999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

冷鮮雞肉表面四環(huán)素和磺胺耐藥菌的菌群多樣性分析

2019-11-11 06:53:14姚春霞黃柳娟周昌艷王衛(wèi)國
農(nóng)業(yè)工程學報 2019年17期
關鍵詞:耐藥

邵 毅,姚春霞,,黃柳娟,馮 博,周昌艷,白 冰,王 華,王衛(wèi)國

冷鮮雞肉表面四環(huán)素和磺胺耐藥菌的菌群多樣性分析

邵 毅1,2,姚春霞1,2,※,黃柳娟1,馮 博1,周昌艷1,2,白 冰1,王 華3,4,王衛(wèi)國5

(1. 上海市農(nóng)業(yè)科學院農(nóng)產(chǎn)品質(zhì)量標準與檢測技術研究所,上海 201403;2. 上海市設施園藝技術重點實驗室,上海 201403;3. 美國俄亥俄州立大學食品科學與技術系,哥倫布 43210;4. 復旦大學生命科學院微生物學和微生物工程系,上海 200433;5. 上海國榮果業(yè)專業(yè)合作社,上海 201516)

為探索冷鮮雞肉產(chǎn)品表面的抗生素耐藥菌的菌群結構,利用IonS5TMXL測序平臺對18個市售冷鮮雞肉樣品表面的可培養(yǎng)四環(huán)素耐藥菌和磺胺耐藥菌進行了研究。結果表明,2類耐藥菌中分別注釋出59個和58個已明確屬名的屬,相對豐度最大的3個門均為變形菌門、擬桿菌門和厚壁菌門。共享菌屬中不動桿菌屬、假單胞菌屬、變形桿菌屬、檸檬酸桿菌屬、香味菌屬和漫游球菌屬的禽源和人源分離株的多重耐藥性已被大量研究所證實;而禽源肉桿菌屬等16個菌屬的耐藥特性還未見報道。各采樣點分別鑒定出5~39個特有操作分類單元,分屬3~32個屬。該研究反映了冷鮮雞肉表面2類耐藥菌的污染狀況,為后期冷鮮雞肉產(chǎn)品表面耐藥菌的遷移風險評估和控制技術研究提供參考。

微生物;細菌;抗生素;冷鮮雞;四環(huán)素耐藥菌;磺胺耐藥菌;菌群多樣性

0 引 言

抗生素耐藥(antibiotic resistant,ART)致病菌可能通過食物鏈從農(nóng)業(yè)生產(chǎn)及農(nóng)產(chǎn)品中擴散至人類[1],耐藥(antibiotic resistance,AR)基因還能通過水平基因遷移(horizontal gene transfer,HGT)從養(yǎng)殖動物源細菌遷移至人類共生菌中[2-3],因此,ART菌的快速增多對人類公共衛(wèi)生安全造成巨大威脅[4]。耐藥性的發(fā)生和遷移機制復雜,除抗生素篩選壓外,AR基因池的大小[5]和ART菌的種屬[6]是影響食源性耐藥基因遷移潛勢的關鍵因素。然而,目前食源性ART菌的研究主要在致病菌中展開,且依賴于有限菌種或單個菌落的培養(yǎng)分離[7]。在復雜的細菌生態(tài)系統(tǒng)中,除致病菌外,數(shù)量龐大的其他細菌的耐藥數(shù)據(jù)十分有限。借助高通量二代測序技術,對潛在的ART細菌進行菌群組成研究,有助于完善ART菌的種屬信息,進而全面揭示耐藥機制。

為避免禽流感等動物源性疾病的人群暴發(fā),冷鮮雞逐漸成為禽肉市場的主要產(chǎn)品類型。但冷鮮雞在屠宰和貯運過程中很可能發(fā)生微生物的污染和滋生,成為ART菌的載體[8-10]。這些ART菌的菌群組成和遷移風險尚不明確。因此,本研究通過選擇性培養(yǎng)獲得具有四環(huán)素或磺胺耐藥表型的細菌,并通過IonS5TMXL平臺分析其菌落結構,從理論上探討ART菌的潛在污染來源和遷移風險,為冷鮮雞肉產(chǎn)品表面有害微生物的控制和安全加工奠定基礎。

1 材料與方法

1.1 試驗材料與主要試劑

18份冷鮮雞樣品(表1)于2018年9月4日至2018年10月16日購于上海市6個大型超市和生鮮超市,冷鮮雞樣品的生產(chǎn)或包裝日期為采樣當天。采樣時避免樣品與手及人呼出的氣體接觸。樣品用無菌袋盛裝,在冰盒(約4 ℃)中于3 h內(nèi)運回實驗室,進行ART菌的分離。

腦心浸液肉湯(brain heart infusion broth,BHI)瓊脂培養(yǎng)基(英國 Oxoid);四環(huán)素(tetracycline,Tet)、磺胺甲惡唑(sulfamethoxazole,Sul)、甲氧芐啶(trimethoprim,Tri)(美國Sigma);真菌抑制劑放線菌酮(cycloheximide,Cyc)(美國Amresco);生理鹽水(廣東環(huán)凱微生物科技有限公司);細菌基因組提取試劑盒(德國QIAGEN)。

表1 冷鮮雞肉樣品信息

1.2 儀器設備

SX-500型高壓滅菌鍋(日本TOMY)用于細菌培養(yǎng)基的制備;BAGMIXER400型均質(zhì)機(法國Interscience)用于雞肉樣品的拍打均質(zhì);1300 SERIES A2型生物安全柜(美國Thermo Fisher scientific)用于細菌的分離操作;Medcenter Einrichtungen GmbH型恒溫培養(yǎng)箱(德國Friocell)用于細菌的培養(yǎng);Mini-Sub cell GT型水平核酸電泳系統(tǒng)(美國Bio-rad)和NanoDrop 2000c型超微量分光光度計(美國Thermo)分別用于菌體DNA提取質(zhì)量的定性和定量分析;Criterion Stain Free型凝膠成像系統(tǒng)(美國Bio-rad)用于菌體DNA電泳結果的顯示;T100型PCR儀(美國Bio-rad)用于菌體16S rDNA的聚合酶鏈式反應(polymerase chain reaction,PCR)擴增。

