郭霞麗, 余碧云, 張邵康, 黎敬業, 王婕, 黃建國*
樹木木質部生長動態及其調節機制研究進展
郭霞麗1,2,3, 余碧云1,2,3, 張邵康1,2, 黎敬業1,2,3, 王婕1,2,3, 黃建國1,2*
(1. 中國科學院華南植物園退化生態系統植被恢復與管理重點實驗室, 廣東省應用植物學重點實驗室, 廣州 510650; 2. 中國科學院核心植物園植物生態學協同中心,廣州 510650;3. 中國科學院大學, 北京 100049)
全球變化對樹木木質部生長產生了深遠影響,進而影響了森林生態系統的固碳功能以及全球生態系統能量和物質的循環過程。樹木木質部生長動態主要包括形成層活動開始和結束的時間、生長季長度以及分裂速率等,其受到多種因素的共同調節,如植物激素、碳水化合物、氮素和氣象因子等。通過在精細的時間尺度上對比研究樹木木質部生長動態,揭示木質部形成的決定因子,可以加深對樹木生長生理機制的理解,從而提高其對氣候變化響應的預測精度。對近年來在木質部的形成動態及其調節機制方面取得的研究進展進行了綜述,并對未來的研究方向進行了展望。
生長季長度;生長速率;植物激素;碳水化合物;氮素;氣象因子
樹木是森林生態系統的重要組成部分,可通過對大氣中二氧化碳的吸收和固定,從而減緩全球變化的進程[1]。木質部不僅為樹木生長提供機械支撐,還有傳輸水分和養分,抵御風雪等功能,同時作為重要的碳匯器官,具有巨大的經濟和社會效益。當前氣候變化背景下,高溫和干旱事件頻發, 導致木質部的生長急劇衰退,進而引發大面積森林死亡[2]。因此,深入探討木質部生長動態及其調控機制可以幫助我們更好地預測森林生態系統對氣候變化的響應以及適應。
木質部生長是一個復雜并具有生態彈性的過程。在寒帶和溫帶地區,隨著春季溫度的上升,樹干形成層打破休眠開始分裂活動,向外產生韌皮部,向內產生木質部。從形成層釋放出來的細胞經過體積增大,細胞壁加厚,最終發育為成熟的木質部細胞[3–4]。大量研究表明,生長季內樹干木質部的形成過程是一個“S”型曲線,即在生長季初期木質部生長較慢;隨著持續升溫,木質部進入快速生長期,之后逐漸減緩并進入冬季休眠期。木質部生長動態一般分為時間和數量兩個既獨立又相互聯系的維度,包括形成層活動開始和結束的時間、生長季長度和木質部的生長速率以及最終的木質部總量等。木質部形成層活動開始和結束的時間是樹木對環境適應性的表現,體現了對資源的充分利用及對不利環境的躲避[5]。研究表明,氣候變暖已經引起了生長季的開始期提前,結束期延后,從而導致生長季延長[6–9]。這種改變預期將提高木質部生長量,從而使得森林生態系統的固碳作用進一步加強,對林分生長和森林生產力產生深遠影響[10]。
研究木質部生長動態變化及調控機理對物種生存以及群落維持有重要意義,同時可以幫助我們預測未來的森林生產力和碳匯等,然而目前相關綜述較為缺乏。木質部生長受到多種因子的共同調節,如植物激素、碳水化合物、氮素和氣象因子等。通過系統地梳理以上因子與木質部生長之間的聯系,可以加深我們對樹木生理生態過程及生態系統過程和功能的了解。因此,本文將在前人綜述的基礎上,重點突出木質部的生長動態及其調控機理,并為后續工作進行展望,以期為全面理解樹木生長的生理機制提供一些新思路。
有研究表明,木質部生長季長度和生長速率共同決定木質部生長量,即較長的生長季長度和較慢的生長速率或者較短的生長季長度和較快的生長速率均可產生相似的年木質部生長量[11–13]。因此,準確定量生長季長度與生長速率對木質部生長量的相對貢獻,可以幫助我們深入理解木質部的生長動態,從而有效預測未來的森林碳匯變化。普遍認為,木質部生長開始時間越早,生長季越長,則會產生較寬的年輪[14]。香脂冷杉()的生長季長度對木質部生長量貢獻率達76%,遠遠高于生長速率對木質部生長量的貢獻率[15]。