李文震 羅漢武 許曉路 谷凱凱 吳啟瑞
1(國網內蒙古東部電力有限公司 內蒙古 呼和浩特 010020)2(國網電力科學研究院武漢南瑞有限責任公司 湖北 武漢 430074)
近十年來,我國在變電運檢領域取得了長足的進步,電網規模不斷增長,變電站數量由21 556座增加到39 247座,由于輸變電設備數量與變電站數量正相關,可以認為設備規模增長82%,但運維人員僅增長9.8%,結構性缺員問題突出。而傳統的人工巡檢和帶電檢測方式也暴露出人力成本和運維成效之間的矛盾。而此類運維模式多針對缺陷后期,無法對故障前期狀態進行發掘,嚴重影響電網安全穩定運行。
變壓器作為電力系統最關鍵的設備,其運行狀態關乎整個區域電網安全,對變壓器故障及時診斷分析具有重要意義。變壓器油色譜在線監測已成為了變壓器狀態監測的重要發展方向和組成部分。
變壓器油色譜在線監測旨在不停電情況下,對變壓器進行連續性的自動檢測,掌握變壓器內部運行狀況。特別針對偏遠地區、無人值守電站等特殊區域安裝實時監測設備,有利于實現變壓器監測自動化和智能化。
國網公司對變壓器在線監測系統配置做出了規定,強制安裝220 kV及以上變壓器,110 kV(66 kV)及以下電壓等級變壓器為選配,實際操作普遍采用基層單位需求上報、網省公司審批的模式,配置方式粗放。為此,研究110 kV(66 kV)及以下變壓器油色譜在線監測裝置配置策略,對降低變壓器故障率,是當前電網系統中急需要解決的一項重要研究課題。
油色譜在線監測裝置配置問題是一個經典的組合優化問題,其配置受到很多因素的制約,目前在該領域,國內外已經有大量的研究工作。文獻[1]針對觀測站選址問題,從地質、工程設計和建設角度出發,設計了一種基于經驗和專家決策的選址原則和方法。文獻[2]針對變壓器油色譜的在線監測問題,提出了一種基于改良三比值法的變壓器故障在線監測系統,對在線檢測裝置從安裝、運維、診斷等方面進行了系統研究。文獻[3]對輸電線路污穢在線監測裝置選址問題進行研究,提出了利用層次分析法進行選址。這些相關文獻大部分停留在經驗模式,專家決策等模式中,其科學性不足,并缺乏全局性、系統性地規劃和考量。因此有效地利用歷史數據,并使用科學的理論方法對在線裝置配置問題進行系統建模,并指導實踐顯得更為重要。
為了提高在線裝置的運行效率和監測準確率,本文以蒙東電網公司為研究對象,分析近年來變壓器故障狀況,根據易發故障所在區域的相關數據,分析并篩選了影響在線監測裝置配置問題的重要影響因子。利用改進RBF神經網絡模型對在線監測裝置配置問題進行了系統建模,提出了一種基于K-means聚類和遺傳算法的RBF神經網絡配置模型,為在線監測裝置配置提供了理論依據,提高變壓器實時監測準確率,進一步保障了電網的安全穩定供電,對我國變電檢修工作具有重要的意義[4-6]。
變壓器油色譜在線監測裝置在實際應用過程中受到很多因素制約,影響因素眾多,主要分為內部的變壓器本體運維和外部的變壓器所處環境兩大類,如圖1所示。
(1) 變壓器本體運維狀態類包括電壓等級、 歷史故障次數、運行年限、負載類型和歷史缺陷次數。其中:電壓等級是表征變壓器在電網中重要度最核心指標,電壓等級越高,所處位置和安全級別就越高;歷史故障次數和歷史缺陷次數主要說明變壓器故障發生率和缺陷發生率,因維修更換過程中會對變壓器進行大面積拆解和試驗,后續局部放電和過熱可能性提高;運行年限與設備運行工況體現出“浴缸效益”,是重要影響因子;變壓器負荷類型直接影響了變壓器內部故障風險率,突發急救負載不斷挑戰安全閾值,需要通過在線監測裝置實時監測變壓器各項指標。
(2) 變壓器所處環境類包括變壓器運行位置的重要度、是否存在家族性缺陷、場站環境等。由于變壓器運行位置表征所屬場站重要度,其對監測裝置配置的影響不容忽視。家族性缺陷是同廠家、同批次、同型號等多個維度對比分析,共性明顯,需要對有家族缺陷設備進行重點監控;場站環境是表征變電站的所處區位的多雷、大風、極寒、地質災害等地理環境和貼近工礦企業、居民社區等運行環境,也是造成故障風險的一大因素。
變壓器油色譜在線監測裝置配置是內因和外因等多種因素共同決定的,而其中大部分影響因素具有很多的不確定性和復雜性,它們之間的關系并不是簡單的線性關系或者指數關系等,無法用精確的表達式進行描述。而人工神經網絡模型通過模擬人的腦神經功能,具有很好的自我學習能力、很強的自適應性、自組織性和泛化能力,能適應復雜不確定的系統和環境,能夠更好地描述自變量和因變量之間之中非線性、復雜度高的關系[7-10]。因此,我們考慮使用人工神經網絡進行監測裝置配置問題的決策。其中,當樣本數據較多,輸入輸出之間關系較為復雜時,BP神經網絡容易進入局部收斂且收斂速度較慢。因此本文中,我們選取徑向基函數(Radial Basis Function, RBF)神經網絡[1]來進行建模,它是由Powell于1985年提出的一種高效前饋式神經網絡。它結構簡單,易于操作,學習收斂速度快,幾乎可以逼近任意的非線性函數,具有強大的泛化能力。使用RBF模型解決變壓器在線裝置配置問題的適用性主要體現在以下幾個方面:
(1) 對于復雜非線性的關系來說,RBF模型可以通過以往數據快速為電網決策人員提供一個配置方案。
(2) RBF模型可以充分利用歷史數據,有效地評估不同配置方案的優劣,為電網決策人員提供可靠的技術支撐。
(3) RBF模型可以與其他一些優化方法進行結合,不斷地更新和改進自身算法,最終形成一種配置方案評估的工具,提高電網檢修能力。
RBF神經網絡是一種三層結構的神經網絡,包括輸入層、隱含層和輸出層。其中從輸入空間到隱層空間的變換是非線性的,而從隱層空間到輸出空間的變換是線性的。其基本思想是用RBF作為隱單元的“基”來構成隱含空間,隱含層對輸入空間中的矢量進行變換,將向量從線性不可分的低維度映射到線性可分的高維度。RBF神經網絡可以處理一些系統內難以解析的規律,具有良好的泛化能力,且結構簡單、易于操作,學習收斂速度快,因此被廣泛地應用于非線性函數逼近、信息處理、系統建模、控制和故障診斷等領域[16]。
假設RBF網絡輸入向量為X=[x1,x2,…,xp]T,則多輸入單輸出可描述為:
(1)
式中:K是隱含層神經元個數;αk是隱含層到輸出層的權值向量;φk是輸入層到隱含層的輸出,其輸出值取決于輸入向量與徑向基函數中心的距離。在這里基函數選取高斯函數,距離采用歐式范數表示,則:
(2)
式中:ci是第i個隱含層節點高斯函數的中心向量;σi是第i個隱含層節點的標準化常數。
由此可知,RBF神經網絡算法設計中需要求解的參數主要包括:隱含層節點數、隱含層節點中徑向基函數的中心和方差、隱含層到輸出層的權值。RBF神經網絡有很多中學習方法,如隨機選取中心法、自組織選取中心法、最近鄰聚類法、有監督選取中心法、K-means聚類法等。本文中選取利用K-means聚類算法和遺傳算法相結合的學習方法對RBF神經網絡參數進行不斷的優化和修正,有效地保證了網絡預測精度,實現了神經網絡結構和參數的自校正。
在變壓器油色譜在線監測裝置配置問題中,RBF神經網絡結構的建立首先應該確定網絡輸入自變量X,并輸入到神經網絡系統中,作為輸入層;其次將不同地址評分作為因變量Y,作為網絡模型的輸出,以此建立二者的非線性關系模型;最終建立網絡結構,如圖2所示。