1.3 方 法

1.3.1 四環(huán)素耐藥菌(tetracycline resistant bacteria,Tetr)和磺胺耐藥菌(sulfamethoxazole resistant bacteria,Sulr)的分離

參考Huang等[11]的方法從冷鮮雞樣品表面分離對四環(huán)素或磺胺甲惡唑/甲氧芐啶耐藥的細菌:無菌條件下將表面肌肉和皮剪碎,混勻,準確稱量25 g置于無菌袋中,加入225 mL無菌生理鹽水,拍打均質(zhì)5 min,用移液槍吸取200L混勻的均質(zhì)液均勻涂布于含有放線菌酮和四環(huán)素(Cyc+Tet)或放線菌酮和磺胺甲惡唑及甲氧芐啶(Cyc+ Sul+Tri)的BHI平板上,所有平板中Cyc的濃度均為100g/mL。為了盡量減少耐藥假陽性細菌的生長,參考美國臨床和實驗室標準協(xié)會(Clinical and Laboratory Standards Institute,CLSI)對幾種典型臨床致病菌對四環(huán)素或磺胺甲惡唑/甲氧芐啶耐藥折點的規(guī)定[12],將培養(yǎng)皿中四環(huán)素、磺胺甲惡唑和甲氧芐啶的濃度點分別定為48、228和12g/mL,即大多數(shù)致病菌相應耐藥折點的3倍;同時,將本實驗室前期優(yōu)化的雞肉表面抗生素耐藥細菌分離培養(yǎng)條件((32±1)℃,48 h)[8]中的培養(yǎng)時間縮短為24 h。

1.3.2 DNA提取及PCR擴增

刮取培養(yǎng)皿上所有菌體,用2 mL生理鹽水重懸混勻,取100L提取細菌總DNA。經(jīng)1%瓊脂糖凝膠電泳和核酸定量儀測定,確定所提細菌總DNA的質(zhì)量后,PCR擴增核糖體亞基16S rDNA基因的V3-V4區(qū)。上游引物為341F:5’-CCTAYGGGRBGCASCAG-3’,下游引物為806R:5’-GGACTACNNGGGTATCTAAT-3’。擴增結束后,用2%瓊脂糖凝膠電泳和核酸定量儀檢測PCR產(chǎn)物的質(zhì)量,委托北京諾禾致源生物信息科技有限公司基于IonS5TMXL測序平臺,利用單端測序(Single-End)的方法,對構建的小片段文庫進行高通量測序。

1.3.3 高通量測序數(shù)據(jù)分析

將IonS5TMXL下機數(shù)據(jù)導出fastq文件。根據(jù)barcode序列區(qū)分各個樣本的數(shù)據(jù),并進行嵌合體過濾,得到用于后續(xù)分析的有效數(shù)據(jù)(clean reads)。以97%的一致性(identity)對所有樣本的有效標簽(effective tags)進行操作分類單元(operational taxonomic unit,OTU)聚類和物種分類分析。隨后,一方面用SILVA132(http://www.arb-silva.de/)的SSUrRNA數(shù)據(jù)庫在界(kingdom)、門(phylum)、綱(class)、目(order)、科(family)、屬(genus)和種(species)7個水平對每個OTU的序列做物種注釋分析,得到對應的物種信息和基于物種的豐度分布情況;另一方面,對OTU進行豐度、-多樣性計算、維恩(Venn)圖和花瓣圖等分析,以得到樣本內(nèi)物種豐富度和均勻度信息、不同樣本或分組間的共有(共享菌群[13])和特有(特有菌群)OTU信息等。用EXCEL的單因素方差分析比對各樣品中四環(huán)素耐藥菌和磺胺耐藥菌-多樣性指數(shù)的差異,計算P值(P-value),當< 0.05時,差異顯著。用EXCEL繪制菌落豐度柱狀圖。

2 結果與分析

2.1 α-多樣性分析

對每個冷鮮雞肉樣品表面的Tetr菌和Sulr菌的組成分別進行多樣性分析(-多樣性),評估其復雜度和多樣性。菌群覆蓋度(good’s coverage)指數(shù)反映了測序深度,當測序深度覆蓋到樣品中所有的物種時,其值為1;物種數(shù)(observed species)指數(shù)和超(chao1)指數(shù)反映了單個樣品中物種的數(shù)量,即群落的豐富度;香農(nóng)(shannon)指數(shù)和辛普森(simpon)指數(shù)反映了群落的多樣性,相同豐富度時,均勻度越高,群落的多樣性越大,2個指數(shù)的值就越大。結果表明,各樣品中2種ART菌的覆蓋指數(shù)為0.999~1(表 2),說明幾乎所有序列都被測出,本次多樣性分析結果能反映樣品菌群組成的真實情況。18個樣品測序共獲得503個OTU,平均每個樣品的Tetr菌和Sulr菌中分別獲得139個和156個OTU。本試驗涉及的冷鮮雞樣品中,Tetr菌的OTU數(shù)、豐富度指數(shù)和多樣性指數(shù)與Sulr菌相比,均無顯著性差異,可能是BHI培養(yǎng)基對菌種的篩選偏好造成的。