Rossi等[16]通過分析北半球大范圍尺度的微樹芯數據,認為生長季長度主要決定了木質部生長量,并且生長季延長13%, 對應的木質部細胞數增長了109%[16], 這證明生長季的延長會導致木質部生長量的不對稱增加,從而促進森林生產力[16]。然而,通過監測歐洲地區的挪威云杉()、樟子松()和歐洲冷杉()的木質部生長動態和進一步定量分析,結果表明,生長速率對木質部生長量的貢獻率為75%,而生長季長度的貢獻率為25%[12,17]。同樣,生長速率對青藏高原祁連圓柏()木質部的生長也起到決定性作用[18–19]。有研究表明,在青藏高原半干旱區,溫暖而又干燥的氣候條件導致的較長生長季不利于針葉樹木質部形成,而溫度升高誘導的干旱可能通過降低木質部生長速率來限制碳的固定[20]。這些結果表明生長季長度或者生長速率不能單獨決定木質部生長,兩者之間的權衡關系共同決定了樹木生長對氣候變化的響應[12]。
激素在植物體內廣泛分布,通過直接或間接地促進或減慢植物的代謝過程,進而調節其生長和發育過程。生長素是第一個被發現的植物激素,其產生、運輸和代謝活動均對木質部生長起著重要的調節作用[21]。一般認為,在幼嫩的分生組織,如嫩芽中產生大量生長素。春季,生長素沿著樹干向下極性運輸,刺激樹干的形成層開始分裂活動,形成木質部[22]。生長素促進細胞生長的作用體現在兩方面:首先,生長素可使細胞壁疏松,增強其可塑性,從而促進了細胞的縱向伸長;其次,生長素誘導蛋白質等物質的合成,從而增加了細胞原生質體[23–24]。有研究表明,生長素含量在形成層區域最高,沿著增大期細胞、增厚期細胞和成熟期細胞區域依次降低[25],其濃度梯度維持著形成層和木質部細胞結構穩定性。另外,生長素對于木質部生長的調節作用隨著季節變化而有所差異。在生長季早期,生長素水平和形成層細胞數呈現顯著正相關[26],而在生長季晚期,即使生長素含量很高,形成層依然進入休眠期,說明休眠期可能不是由生長素單獨控制[27]。生長素含量降低引發細胞壁較薄、管腔較大的早材向細胞壁較厚、管腔較小的晚材轉化[28]。而Uggla等[29]通過連續監測生長素含量,認為晚材開始形成時,生長素含量并沒有明顯變化。因此,相比于生長素含量變化,生長素本身可能提供了一種信號作用,從而決定木質部的發育過程[27]。除了生長素,其他植物激素,如細胞分裂素、赤霉素、乙烯、脫落酸等也會共同調控形成層的分裂活動以及木質部形成。與生長素的分布不同,細胞分裂素含量在韌皮部最高[30],赤霉素含量在發育的木質部中最高[31]。同時,各種植物激素之間通過相互作用, 共同調控木質部細胞的生長。細胞分裂素和生長素具有協同作用,可以共同促進形成層細胞分裂和木質部細胞的發育[30,32]。在生長素的參與下,赤霉素調控纖維細胞的伸長過程[33]。
木質部的生長過程需要消耗的大量能量主要由碳水化合物提供[34]。植物體內的碳水化合物分為結構性碳水化合物和非結構性碳水化合物。結構性碳水化合物用于細胞壁構成,如纖維素、半纖維素和木質素等。非結構性碳水化合物是葉片進行光合作用之后的產物,主要為淀粉和可溶性糖,即葡萄糖、果糖、麥芽糖和蔗糖等,是植物用于新陳代謝的重要能量物質[35]。Deslauriers等[36]首次研究了加拿大楊()和美洲黑楊()在生長季內木質部的產生和可利用性碳的關系,證明形成層內的非結構性碳含量和木質部的形成過程正相關,即當木質部生長速率最大時非結構性碳濃度較高,并且碳含量是限制木質部活細胞新陳代謝的首要因子[36]。糖分既可以為細胞的分裂活動提供能量,同時也可以作為生長調節物質,通過調控相關基因的表達,從而促進細胞有絲分裂和細胞增殖,對樹木生長具有重要意義[37–39]。有研究表明,歐洲赤松()糖分含量的季節波動和形成層季節活動高度吻合[40]。而歐洲云杉()在糖分含量最高的時候,增厚期的細胞數和木質部生長量也達到最大值[41]。