圖2 RBF神經網絡結構圖
輸入層節點數與在線監測裝置配置影響因子有關,本文結合歷史記錄中的變壓器相關監測數據、變壓器故障數據、所處環境等數據,對變壓器油色譜在線監測裝置配置影響因素進行了分析,確定了主要影響因子有:電壓等級(x1)、歷史故障次數(x2)、運行年限(x3)、變壓器運行狀態(x4)、變壓器最大負載(x5)、歷史缺陷次數(x6)、所在運行位置重要度(x7)、是否有家族性缺陷(x8)、場站環境(x9)。選取以上9個影響因子作為神經網絡輸入層的神經元節點。由于這幾類影響因子量綱不同,在網絡進行訓練前,需要對樣本數據進行無量綱歸一化的預處理過程。

(3)
(2) 文字類影響因子。油色譜在線裝置配置影響因子中還有一些因子只能用文字進行描述,但是這些因子在變壓器故障風險中影響頗大,對監測裝置配置影響亦不容忽視,例如電壓等級、負載類型、變壓器運行位置重要性等,對于這一類文字類影響因子采用如表1所示的賦值方法,并進行歸一化。

表1 油色譜在線監測裝置配置影響因子賦值
將監測裝置不同的配置評分作為神經網絡結構的輸出Y,為了便于比較將評分進行歸一化處理,使得不同樣本的輸出值均在0~1之間。經過數據預處理,確定網絡輸入和輸出,建立基于改進RBF神經網絡在線監測裝置優化配置模型,通過參數優化學習,找出最終的最優配置策略,并進行結果輸出。
變壓器油色譜在線監測裝置配置問題屬于復雜的非線性系統問題,因此我們采用基于K-means聚類和遺傳算法的RBF神經網絡模型進行裝置配置,其優化選址配置流程如圖3所示。