2.2 菌群結構分析

在門、綱、目、科和屬5個水平上對菌群結構進行分析。結果表明,在門水平上,不論是Tetr菌還是Sulr菌,相對豐度最大的3個門均為變形菌門(Proteobacteria)、擬桿菌門(Bacteroidetes)和(厚壁菌門Firmicutes),與已報道的冷鮮雞肉產(chǎn)品表面細菌的主要菌門[14]類似,3個菌門之和分別占兩類ART菌的99.69%~100.00%和95.73%~99.99%(圖1)。

在屬水平上,Tetr菌和Sulr菌中各注釋出59個和58個已明確屬名的屬。林奕岑等[13]在肉雞盲腸細菌多樣性分析研究中鑒定出85個屬的細菌,其中51個已被注釋;肖英平等[14]注釋了冷鮮雞肉表面細菌的菌屬在數(shù)量級上為10~102之間,其中十大菌屬中除了嗜冷桿菌屬(spp.)和黃桿菌屬(spp.)僅在本研究的個別樣品中發(fā)現(xiàn)外,其余包括希瓦氏屬(spp.)、假單胞菌屬(spp.)、不動桿菌屬(spp.)、環(huán)絲菌屬(spp.)、香味菌屬(spp.)、魏斯氏菌屬(spp.)、漫游球菌屬(spp.)和肉桿菌屬(spp.)在內(nèi)的8個屬在本研究的冷鮮雞表面ART菌中都獲得了鑒定,表明冷鮮雞表面的細菌的耐藥比率較高。

表2 樣品OTU數(shù)量和α-多樣性指數(shù)

a. 四環(huán)素耐藥菌

a. Tetracycline-resistant bacteria

b. 磺胺耐藥菌

b. Sulfamethoxazole-resistant bacteria

圖1 冷鮮雞肉表面四環(huán)素耐藥菌和磺胺耐藥菌在門水平上的分布

冷鮮雞肉表面四環(huán)素耐藥菌和磺胺耐藥菌在屬水平上的分布見圖2。

圖2a顯示,Tetr菌和Sulr菌在屬水平上的菌群結構有所不同,豐度平均值最高的Tetr菌依次為不動桿菌屬、香味菌屬、假單胞菌屬、檸檬酸桿菌屬(spp.)和穩(wěn)桿菌屬(spp.),而豐度最高的Sulr菌依次為假單胞菌屬、香味菌屬、氣單孢菌屬(spp.)、不動桿菌屬和變形桿菌屬(spp.)(圖2b)。前人研究表明,腸球菌屬(spp.)、葡萄球菌屬(spp.)、肉桿菌屬、乳球菌屬(spp.)和乳桿菌屬(spp.)的細菌較多地參與了AR基因的水平遷移[5-6],在本研究中也鑒定出了其中的葡萄球菌屬和肉桿菌屬,因此有必要在今后的研究中進一步確認相應菌屬單個菌落的耐藥性,并評估AR基因向人類共生菌遷移的風險。

a. 四環(huán)素耐藥菌

a. Tetracycline-resistant bacteria

b. 磺胺耐藥菌

b. Sulfamethoxazole-resistant bacteria

圖2 冷鮮雞肉表面四環(huán)素耐藥菌和磺胺耐藥菌在屬水平上的分布

2.3 共享菌群分析

共享菌群在不同來源的冷鮮雞樣品表面均有檢出,反映所有樣品的菌群組成共性,推測其在其他冷鮮雞中存在的可能性較高,造成的耐藥風險也相應較高,因此予以重點分析。統(tǒng)計所有樣品中共同存在的OTU,結果表明,在門水平上,不論是Tetr菌還是Sulr菌,共享菌群都包括變形菌門、擬桿菌門和厚壁菌門。在屬水平上,Tetr菌和Sulr菌各有18個菌屬(56個OUT)和19個菌屬(63個OUT)的共享菌群(表3),前人報道的冷鮮雞肉優(yōu)勢菌屬[15]在本研究中均有發(fā)現(xiàn),說明冷鮮雞肉表面各類優(yōu)勢細菌均已不同程度地存在具有耐藥性的種。

作為冷鮮雞肉微生物菌群中的優(yōu)勢菌屬,不動桿菌屬、假單胞菌屬和肉桿菌屬是雞肉腐敗過程中的主要污染菌屬[16-18];變形桿菌屬普遍存在于健康肉雞和市售生雞產(chǎn)品[19]以及養(yǎng)雞環(huán)境[20]中;檸檬酸桿菌屬是常見的腸道非致病菌(在機體抵抗力降低時偶爾致病),冷鮮雞[15]和腐敗的扒雞[21]中都曾分離到檸檬酸桿菌;香味菌屬是罕見的機會致病菌,目前的感染報道主要發(fā)生在中國;而漫游球菌屬和魏斯氏菌屬在禽類中的研究報道尚不多。值得注意的是,不動桿菌屬、假單胞菌屬、肉桿菌屬和魏斯氏菌屬等菌屬的細菌在高鹽的雞肉調(diào)理品中仍存在[22],說明其耐環(huán)境脅迫的能力較強。8類優(yōu)勢菌屬中,不動桿菌屬、假單胞菌屬和變形桿菌屬的禽源分離株已多次被證實具有不同程度的耐藥性,甚至是多重耐藥性[23-25]。盡管雞源檸檬酸桿菌屬、香味菌屬和漫游球菌屬的耐藥性研究較少,但有限的數(shù)據(jù)也已表明,禽源檸檬酸桿菌對氟喹諾酮類、氨基糖苷類、氯霉素類、四環(huán)素類等均產(chǎn)生了較高的多重耐藥性[26-27];在雞肉中分離到的香味菌屬細菌(SKS05-GRD)對阿米卡星、慶大霉素和卡那霉素的耐藥性是質(zhì)粒介導的[28],存在耐藥基因的水平遷移風險;一個攜帶四環(huán)素、卡那霉素、頭孢氨芐AR基因的質(zhì)粒,存在于河流漫游球菌()、干燥棒狀桿菌()、大腸桿菌()等多種細菌中,可能存在不同種屬細菌間的AR基因水平遷移事件[29]。此外,肉桿菌屬和魏斯氏菌屬的耐藥特性還未見報道。另一方面,近十幾年的人類臨床數(shù)據(jù)表明,不動桿菌屬細菌在中國的檢出率、多重耐藥率和廣泛耐藥菌比率均呈上升趨勢,其中的鮑曼不動桿菌()對多種抗生素的耐藥率均超過60%[30],成為中國目前最主要的“超級細菌”[31];廣泛存在于自然界的條件致病菌假單胞菌屬細菌的分離陽性率也明顯增加,已成為醫(yī)院感染的重要致病菌之一[32];人類臨床分離的香味菌屬對大多數(shù)可用抗生素具有高度抗性[33]。因此,應特別注意這些在雞肉和人類中都能分離到的細菌,其污染來源、耐藥性的發(fā)生和遷移機制、以及是否存在AR基因在人源與動物源同類細菌之間遷移的可能性等問題值得深入研究。