通常情況下,葉片光合作用產生的碳水化合物一部分直接用于樹木生長,一部分則會通過韌皮部向下運輸,儲存在木質部中,以應對極端氣候下由于光合作用不足導致的樹木碳饑餓[42]。通過深入了解木質部生長的碳源機制,可以幫助我們了解樹木內在的碳分配機制并預測樹木對極端天氣的響應。有研究表明,木質部的生長和碳的累積具有高度同步性。在生長季早期,木質部生長和可溶性碳累積同步進行。在生長季后期,木質部生長逐步停止,可溶性碳含量達到最大值,為下一年的樹木生長做好能量儲備[43]。氣候條件,如溫度和光照可以通過直接影響光合作用,從而影響樹木生長的能量供應,因此本研究從能量的角度上解釋了氣候條件對樹木生長的滯后效應,即上一年的氣候可以顯著影響下一年的樹木生長。在干旱地區,夏季高溫導致木質部生長速率下降甚至停止生長,因此非結構性碳含量累積[44]。一旦有充足的水分,形成層可以通過存儲的碳水化合物提供能量,進而重新開始分裂活動,形成一年內木質部生長的雙峰曲線。因此, 木質部生長動態的靈活性很大程度上依賴于木質部中存儲的非結構性碳含量。
作為氨基酸和其他有機物質構成的重要原料,氮素是植物生長必需的大量元素,對于植物的生長和發育具有重要作用。氮添加可以通過增加葉片中Rubisco和葉綠素的濃度促進光合作用,或者通過提高樹木對存儲碳水化合物的可利用性[45],從而為木質部形成提供關鍵能量。普遍認為氮素是森林生態系統主要的生長限制因子,然而,由于近年來人類活動的加劇,大氣氮沉降大幅度增加,對森林生態系統造成了很大的影響。因此,深入研究氮素對木質部發育動態的影響,可用于評估當前氮沉降對樹木生長和森林生態系統的影響,預測全球氣候變化下森林生態系統的發展。目前全球已開展了大量模擬氮添加對木質部生長影響的研究,然而由于氮添加方式、氮添加速率以及實驗年限等因素的不同,相關研究未取得共識。在寒帶和溫帶森林中, 短期氮添加均未對香脂冷杉、黑云杉()、馬尾松()、楓香()木質部形成動態產生顯著影響[46–50]。但在長期的氮沉降環境中,木質部的形成是否受其影響仍需進一步研究。Yu等[51]證實, 相比于林下氮添加, 林冠氮添加能夠顯著促進麻櫟()木質部生長,說明樹木冠層截留的氮素可以被有效利用[52],之前傳統的林下氮添加可能低估了氮沉降對樹木生長的影響[53]。通過監測中國亞熱帶氮添加對優勢樹種木質部解剖結構的影響,發現林冠和林下施氮均顯著促進木荷()的木質部管胞增大,而對錐栗()則無顯著影響[54],說明即使是在氮飽和的亞熱帶森林生態系統,適量的氮添加仍然可以對木質部形成產生影響。
大量研究表明,氣象因子包括溫度、降雨和光周期對于木質部形成具有重要的調節作用。普遍認為溫度是調控樹木形成層活動的啟動因子[55]。一方面,形成層分裂和細胞增大涉及的一系列酶促反應對溫度極其敏感;其次,溫度可以通過影響非結構性碳的可利用性間接影響木質部生長。通過分析青藏高原不同海拔梯度上祁連圓柏樹干木質部的生長物候期,結果表明木質部生長開始的時間與海拔引起的溫度變化相關,即海拔每降低100 m,木質部開始生長的時間提前8.2 d,而木質部生長結束的時間與海拔引起的溫度差異關系較弱[19]。通過大空間尺度范圍內探索木質部發育動態的一般規律及其機理,發現木質部的起始生長受到冬、春季積溫的共同影響,進一步揭示了溫度對木質部形成的主導作用[56]。另外,在研究相對較少的亞熱帶地區,同樣發現溫度對于調節馬尾松木質部增大期和增厚期細胞具有顯著的促進作用[57]。一般來講,對溫帶和寒帶地區的樹木,當春季溫度達到低溫閾值(4℃~5℃),木質部才開始生長。對藏東南色季拉山史密斯杉樹()的研究表明,大氣最低溫是影響木質部生長的主要氣候因素,而且限制木質部分化開始的最低溫閾值為(0.7±0.4)℃[58],遠遠低于之前報道的溫度閾值。
