ye Huichun2,3, Zhao Jinling1, Ma Huiqin3, Ruan Chao1,3

(1.,230601,; 2.,572029,; 3.,100094,)

Wheat yellow rust is a deadly disease of winter wheat and its timely and accurate detection at regional scale is critical to ameliorate infectious yield loss and safeguard wheat production. With the development in remote sensing technology, satellite imagery with high spatial resolution and high revisiting frequency has become increasingly accessible. Remote sensing data has a unique advantage over traditional method in detecting crop diseases and controlling their spreading, including simple operation, real-time detection, high spatiotemporal resolution and targeting specific-disease, especially the multispectral satellite imagery which covers a wide range of wave bands and provides rich information related to crop diseasesat regional scale. Compared to conventional broad band satellite imagery, the Sentinel-2 is a sensor with three wave bands within the edge of the red light which are sensitive to crop diseases. In this study, a Sentinel-2 image acquired in May 12, 2018 was used to extract 26 characteristic variables related to wheat yellow rust, including 3 visible bands (blue, green and red) reflectance variables, one near infrared band, 3 red-edge bands, 14 broad-bands and 5 red-edge vegetation indices. An approach combining K-means and ReliefF algorithm is proposed to filter these features. We first used the RelieF algorithm to calculate the weight of each feature and filter out 10 features most relevant to the disease. The feature with maximum weight was then taken as the initial center of the K-Means algorithm, and other features were added to form a cluster in descending order of their weight. The combination of features with the highest clustering accuracy was taken as the final input variable to the model. The optimal features, including enhanced vegetation index (EVI), structure intensive pigment index (SIPI), simple ratio index (SR), normalized red-edge2 index(NREDI2), normalized red-edge3 index (NREDI3), three wide-band vegetation indices and 2 red edge band vegetation indices were fed into the yellow rust severity monitoring model as input. The back propagation neural network (BPNN) method was a widely used nonlinear artificial neural network and can learn, implicitly, the relationships between inputs and outputs via a multi-layered network. Network training is a process of continual readjustment of weights and thresholds by reducing the network error to a pre-sent minimum or pre-set training steps. We used BPNN to calculate severity of wheat yellow rust (healthy, slight, sever) inNingqiang County, Shaanxi province, by using the broad-band vegetation indices and the red-edge band vegetation indices as inputs. The results showed that the BPNN model considering broad-band and red-edge vegetation indices as inputs worked better than model using only a single broad-band vegetation indices, improving accuracy by more than 10 percent point and commission accuracy and kappa coefficient reached by 83.3% and 0.73, respectively. The BPNN model includes more information in its input parameters, thereby improving the accuracy of detecting crop diseases. It is more suitable for detecting wheat yellow rust at regional scales and has a wide implication in monitoring and controlling crop diseases at regional scale.

remote sensing; algorithms; diseases; Sentinel-2 red-edge; wheat; yellow rust; BPNN

2019-04-17

2019-08-27

安徽省科技重大專(zhuān)項(xiàng)(16030701091);國(guó)家高層次人才特殊支持計(jì)劃(萬(wàn)人計(jì)劃,黃文江);海南省萬(wàn)人計(jì)劃配套項(xiàng)目(黃文江);安徽省高等學(xué)校自然科學(xué)研究重點(diǎn)項(xiàng)目(KJ2019A0030)。

黃林生,博士,副教授,研究方向?yàn)檗r(nóng)業(yè)遙感技術(shù)與應(yīng)用。Email:linsheng0808@163.com。

黃文江,博士,研究員,博士生導(dǎo)師。主要從事植被定量遙感機(jī)理和應(yīng)用研究。Email:huangwj@radi.ac.cn

10.11975/j.issn.1002-6819.2019.17.022

S512.1

A

1002-6819(2019)-17-0178-08

黃林生,江 靜,黃文江,葉回春,趙晉陵,馬慧琴,阮 超.Sentinel-2影像和BP神經(jīng)網(wǎng)絡(luò)結(jié)合的小麥條銹病監(jiān)測(cè)方法 [J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(17):178-185. doi:10.11975/j.issn.1002-6819.2019.17.022 http://www.tcsae.org

Huang Linsheng, Jiang Jing, Huang Wenjiang, Ye Huichun, Zhao Jinling, Ma Huiqin, Ruan Chao. Wheat yellow rust monitoring method based on Sentinel-2 image and BPNN model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 178-185. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.17.022 http://www.tcsae.org

猜你喜歡
特征模型
一半模型
抓住特征巧觀(guān)察
重要模型『一線(xiàn)三等角』
新型冠狀病毒及其流行病學(xué)特征認(rèn)識(shí)
重尾非線(xiàn)性自回歸模型自加權(quán)M-估計(jì)的漸近分布
如何表達(dá)“特征”
不忠誠(chéng)的四個(gè)特征
抓住特征巧觀(guān)察
3D打印中的模型分割與打包
FLUKA幾何模型到CAD幾何模型轉(zhuǎn)換方法初步研究
主站蜘蛛池模板: 91精品国产麻豆国产自产在线| 成人年鲁鲁在线观看视频| 国产不卡网| 日韩亚洲综合在线| 国产欧美日韩精品综合在线| 免费在线视频a| 又大又硬又爽免费视频| 亚洲性影院| 老司机精品99在线播放| 精品欧美一区二区三区在线| 97在线碰| 尤物视频一区| 91丝袜乱伦| 亚洲欧美一级一级a| 99er精品视频| 在线观看精品国产入口| 亚洲欧美综合精品久久成人网| 国产男人天堂| 亚洲香蕉在线| 国产成人精品无码一区二| 亚洲国产在一区二区三区| 亚洲国产系列| 亚洲国产精品一区二区第一页免| 国产欧美在线观看精品一区污| 最新国产网站| 久久天天躁夜夜躁狠狠| 久久精品人人做人人爽| 精品伊人久久久香线蕉| 国产精品久久精品| 久久综合亚洲色一区二区三区| 中文字幕伦视频| 成人夜夜嗨| 久无码久无码av无码| 亚洲精品第一页不卡| 伊人久久福利中文字幕| 婷婷在线网站| 欧美精品一区二区三区中文字幕| 一级毛片免费的| 九九热精品在线视频| 草草影院国产第一页| 欧美成人影院亚洲综合图| 手机看片1024久久精品你懂的| 99ri精品视频在线观看播放| 亚洲系列中文字幕一区二区| 国产一级一级毛片永久| 白浆视频在线观看| 91福利片| 欧美一级高清片欧美国产欧美| 国产精品毛片一区视频播| 国产91丝袜在线播放动漫 | 婷婷六月综合网| 欧美成人午夜影院| 国产 日韩 欧美 第二页| 性激烈欧美三级在线播放| 亚洲天堂色色人体| 第一区免费在线观看| 亚洲精品中文字幕午夜| 国产黄色免费看| 国产a v无码专区亚洲av| 91免费片| 黄色成年视频| 国产无码高清视频不卡| 又黄又爽视频好爽视频| 国产欧美日韩资源在线观看| 99草精品视频| 午夜小视频在线| 國產尤物AV尤物在線觀看| 亚亚洲乱码一二三四区| 欧美爱爱网| 色亚洲激情综合精品无码视频| 欧美日韩北条麻妃一区二区| 高清视频一区| 日本免费精品| 91福利免费视频| 亚洲日韩欧美在线观看| 久久久久人妻精品一区三寸蜜桃| 国产精品第一区在线观看| 久久亚洲AⅤ无码精品午夜麻豆| 亚洲视频色图| 色婷婷电影网| 欧美国产日韩另类| 亚洲黄色视频在线观看一区|