表3 冷鮮雞肉中四環(huán)素耐藥菌和磺胺耐藥菌的共享菌群

針對雞肉中的非優(yōu)勢菌屬的研究尚未深入展開,其耐藥特性僅有幾例報道。如人類臨床分離到的多株沙雷氏菌屬(spp.)細菌含有AR基因,其賦予對-內(nèi)酰胺、氨基糖苷類、喹諾酮類、大環(huán)內(nèi)酯類和多肽抗微生物劑的抗性[34],而一株火雞來源的液化沙雷菌()被證實對四環(huán)素、氨芐青霉素、鏈霉素、慶大霉素、紅霉素和青霉素產(chǎn)生了六重耐藥[35];雞源豚鼠氣單胞菌()可對12種抗生素產(chǎn)生不同程度的耐藥性,對頭孢噻肟、呋喃妥因、氯霉素和環(huán)丙沙星較為敏感[36];院感重要機會致病菌嗜麥芽寡養(yǎng)單胞菌()的耐藥性強[37],而在養(yǎng)殖業(yè),在雞蛋表面[38]和家禽屠宰場空氣中[39]均分離到了寡養(yǎng)單胞菌屬(spp.)細菌。除此以外,從本研究涉及的冷鮮雞肉樣品中發(fā)現(xiàn)的共享Tetr菌和Sulr菌中的布丘氏菌屬(spp.)、叢毛單胞菌屬(spp.)、假蒼白桿菌屬(spp.)、莫勒菌屬(spp.)、普羅維登斯菌屬(spp.)、鞘脂單胞菌屬(spp.)、厭氧粘桿菌屬(spp.)、穩(wěn)桿菌屬(spp.)、spp.屬、庫特氏菌屬(spp.)和賴氨酸芽孢桿菌屬(spp.)等菌屬的耐藥特性、耐藥菌株還未見報道。

2.4 特有菌群

本研究中,將僅在某一個冷鮮雞樣品表面檢出的菌群定義為特有菌群,該指標可指示單個樣品從養(yǎng)殖、屠宰加工直至貯藏運輸過程中的潛在污染情況。來自6個采樣點的雞肉樣品中均存在特有菌群,已鑒定到屬水平的特有OTU有5~39種,分屬3~32個菌屬,污染ART菌的復雜度差異較大。其中,盡管來自3號和4號超市的冷鮮雞樣品是預包裝產(chǎn)品,但分別具有較多種類的特有Sulr菌和Tetr菌(表4),預測其原料或生產(chǎn)加工過程可能存在ART菌污染源,后續(xù)可利用細菌多樣性分析技術,通過比對冷鮮雞肉成品中的特有菌群及其對應的生產(chǎn)鏈各環(huán)節(jié)采集的樣品的菌群,進行雞肉表面污染細菌的溯源和驗證。

表4 冷鮮雞肉中四環(huán)素耐藥菌和磺胺耐藥菌的特有菌群

注:1*~6*為第1~6號采樣點。

Note: 1*-6*stand for sample No. 1 to 6.

3 結 論

1)利用二代測序技術分析冷鮮雞肉表面可培養(yǎng)的四環(huán)素耐藥菌(tetracycline resistant bacteria,Tetr)和磺胺耐藥菌(sulfamethoxazole resistant bacteria,Sulr)的菌群多樣性,在2類ART菌中各注釋出59個和58個已明確屬名的屬,與前人關于冷鮮雞肉表面細菌多樣性分析的研究數(shù)據(jù)相比,占比較高,預示冷鮮雞表面多類細菌已具備抗生素耐藥性。

2)共享菌群的分析結果進一步說明,冷鮮雞肉表面各類優(yōu)勢細菌均已不同程度地存在具有耐藥性的種。前人研究已多次證實其中不動桿菌屬、假單胞菌屬、變形桿菌屬、檸檬酸桿菌屬、香味菌屬和漫游球菌屬的禽源和人源分離株具有多重耐藥性,因此,應充分重視冷鮮雞肉表面細菌的抗生素耐藥性問題,并深入研究耐藥基因在上述禽源和人源細菌間水平遷移的潛在風險。此外,共有菌群中的肉桿菌屬、魏斯氏菌屬、沙雷氏菌屬、氣單胞菌屬、寡養(yǎng)單胞菌屬、布丘氏菌屬、叢毛單胞菌屬、假蒼白桿菌屬、莫勒菌屬、普羅維登斯菌屬、鞘脂單胞菌屬、厭氧粘桿菌屬、穩(wěn)桿菌屬、屬、庫特氏菌屬和賴氨酸芽孢桿菌屬的耐藥特性應進一步確認,其污染來源和遷移風險有待揭示。