水分對于木質部的生長發揮著重要作用。形成層細胞的分裂活動和細胞增大是受膨壓驅動的過程,需要充足的水分[59–60]。因此,在干旱地區,相比于溫度,降雨是調控形成層活動開始的關鍵因子[13]。通過模型預測,發現在合適的溫度下,連續12 d的累積降雨達(17.0±5.6) mm才能啟動祁連圓柏的木質部生長[61]。對于熱帶常綠樹種來說,水分條件則決定了形成層活動的持續時間[62]。通過對不同水分虧缺下木質部的發育動態進行監測,表明水分是調節分生組織形成層細胞分裂的首要因子[36],碳次之,這解釋了全球氣候變暖所誘導的干旱抑制樹木生長及導致死亡率增加的生理機制。相比于溫度和降雨,光周期可以為植物生長提供穩定的信號,進而調控木質部發育。通過分析北半球的樹木木質部生長動態,認為其最大生長速率發生在夏至日左右。樹木在環境適宜的情況下提前降低形成層分裂速率,可能是為了保證樹木在入冬之前完成所有的木質化過程[63]。
樹木木質部生長是重要的碳匯過程,通過深入了解其調節機制,可為預測森林生態系統碳匯變化及可持續森林經營管理提供理論依據。然而,當前在該領域方面仍存在一些問題,以期未來研究中能進一步關注。首先,樹木生長同時受到多種因素的共同調節,并且各因素之間存在相互影響。例如低溫會通過限制碳水化合物的可利用性,從而對樹木生長產生不利影響[64]。較高的碳水化合物和生長季早期溫度可通過促進生長素合成及運輸,進而促進形成層分裂[65–66]。而生長季晚期短日照引發的形成層對生長素的不敏感性,導致形成層進入休眠[27]。這說明各個因子之間通過復雜的相互聯系,共同調節木質部生長。因此,未來研究應該更加關注植物激素、碳水化合物、氮素和氣象因子之間的相互作用,從而對樹木生長的調節機制有更加全面的認識。另外,樹木作為一個有機整體,樹冠、樹干和根部的生長相互耦合,協調發展,同時監測三者的動態生長過程,結合激素、碳水化合物及氮素含量的測定,通過定量分析和結構方程等模型手段,有利于在整樹水平上深入理解樹木受到以上因素調節的時空差異性,從而進一步探索樹木在不同器官內的碳分配策略以及對全球變化的響應。最后,由于全球數據分布的不均勻性,相比于寒帶及溫帶森林,熱帶及亞熱帶對于木質部生長的相關研究相對較少。因此,亟需在低緯度地區盡快開展相關工作,從而有利于在全球尺度上評估樹木生長和森林生態系統對全球變化的響應和適應機制,為國家生態文明建設以及全球可持續發展服務。
[1] PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests [J]. Science, 2011, 333(6045): 988– 993. doi: 10.1126/science.1201609.
[2] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests [J]. For Ecol Manage, 2010, 259(4): 660–684. doi: 10.1016/j.foreco.2009.09.001.
[3] GRI?AR J, ?UFAR K, OVEN P, et al. Differentiation of terminal latewood tracheids in silver fir trees during autumn [J]. Ann Bot, 2005, 95(6): 959–965. doi: 10.1093/aob/mci112.
[4] ROSSI S, DESLAURIERS A, GRI?AR J, et al. Critical temperatures for xylogenesis in conifers of cold climates [J]. Glob Ecol Biogeogr, 2008, 17(6): 696–707. doi: 10.1111/j.1466-8238.2008.00417.x.