圖3 基于K-means聚類和遺傳算法的RBF裝置配置流程
步驟1確定RBF神經網絡結構。在訓練開始時,進行樣本數據輸入,并根據2.2節介紹的數據預處理方法進行處理得到RBF神經網絡的輸入層和輸出層。
步驟2優化RBF網絡結構參數。遺傳算法(Genetic algorithm,GA)是模擬生物進化論中的自然選擇和遺傳學中的生物進化過程所形成的一種搜索最優解的計算模型,它具有良好的全局優化性能,搜索效率較高。因此我們利用遺傳算法對網絡結構中隱含層節點數K、中心向量ci和寬度σi進行參數優化。其優化過程包括:
1) 染色體編碼。模型采用實數編碼,將由隱含層節點數K、中心向量ci和寬度σi組成的集合編碼成一個個體,個體基因值用實數來表示。
2) 生成初始種群。目前,比較常用的RBF學習算法有K-means聚類算法,其基本思想是從輸入樣本數據中選取k個數據作為初始的聚類中心;然后計算所有樣本與聚類中心的范式距離,對樣本進行分類,重新計算得到新的聚類中心,反復執行上述步驟,直到聚類中心不再變化,得到中心向量ci;接著根據聚類中心之間距離確定寬度σi。該算法簡單易實現,因此我們選用隨機選取不同的廚師聚類中心并多次利用K-means算法優化得到初始種群個體。
3) 計算種群內個體適應度。適應度函數用來評價種群中每個個體的優劣,個體適應度越大,性能越好。參數優化的最終目的是找到一組最優參數,使得樣本的均方誤差最小。因此適應度函數如下:
(4)

4) 判斷染色體適應度是否滿足設定要求。若滿足輸出最優染色體,即最優RBF網絡參數;若不滿足,則利用遺傳算子對染色體進行選擇、交叉和變異。交叉概率Pc和變異概率Pm計算方式如下:
(5)
(6)
式中:fmax是種群中最大適應度;favg是該平均適應度;f′為將要進行交叉的兩個個體中較大的適應度;f為將要進行變異的個體適應度;Pc1、Pc2、Pm1、Pm2為固定值。以此產生新種群重復如上遺傳步驟,直到滿足設定條件,選出最優染色體。
5) 輸出最優配置結果。利用最優的網絡參數,得到最優的RBF神經網絡模型,輸出全局最優解。
為了驗證提出的選址模型有效性,本文選取蒙東電網公司近年來12組變壓器油色譜在線監測裝置配置及其相關數據作為樣本數據。其中:由歷史記錄數據中得到每種配置方案影響因子數據并進行歸一化處理后作為模型輸入數據;由專家對每種不同的方案按照相同指標進行了評價打分,輸出各個方案的總評作為模型的輸出數據。最終樣本數據如表2所示。

表2 12組歷史監測裝置配置的樣本數據

續表2
模型訓練利用的是MATLAB[19]關于神經網絡的仿真實驗環境,樣本數據中前10組用于神經網絡的訓練,后2組作為測試數據。為了對比算法的效果,本文將傳統的BP神經網絡與本文所建立的K-means+遺傳算法+RBF神經網絡模型進行對比研究,實驗中所用到的參數有:BP神經網絡中訓練目標參數為0.000 1,訓練次數為5 000; K-means+遺傳算法+RBF神經網絡模型中參數設置為種群個數為10,遺傳算法迭代次數為100,交叉變異概率為Pc1=0.9、Pc2=0.5、Pm1=0.1、Pm1=0.002。
10組數據訓練誤差結果如圖4所示,可以看出,采用BP神經網絡模型和改進的RBF神經網絡模型對油色譜在線監測裝置配置問題進行評分,對同樣的樣本數據來說,BP神經網絡收斂速度較慢,改進的RBF神經網絡收斂速度較快,效率更高。

(a) BP訓練結果

(b) RBF訓練結果圖4 不同模型下訓練誤差變化曲線圖
為了進一步說明RBF神經網絡比BP神經網絡更加適用于小樣本數據的訓練,我們對10組數據輸出真實值和預測值進行了對比分析,結果如圖5所示。可以看出,RBF網絡更加適合于處理小樣本數據,其訓練結果要比BP神經網絡好。因此當訓練樣本數據少時,使用本文提出的改進RBF神經網絡更加有效。

圖5 不同模型下真實值與擬合值對比圖
除此之外,我們用訓練好的RBF神經網絡對剩下的2組測試數據進行總評分預測,將輸入數據帶入到神經網絡輸入結構中,最終得到方案11和12的總評分分別為0.431 2和0.759 6。
本文結合蒙東電網特征,包括地區、變壓器故障、地理信息等,找出變壓器油色譜在線監測配置主要影響因子,研究并提出了一種基于改進RBF神經網絡的在線監測裝置配置模型。該模型有效地結合K-means聚類和遺傳算法對神經網絡參數進行了優化,并找到最優參數,來對不同的配置策略進行評分,最終得到最優配置。該模型可以快速并有效地找到變壓器油色譜在線監測裝置配置方案,提高了故障監測效率,對蒙東電網輸電線路的安全穩定運行提供了強有力的支撐和保障。