由于不同的培養(yǎng)方法會影響細菌的分離結果,因此,單一的培養(yǎng)條件會限制微生物多樣性分析結果的全面性。比如本研究中,盡管每個樣品中Tetr菌和Sulr菌在屬水平上的菌群分布有明顯差異,但兩者的操作分類單元(operational taxonomic unit,OTU)數(shù)量、豐富度指數(shù)和多樣性指數(shù)均無顯著性差異,說明菌相信息的獲得收到了培養(yǎng)的限制。因此,冷鮮雞肉表面耐藥菌的全面揭示有賴于不依賴培養(yǎng)的分析技術的建立。

[1] Depoorter P, Persoons D, Uyttendaele M, et al. Assessment of human exposure to 3rd generation cephalosporin resistant(CREC) through consumption of broiler meat in Belgium[J]. International Journal of Food Microbiology, 2012, 159(1): 30-38.

[2] Wang Hua, Manuzon M, Lehman M, et al. Food commensal microbes as a potentially important avenue in transmitting antibiotic resistance genes[J]. Microbiology Letters, 2006, 254(2): 226-231.

[3] Verraes C, Van Boxstael S, Van Meervenne E, et al. Antimicrobial resistance in the food chain: A review[J]. International Journal of Environmental Research and Public Health, 2013, 10(7): 2643-2669.

[4] Centerz T J. Efforts to slacken antibiotic resistance: Labeling meat products from animals raised without antibiotics in the United States[J]. Science of The Total Environment, 2016, 563(9): 1088-1094.

[5] Wang Hua. Commensal Bacteria, Microbial Ecosystems, and Horizontal Gene Transmission: Adjusting Our Focus for Strategic Breakthroughs Against Antibiotic Resistance[M]. In Jaykus L, Wang H, Schlesinger L (ed.), Foodborn Microbes: Shaping the Host Ecosystems, 1st ed. Washington, DC: ASM Press, 2009: 267-281.

[6] Rossi F, Rizzotti L, Felis E, et al. Horizontal gene transfer among microorganisms in food: Current knowledge and future perspective[J]. Food Microbiology, 2014, 42(9): 232-243.

[7] 崔澤林,馮婷婷,周與華,等. 家養(yǎng)及大型養(yǎng)殖場雞腸道微生物菌群及四環(huán)素耐藥菌多樣性的比較研究[J]. 微生物與感染,2017,12(3):146-155. Cui Zelin, Feng Tingting, Zhou Yuhua, et al. Comparison of microbiota and dissemination of tetracycline resistant bacteria between chickens from a small farmhouse and a big feedlot[J]. Journal of Microbes and Infections, 2017, 12(3): 146-155. (in Chinese with English abstract)

[8] 李姝,邵毅,周昌艷,等. 市售雞肉及內(nèi)臟中磺胺耐藥菌污染特征[J]. 食品科學,2017,38(21):170-174. Li Shu, Shao Yi, Zhou Changyan, et al. Prevalence and characteristics of sulfamethoxazole resistant bacteria in retail chicken meat and giblets[J]. Food Science, 2017, 38(21): 170-174. (in Chinese with English abstract)

[9] 邵毅,李姝,黃柳娟,等. 市售雞肉中四環(huán)素耐藥菌污染特征初探[J]. 中國食品學報,2018,18(1):250-256. Shao Yi, Li Shu, Huang Liujuan, et al. A pilot study on the prevalence and characteristics of tetracycline resistant bacteria in retail chicken samples[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(1): 250-256. (in Chinese with English abstract)

[10] 何祥祥,楊華,戴寶玲,等. 冷鮮雞污染微生物磺胺類和喹諾酮類耐藥基因分析[J]. 浙江農(nóng)業(yè)學報,2017,29(4):555-559. He Xiangxiang, Yang Hua, Dai Baoling, et al. Detection of the antibiotic genes of sulfonamides and quinolones of bacteria in refrigerated chicken[J]. Acta Agriculturae Zhejiangensis, 2017, 29(4): 555-559. (in Chinese with English abstract)

[11] Huang Ying, Zhang Lu, Tiu L, et al. Characterization of antibiotic resistance in commensal bacteria from an aquaculture ecosystem[J]. Front Microbiology, 2015, 6: 914. Doi: 10.3389/fmicb.2015.00914.

[12] Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI supplement M100[M]. Pennsylvania: Clinical and Laboratory Standards Institute, 2018.

[13] 林奕岑,徐帥,倪學勤,等. 利用Illumina MiSeq測序平臺分析肉雞盲腸微生物多樣性[J]. 中國農(nóng)業(yè)大學學報,2016,21(12):65-73. Lin Yicen, Xu Shuai, Ni Xueqin, et al. Diversity of the cecal microbiome of broiler chicken based on Illumina MiSeq sequencing platform[J]. Journal of China Agricultural University, 2016, 21(12): 65-73. (in Chinese with English abstract)

[14] 肖英平,何祥祥,戴寶玲,等. 采樣方法對冷鮮雞表面細菌DNA提取及高通量測序結果的影響[J]. 食品科學,2017,38(24):260-264. Xiao Yingping, He Xiangxiang, Dai Baoling, et al. Effects of different sampling methods on microbial DNA extraction from chilled chicken and the high-throughput sequencing of amplification products[J]. Food Science, 2017, 38(24): 260-264. (in Chinese with English abstract)