[5] PARMESAN C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming [J]. Glob Change Biol, 2007, 13(9): 1860–1872. doi: 10.1111/j.1365-2486.2007.01404.x.
[6] DESLAURIERS A, MORIN H, BEGIN Y. Cellular phenology of annual ring formation ofin the Quebec boreal forest (Canada) [J]. Can J For Res, 2003, 33(2): 190–200. doi: 10.1139/x02-178.
[7] DESLAURIERS A, ROSSI S, ANFODILLO T, et al. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy [J]. Tree Physiol, 2008, 28(6): 863–871. doi: 10.1093/treephys/28.6.863.
[8] ZHAI L H, BERGERON Y, HUANG J G, et al. Variation in intra- annual wood formation, and foliage and shoot development of three major Canadian boreal tree species [J]. Amer J Bot, 2012, 99(5): 827– 837. doi: 10.3732/ajb.1100235.
[9] HUANG J G, DESLAURIERS A, ROSSI S. Xylem formation can be modeled statistically as a function of primary growth and cambium activity [J]. New Phytol, 2014, 203(3): 831–841. doi: 10.1111/nph. 12859.
[10] ROSSI S, BORDELEAU A, MORIN H, et al. The effects of N-enriched rain and warmer soil on the ectomycorrhizae of black spruce remain inconclusive in the short term [J]. Ann For Sci, 2013, 70(8): 825–834. doi: 10.1007/s13595-013-0329-1.
[11] DESLAURIERS A, MORIN H. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables [J]. Trees, 2005, 19(4): 402–408. doi: 10.1007/s00468-004-0398-8.
[12] CUNY H E, RATHGEBER C B K, LEBOURGEOIS F, et al. Life strategies in intra-annual dynamics of wood formation: Example of three conifer species in a temperate forest in north-east France [J]. Tree Physiol, 2012, 32(5): 612–625. doi: 10.1093/treephys/tps039.
[13] REN P, ROSSI S, GRICAR J, et al. Is precipitation a trigger for the onset of xylogenesis inon the north-eastern Tibetan Plateau? [J]. Ann Bot, 2015, 115(4): 629–639. doi: 10.1093/ aob/mcu259.
[14] HE M H, YANG B, SHISHOV V, et al. Relationships between wood formation and Cambium phenology on the Tibetan Plateau during 1960–2014 [J]. Forests, 2018, 9(2): 86. doi: 10.3390/f9020086.
[15] DUCHESNE L, HOULE D, D’ORANGEVILLE L. Influence of climate on seasonal patterns of stem increment of balsam fir in a boreal forest of Québec, Canada [J]. Agric For Meteor, 2012, 162–163: 108– 114. doi: 10.1016/j.agrformet.2012.04.016.
[16] ROSSI S, GIRARD, M J, MORIN H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production [J]. Glob Change Biol, 2014, 20(7): 2261–2271. doi: 10.1111/gcb. 12470.
[17] RATHGEBER C B K, ROSSI S, BONTEMPS J D. Cambial activity related to tree size in a mature silver-fir plantation [J]. Ann Bot, 2011, 108(3): 429–438. doi: 10.1093/aob/mcr168.
[18] ZHANG J Z, GOU X H, MANZANEDO R D, et al. Cambial phenology and xylogenesis ofover a climatic gradient is influenced by both temperature and drought [J]. Agric For Meteor, 2018, 260–261: 165–175. doi: 10.1016/j.agrformet.2018.06.011.
[19] ZHANG J Z, GOU X H, PEDERSON N, et al. Cambial phenology inalong different altitudinal gradients in a cold and arid region [J]. Tree Physiol, 2018, 38(6): 840–852. doi: 10.1093/tree phys/tpx160.
[20] REN P, ZIACO E, ROSSI S, et al. Growth rate rather than growing season length determines wood biomass in dry environments [J]. Agric For Meteor, 2019, 271: 46–53. doi: 10.1016/j.agrformet.2019.02.031.
[21] WEIJERS D, NEMHAUSER J, YANG Z B. Auxin: Small molecule, big impact [J]. J Exp Bot, 2018, 69(2): 133–136. doi: 10.1093/jxb/erx463.
[22] ALONI R. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation [J]. Planta, 2013, 238(5): 819– 830. doi: 10.1007/s00425-013-1927-8.
[23] COSGROVE D J. Loosening of plant cell walls by expansins [J]. Nature, 2000, 407(6802): 321–326. doi: 10.1038/35030000.
[24] PERROT-RECHENMANN C. Cellular responses to auxin: Division versus expansion [J]. Cold Spring Harb Perspect Biol, 2010, 2(5): a001446. doi: 10.1101/cshperspect.a001446.
[25] BHALERAO R P, FISCHER U. Auxin gradients across wood- instructive or incidental? [J]. Physiol Plant, 2014, 151(1): 43–51. doi: 10.1111/ppl.12134.
[26] FAJSTAVR M, PASCHOVá Z, GIAGLI K, et al. Auxin (IAA) and soluble carbohydrate seasonal dynamics monitored during xylogenesis and phloemogenesis in Scots pine [J]. iForest-Biogeosci Forestry, 2018, 11: 553–562. doi: 10.3832/ifor2734-011.
[27] KIJIDANI Y, NAGAI T, SUWASHITA T, et al. Seasonal variations of tracheid formation and amount of auxin (IAA) and gibberellin A4 (GA4) in cambial-region tissues of mature sugi () cultivar grown in a Nelder plot with different tree densities [J]. J Wood Sci, 2017, 63(4): 315–321. doi: 10.1007/s10086-017-1626-3.
[28] Larson P R. Wood formation and the concept of wood quality [J]. Yale Univ Sch For Bull, 1969, 74: 1–54.
[29] UGGLA C, MAGEL E, MORITZ T, et al. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine [J]. Plant Physiol, 2001, 125(4): 2029–2039. doi: 10.1104/pp.125. 4.2029.
[30] IMMANEN J, NIEMINEN K, SMOLANDER O P, et al. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity [J]. Curr Biol, 2016, 26(15): 1990–1997. doi: 10.1016/j.cub.2016.05.053.
[31] ISRAELSSON M, SUNDBERG B, MORITZ T. Tissue-specific locali- zation of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen [J]. Plant J, 2005, 44 (3): 494–504. doi: 10.1111/j.1365-313X.2005.02547.x.
[32] NIEMINEN K, IMMANEN J, LAXELL M, et al. Cytokinin signaling regulates cambial development in poplar [J]. Proc Natl Acad Sci USA, 2008, 105(50): 20032–20037. doi: 10.1073/pnas.0805617106.
[33] ALONI R. Ecophysiological implications of vascular differentiation and plant evolution [J]. Trees, 2015, 29(1): 1–16. doi: 10.1007/s00468- 014-1070-6.
[34] AMTHOR J S. Efficiency of lignin biosynthesis: A quantitative analysis [J]. Ann Bot, 2003, 91(6): 673–695. doi: 10.1093/aob/mcg073.
[35] RICHARDSON A D, CARBONE M S, KEENAN T F, et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees [J]. New Phytol, 2013, 197(3): 850–861. doi: 10.1111/nph. 12042.
[36] DESLAURIERS A, HUANG J G, BALDUCCI L, et al. The contri- bution of carbon and water in modulating wood formation in black spruce saplings [J]. Plant Physiol, 2016, 170(4): 2072–2084. doi: 10. 1104/pp.15.01525.
[37] WANG L, RUAN Y L. Regulation of cell division and expansion by sugar and auxin signaling [J]. Front Plant Sci, 2013, 4: 163. doi: 10. 3389/fpls.2013.00163.
[38] HARTIG K, BECK E. Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle [J]. Plant Biol, 2006, 8(3): 389–396. doi: 10. 1055/s-2006-923797.
[39] ROLLAND F, BAENA-GONZALEZ E, SHEEN J. Sugar sensing and signaling in plants: Conserved and novel mechanisms [J]. Annu Rev Plant Biol, 2006, 57: 675–709. doi: 10.1146/annurev.arplant.57.032905. 105441.
[40] FALCIONI R, MORIWAKI T, DE OLIVEIRA D M, et al. Increased gibberellins and light levels promotes cell wall thickness and enhance lignin deposition in xylem fibers [J]. Front Plant Sci, 2018, 9: 1391. doi: 10.3389/fpls.2018.01391.