[15] 溫冬玲,成淑君,劉悅,等. 高通量測序分析不同增菌溫度下冷鮮雞肉細菌的群落多樣性[J]. 食品科學,2018,39(24):156-161. Wen Dongling, Cheng Shujun, Liu Yue, et al. Analysis of bacterial community diversity of chilled chicken at different enrichment temperatures using high-throughput sequencing[J]. Food Science, 2018, 39(24): 156-161. (in Chinese with English abstract)

[16] 吳海虹,劉朏,劉芳,等. 低溫貯藏對冷鮮雞腐敗菌菌群變化的影響[J]. 現(xiàn)代食品科技,2016,32(4):177-181. Wu Haihong, Liu Fei, Liu Fang, et al. Effect of storage temperature on changes in spoilage bacterial community in chilled chicken[J]. Modern Food Science and Technology, 2016, 32(4): 177-181. (in Chinese with English abstract)

[17] Morales P, Aguirre J, Troncoso M, et al. Phenotypic and genotypic characterization ofspp. present in spoiled poultry fillets sold in retail settings[J]. LWT-Food Science and Technology, 2016, 73: 609-614.

[18] Samapundo S, de Baenst I, Aerts M, et al. Tracking the sources ofbacteria contaminating chicken cuts during processing[J]. Food Microbiology, 2019, 81(8): 40-50.

[19] 郭玉梅,張慧賢,秦麗云,等. 肉雞和市售生雞產(chǎn)品中變形桿菌的研究[J]. 中國衛(wèi)生檢驗雜志,2014,24(14):2009-2010. Guo Yumei, Zhang Huixian, Qin Liyun, et al. Study on proteus in chicken and raw chicken products[J]. Chinese Journal of Health Laboratory Technology, 2014, 24(14): 2009-2010. (in Chinese with English abstract)

[20] Olonitola O S, Fahrenfeld N, Pruden A. Antibiotic resistance profiles among mesophilic aerobic bacteria in Nigerian chicken litter and associated antibiotic resistance genes[J]. Poul Sci, 2015, 94(5): 867-74.

[21] 張春江,黃峰,張良,等. 扒雞加工中主要致腐菌群落結構解析[J]. 中國食品學報,2017,17(2):227-234. Zhang Chunjiang, Huang Feng, Zhang Liang, et al. Analysis of the spoilage microbial communities of braised chicken during processing[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(2): 227-234. (in Chinese with English abstract)

[22] 范曉攀,王娉,陳穎,等. 肉類調(diào)理食品中細菌多樣性的分析[J]. 現(xiàn)代食品科技,2017,33(1):237-242. Fan Xiaopan, Wang Ping, Chen Ying, et al. Bacterial diversity of prepared meat products[J]. Modern Food Science & Technology, 2017, 33(1): 237-242. (in Chinese with English abstract)

[23] Liu Dong, Liu Zengshan, Hu Pan, et al. Characterization of a highly virulent and antimicrobial-resistantstrain isolated from diseased chicks in China[J]. Microbiology and Immunology, 2016, 60(8): 533-539.

[24] Ansari F, Khatoon H. Multiple antibiotic resistance among gram negative bacteria isolated from poultry[J]. Indian Journal of Experimental Biology, 1994, 32(3): 211-212.

[25] 李欣南,韓鐫竹,寧宜寶. 雞源奇異變形桿菌的分離鑒定及耐藥性研究[J]. 黑龍江畜牧獸醫(yī),2015(6): 165-167. Li Xinnan, Han Juanzhu, Ning Yibao, et al. Isolation and identification of Proteus mirabilis from chicken and study of its drug resistance[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015(6): 165-167. (in Chinese with English abstract)

[26] 劉星,孟韓冰,孔祥彬. 雞腸毒綜合征致病菌的自動生化鑒定及藥敏分析[J]. 河南畜牧獸醫(yī):綜合版,2008,29(7):7-9. Liu Xing, Meng Hanbing, Kong Xiangbin. Automatic biochemical identification and drug sensitivity analysis of chicken enterotoxic syndrome pathogens[J]. Henan Journal of Animal Husbandry and Veterinary Medicine, 2008, 29(7): 7-9. (in Chinese with English abstract)

[27] 付秀玲,苑麗,陳紅英,等. 臨床分離雞致病菌超廣譜-內(nèi)酰胺酶的檢測及藥敏分析[J]. 河南畜牧獸醫(yī),2006,27(12):6-9. Fu Xiuling, Yuan Li, Chen Hongying, et al. Detection and drug sensitivity analysis of extended-spectrum β-lactamase pathogens from clinical isolates of chicken[J]. Henan Journal of Animal Husbandry and Veterinary Medicine, 2006, 27(12): 6-9. (in Chinese with English abstract)

[28] Suganthi R, Shanmuga Priya T, Saranya A, et al. Relationship between plasmid occurrence and antibiotic resistance inSKS05-GRD isolated from raw chicken meat[J]. World Journal of Microbiology and Biotechnology, 2013, 29(6): 983-990.