[41] SIMARD S, GIOVANNELLI A, TREYDTE K, et al. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands [J]. Tree Physiol, 2013, 33(9): 913–923. doi: 10.1093/treephys/tpt075.
[42] DIETZE M C, SALA A, CARBONE M S, et al. Nonstructural carbon in woody plants [J]. Annu Rev Plant Biol, 2014, 65: 667–687. doi: 10. 1146/annurev-arplant-050213-040054.
[43] BARBAROUX C, BRéDA N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees [J]. Tree Physiol, 2002, 22 (17): 1201–1210. doi: 10.1093/treephys/22.17.1201.
[44] PéREZ-DE-LIS G, OLANO J M, ROZAS V, et al. Environmental conditions and vascular cambium regulate carbon allocation to xylem growth in deciduous oaks [J]. Funct Ecol, 2017, 31: 592–603. doi: 10. 1111/1365-2435.12789.
[45] KALLIOKOSKI T, MAKINEN H, JYSKE T, et al. Effects of nutrient optimization on intra-annual wood formation in Norway spruce [J]. Tree Physiol, 2013, 33(11): 1145–1155. doi: 10.1093/treephys/tpt078.
[46] LUPI C, MORIN H, DESLAURIERS A, et al. Increasing nitrogen availability and soil temperature: Effects on xylem phenology and anatomy of mature black spruce [J]. Can J For Res, 2012, 42(7): 1277– 1288. doi: 10.1139/x2012-055.
[47] D’ORANGEVILLE L, C?Té B, HOULE D, et al. A three-year increase in soil temperature and atmospheric N deposition has minor effects on the xylogenesis of mature balsam fir [J]. Trees, 2013, 27(6): 1525–1536. doi: 10.1007/s00468-013-0899-4.
[48] DAO M C E, ROSSI S, WALSH D, et al. A 6-year-long manipulation with soil warming and canopy nitrogen additions does not affect xylem phenology and cell production of mature black spruce [J]. Front Plant Sci, 2015, 6: 877. doi: 10.3389/fpls.2015.00877.
[49] ZHANG S K, HUANG J G, ROSSI S, et al. Intra-annual dynamics of xylem growth insubmitted to an experimental nitrogen addition in central China [J]. Tree Physiol, 2017, 37(11): 1546–1553. doi: 10.1093/treephys/tpx079.
[50] ZHANG S K, ROSSI S, HUANG J G, et al. Intra-annual dynamics of xylem formation insubjected to canopy and understory N addition [J]. Front Plant Sci, 2018, 9: 79. doi: 10.3389/ fpls.2018.00079.
[51] YU B, HUANG J G, MA Q, et al. Comparison of the effects of canopy and understory nitrogen addition on xylem growth of two dominant species in a warm temperate forest, China [J]. Dendrochronologia, 2019, 56: 125604. doi: 10.1016/j.dendro.2019.125604.
[52] DAIL D B, HOLLINGER D Y, DAVIDSON E A, et al. Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce-hemlock stand, Howland, Maine, USA [J]. Oecologia, 2009, 160(3): 589–599. doi: 10.1007/s00442-009-1325-x.
[53] ZHANG W, SHEN W J, ZHU S D, et al. CAN canopy addition of nitrogen better illustrate the effect of atmospheric nitrogen deposition on forest ecosystem? [J]. Sci Rep, 2015, 5: 11245. doi: 10.1038/srep 11245.
[54] JIANG X Y, LIU N, LU X K, et al. Canopy and understory nitrogen addition increase the xylem tracheid size of dominant broadleaf species in a subtropical forest of China [J]. Sci Total Environ, 2018, 642: 733– 741. doi: 10.1016/j.scitotenv.2018.06.133.
[55] ROSSI S, ANFODILLO T, ?UFAR K, et al. Pattern of xylem phenol- logy in conifers of cold ecosystems at the Northern Hemisphere [J]. Glob Change Biol, 2016, 22(11): 3804–3813. doi: 10.1111/gcb.13317.
[56] DELPIERRE N, LIREUX S, HARTIG F, et al. Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers [J]. Glob Change Biol, 2019, 25: 1089–1105. doi: 10.1111/gcb.14539.
[57] HUANG J G, GUO X L, ROSSI S, et al. Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season [J]. Tree Physiol, 2018, 38(8): 1225–1236. doi: 10.1111/nph. 12859.
[58] LI X X, LIANG E Y, GRICAR J, et al. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau [J]. Sci Bull, 2017, 62(11): 804–812. doi: 10.1016/j.scib.2017. 04.025.
[59] ZWEIFEL R, ZIMMERMANN L, ZEUGIN F, et al. Intra-annual radial growth and water relations of trees: Implications towards a growth mechanism [J]. J Exp Bot, 2016, 57(6): 1445–1459. doi: 10.1093/jxb/ erj125.
[60] VIEIRA J, CAMPELO F, ROSSI S, et al. Adjustment capacity of maritime pine cambial activity in drought-prone environments [J]. PLoS One, 2015, 10(5): e0126223. doi: 10.1371/journal.pone.0126223.
[61] REN P, ROSSI S, CAMARERO J J, et al. Critical temperature and precipitation thresholds for the onset of xylogenesis ofin a semi-arid area of the north-eastern Tibetan Plateau [J]. Ann Bot, 2017, 121: 617–624. doi:10.1093/aob/mcx188.
[62] TOTTI de L N O, da SILVA M R, NOGUEIRA A, et al. Duration of cambial activity is determined by water availability while cambial stimulus is day-length dependent in a Neotropical evergreen species [J]. Environ Exp Bot, 2017, 141: 50–59. doi: 10.1016/j.envexpbot.2017. 07.001.
[63] ROSSI S, DESLAURIERS A, ANFODILLO T, et al. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length [J]. New Phytol, 2006, 170(2): 301–310. doi: 10.1111/j. 1469-8137.2006.01660.x.
[64] KORNER C. A re-assessment of high elevation treeline positions and their explanation [J]. Oecologia, 1998, 115: 445–459.
[65] LILLEY J L S, GEE C W, SAIRANEN I, et al. An endogenous carbon- sensing pathway triggers increased auxin flux and hypocotyl elongation[J]. Plant Physiol, 2012, 160(4): 2261–2270. doi: 10.1104/pp.112.205575.
[66] SCHRADER J, BABA K, MAY S T, et al. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals [J]. Proc Natl Acad Sci USA, 2003, 100(17): 10096–10101. doi: 10.1073/pnas.1633693100.
Research Progresses on Xylem Formation Dynamics and Its Regulation Mechanism
GUO Xia-li1,2,3, YU Bi-yun1,2,3, ZHANG Shao-kang1,2, LI Jing-ye1,2,3, WANG Jie1,2,3, HUANG Jian-guo1,2*
(1. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2. Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences,Guangzhou 510650, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China)
Global changes impose a profound impact on the xylem formation, which in turn affects the carbon sequestration of forest ecosystems and fundamental services of global ecosystems. The xylem formation dynamic of tree is mainly characterized by the timing of the onset and the end of cambial activity, the length of the growing season, and the growth rate, etc., which are jointly regulated by various factors, such as phytohormone, carbohydrate, nitrogen and meteorological factors. By investigating the formation dynamics of xylem over a fine time scale, the determinants of xylem formation could be revealed, the understanding of physiological mechanism of tree growth would be deepen, and the prediction accuracy of the tree growth response to climate changes would further improve. The recent research progresses in the xylem formation dynamic and its regulation mechanism were reviewed, and the prospects for the future research were provided.
Length of growing season; Growth rate; Phytohormone; Carbohydrate; Nitrogen; Meteorological factor
10.11926/jtsb.4101
2019–05–29
2019–07–15
國家自然科學基金項目(41861124001, 31570584, 41661144007);廣東自然科學基金項目(2016A030313152)資助
This work was supported by the National Natural Science Foundation of China (Grant No. 41861124001, 31570584, 41661144007), and the Natural Science Foundation in Guangdong (Grant No. 2016A030313152).
郭霞麗,主要從事樹木生理學和森林生態學研究。E-mail: guoxl@scbg.ac.cn
E-mail: huangjg@scbg.ac.cn