[29] 牛天琦. 雞糞中多重耐藥細菌的分離鑒定及介導抗性基因水平轉移元件的檢測[D]. 新鄉(xiāng):河南師范大學,2015. Niu Tianqi. Isolation Identification of Multidrug-Resistant Bacteria in Chicken Manure and the Testing of Resistance Gene Horizontal Transfer Elements[D]. Xinxiang: Henan Normal University, 2015. (in Chinese with English abstract)

[30] 張輝,張小江,徐英春,等. 2005-2014年CHINET不動桿菌屬細菌耐藥性監(jiān)測[J]. 中國感染與化療雜志,2016,16(4):429-436. Zhang Hui, Zhang Xiaojiang, Xu Yingchun, et al. Resistance profile ofisolates in hospitals across China: Results from CHINET Antimicrobial Resistance Surveillance Program 2005-2014[J]. Chinese Journal of Infection and Chemotherapy, 2016, 16(4): 429-436. (in Chinese with English abstract)

[31] 陳佰義,何禮賢,胡必杰,等. 中國鮑曼不動桿菌感染診治與防控專家共識[J]. 中國醫(yī)藥科學,2012,2(8):3-8. Chen Baiyi, He Lixian, Hu Bijie, et al. Expert opinion on the diagnosis, treatment and prevention of Acinetobacter baumannii infection in China[J]. National Medical Journal of China, 2012, 2(8): 3-8. (in Chinese with English abstract)

[32] Guan Xiangdong, He Lixian, Hu Bijie, et al. Laboratory diagnosis, clinical management and infection control of the infections caused by extensively drug-resistant Gram-negative: A Chinese consensus statement[J]. Clin Microbiol Infect, 2016, 22 (S1): S15-S25.

[33] Hu Shaohua, Yuan Shuxing, Qu Hai, et al. Antibiotic resistance mechanisms ofsp.[J]. Journal of Zhejiang University SCIENCE B, 2016 17(3): 188-199.

[34] Sandner-Miranda L, Vinuesa P, Cravioto A, et al. The Genomic basis of intrinsic and acquired antibiotic resistance in the genus[J]. Front Microbiology, 2018, 9: 828. doi: 10.3389/fmicb.2018.00828.

[35] Kilonzo-Nthenge A, Rotich E, Nahashon S N. Evaluation of drug-resistantin retail poultry and beef[J]. Poultry Science, 2013, 92(4): 1098-107.

[36] Abu-Elala N, Abdelsalam M, Marouf S, et al. Comparative analysis of virulence genes, antibiotic resistance, andbased phylogeny of motilespecies isolates from Nile tilapia and domestic fowl[J]. Letters in Applied Microbiology, 2015, 61(5): 429-436.

[37] Sánchez María B. Antibiotic resistance in the opportunistic pathogen[J]. Front Microbiology, 2015, 6: 658. doi: 10.3389/fmicb.2015.00658.

[38] 陳力力,楊伊磊,青文哲,等. 雞蛋殼表面細菌數(shù)量及種群多樣性分析[J]. 現(xiàn)代食品科技,2015,31(10):74-79. Chen Lili, Yang Yilei, Qing Wenzhe, et al. Aerobic plate count and bacterial diversity on the surface of eggshells[J]. Modern Food Science and Technology, 2015, 31(10): 74-79. (in Chinese with English abstract)

[39] 戴寶玲,肖英平,孫鳳來,等. 家禽定點屠宰場不同屠宰區(qū)域空氣的微生物結構[J]. 食品科學,2018,39(21):219-223. Dai Baoling, Xiao Yingping, Sun Fenglai, et al. Structure of airborne microbial communities in different slaughter areas of poultry slaughterhouse[J]. Food Science, 2018, 39(21): 219-223. (in Chinese with English abstract)

Diversity of tetracycline- and sulfamethoxazole-resistant bacteria on surface of cold fresh chicken

Shao Yi1,2, Yao Chunxia1,2,※, Huang Liujuan1, Feng Bo1, Zhou Changyan1,2, Bai Bing1, Wang Hua3,4, Wang Weiguo5

(1.,,201403,; 2.,201403,; 3.,,43210,; 4.,,,200433,; 5.,201516,)

The increased use of antimicrobial-resistant (AR) bacteria in agricultural production has posed a great threat to human health, as AR pathogens could spread from agricultural product to human body via food chain. The antimicrobial resistance (ART) genes in animal- and environment-derived bacteria can migrates to human commensal bacteria through horizontal gene transfer (HGT). Increased evidences have shown the critical role of commensal bacteria in HGT of ART genes, affected by both size and species of ART bacteria. Because of the horizontal gene transfer, it is essential to understand antimicrobial resistance in bacterial community rather than in several species. Currently, there is a knowledge gap in our understanding of tendentious carriers of ART gene as most existing studies focused only on a limited pathogenic bacteria. Cold fresh chicken is consumed worldwide, and our previous work had found existence of tetracycline-resistant (Tetr) bacteria and sulfamethoxazole-resistant (Sulr) bacteria in chicken products which might harbor a pool of AR gene, offering a potential avenue for transmission of antimicrobial resistant bacteria and AR genes to human beings. Motivated by these findings, we randomly selected 18 cold fresh chicken samples from six supermarkets in Shanghai from September to October in 2018 to investigate possible existence of Tetrand Sulrbacteria, as well as the potential risk of antimicrobial resistance migration. The culturable Tetrand Sulrbacteria on the surface of the chicken samples were recovered by brain heart infusion (BHI) agar, containing 48g/mL tetracycline or 228g/mL sulfamethoxazole plus 12g/mL trimethoprim. Their diversity was analyzed by the IonS5TMXL sequencing platform. The results showed that the top three phyla with highest relative abundance of ART bacteria were Proteobacteria, Bacteroidetes and Firmicutes. In Tetrand Sulrbacteria, 59 and 58 specific genera were identified respectively. Compared with the literature report on diversity of total bacteria on surface of cold fresh chicken, the genera of the two ART bacteria found in our study accounted for a high proportion of the total microbial population, indicating that many bacteria on the surface of cold fresh chicken were resistant to the two antimicrobials. The results of shared floras found 18 genera (56 OUTs) and 19 genera (63 OUTs) in Tetrand Sulrbacteria respectively, among which the multi-drug resistance of avian and humanspp,spp.,spp.,spp. andspp. had been well established. Thus, the potential risk of horizontal transfer of AR genes from avian to human need to further investigation. However, the characteristics of antimicrobial resistance in other 16 genera of shared floras isolated from avian, includingspp.,spp.,spp.,spp.,spp.,spp.,spp.,spp.,spp.,spp.,spp.,spp.,spp.,spp.,spp. andspp., have not been reported yet. We found that the specific floras of ART bacteria differed from each sample, and 5 to 39 unique OTUs, from 3 to 32 genus, were identified in samples taken from all supermarkets. The specific ART floras data could be used to trace the origin of the ART bacteria during the processing chain. Overall, our results identified existence of ART bacteria on surface of cold fresh chicken and provided reference for further investigation into their potential risk and control. Since separation of bacteria could be affected by cultural method, our diversity analysis was limited to a single culture condition and relied on establishment of analytical techniques of culture-independent in the future.

microorganism; bacteria; antibiotics; cold fresh chicken; tetracycline-resistant bacteria; sulfamethoxazole-resistant bacteria; diversity

2019-05-09

2019-07-15

上海市農(nóng)委基礎研究項目(滬農(nóng)科攻字(2014)第7-3-6號);上海市市級農(nóng)口系統(tǒng)青年人才成長計劃(滬農(nóng)青字(2018)第1-38號);國家自然科學基金項目(31401599);上海市農(nóng)業(yè)科學院學科領域建設專項(農(nóng)科農(nóng)助2019(10))

邵毅,副研究員,博士,主要從事農(nóng)產(chǎn)品微生物安全研究。E-mail:shao_saas@163.com

姚春霞,副研究員,博士,主要從事農(nóng)產(chǎn)品質(zhì)量安全研究。E-mail:chunxia.yao@163.com

10.11975/j.issn.1002-6819.2019.17.036

S182;TS207.4

A

1002-6819(2019)-17-0301-08

邵 毅,姚春霞,黃柳娟,馮 博,周昌艷,白 冰,王 華,王衛(wèi)國. 冷鮮雞肉表面四環(huán)素和磺胺耐藥菌的菌群多樣性分析[J]. 農(nóng)業(yè)工程學報,2019,35(17):301-308. doi:10.11975/j.issn.1002-6819.2019.17.036 http://www.tcsae.org

Shao Yi, Yao Chunxia, Huang Liujuan, Feng Bo, Zhou Changyan, Bai Bing, Wang Hua, Wang Weiguo. Diversity of tetracycline- and sulfamethoxazole-resistant bacteria on surface of cold fresh chicken[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 301-308. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.17.036 http://www.tcsae.org

猜你喜歡
耐藥
如何判斷靶向治療耐藥
Ibalizumab治療成人多耐藥HIV-1感染的研究進展
miR-181a在卵巢癌細胞中對順鉑的耐藥作用
鉑耐藥復發(fā)性卵巢癌的治療進展
超級耐藥菌威脅全球,到底是誰惹的禍?
科學大眾(2020年12期)2020-08-13 03:22:22
嬰幼兒感染中的耐藥菌分布及耐藥性分析
念珠菌耐藥機制研究進展
耐藥基因新聞
無縫隙管理模式對ICU多重耐藥菌發(fā)生率的影響
PDCA循環(huán)法在多重耐藥菌感染監(jiān)控中的應用
主站蜘蛛池模板: 三上悠亚一区二区| 亚洲人成网站18禁动漫无码| 青草免费在线观看| 伊人久久大香线蕉影院| AV老司机AV天堂| hezyo加勒比一区二区三区| 国产色图在线观看| 国产剧情伊人| 日本午夜视频在线观看| 日本91在线| 丁香婷婷综合激情| 国产在线视频欧美亚综合| 91青青视频| 国产精品尤物铁牛tv| 亚洲无码电影| 999精品在线视频| 日韩国产黄色网站| 四虎影视8848永久精品| 亚洲欧美一级一级a| 国产成人1024精品下载| 中文天堂在线视频| 国产精品无码久久久久AV| 久久性妇女精品免费| 毛片视频网址| 国产福利影院在线观看| 久久永久免费人妻精品| 国产精品免费入口视频| 免费在线成人网| 高清久久精品亚洲日韩Av| 人妻出轨无码中文一区二区| 国产亚洲欧美在线人成aaaa| 日韩高清欧美| 国产精品久久久精品三级| 国产激情无码一区二区免费| 熟女成人国产精品视频| 久久永久视频| 免费国产福利| 69综合网| 久久久久九九精品影院 | 无码国产偷倩在线播放老年人| 欧美www在线观看| 亚洲第一成人在线| 国产va免费精品| 国产精品手机视频一区二区| 欧类av怡春院| 国产精品一线天| 国产成人超碰无码| 国产精品hd在线播放| 99re视频在线| 久热中文字幕在线观看| 中文毛片无遮挡播放免费| 午夜福利无码一区二区| 亚洲欧美一区二区三区蜜芽| 中文字幕一区二区人妻电影| 91区国产福利在线观看午夜 | 一区二区在线视频免费观看| 超碰91免费人妻| 亚洲欧美成人综合| 欧美激情视频二区三区| 亚洲自偷自拍另类小说| 好吊妞欧美视频免费| 国产91特黄特色A级毛片| 亚洲欧洲综合| 国产精品亚洲专区一区| 天堂va亚洲va欧美va国产| 亚洲高清在线播放| www亚洲精品| 亚洲视频色图| 91丨九色丨首页在线播放 | 中文字幕人成乱码熟女免费| 久久77777| 国产乱子伦一区二区=| 亚洲无码高清视频在线观看 | 国产成人欧美| 青草视频网站在线观看| 国产综合在线观看视频| 在线免费亚洲无码视频| 视频一本大道香蕉久在线播放| 欧美成人h精品网站| 免费jjzz在在线播放国产| 国产精品成人啪精品视频| 91精品啪在线观看国产91九色|