劉 奎,葛 壯,徐英德,劉 磊,葉 超,李 明,趙 搏,梁愛珍,張彬?,汪景寬
不同耕作方式下黑土微生物群落對干濕交替的響應*
劉 奎1,葛 壯1,徐英德1,劉 磊1,葉 超1,李 明1,趙 搏1,梁愛珍2,張彬1?,汪景寬1
(1. 沈陽農業大學土地與環境學院,沈陽 110866;2. 中國科學院東北地理與農業生態研究所,長春 130102;3. 南京信息工程大學應用氣象學院,南京 210044)
以吉林德惠市黑土長期田間定位實驗地土壤為研究對象,通過室內模擬培養,采用高通量測序方法(16S rRNA)研究免耕和壟作土壤微生物群落對不同頻率和強度的干濕交替處理的響應。結果表明:干濕交替顯著降低免耕土壤中微生物群落的多樣性,且頻率越高干旱強度越大多樣性降低越顯著;但干濕交替對壟作土壤的微生物多樣性影響不顯著。與對照相比,干濕交替顯著增加免耕土壤中浮霉菌門(Planctomycetes)和疣微菌門(Verrucomicrobia)的相對豐度,顯著降低免耕和壟作土壤中Saccharibacteria菌門和Parcubacteria菌門的相對豐度。無論是免耕還是壟作條件下,干濕交替頻率的不同導致土壤微生物群落結構產生顯著差異,而干濕交替強度的不同對土壤微生物群落結構沒有顯著影響。研究結果為預測干旱氣候對黑土生態功能的影響提供了理論基礎。
耕作方式;干濕交替;土壤微生物群落;黑土;高通量測序
微生物是土壤生態系統的重要組成部分,在土壤有機質形成和轉化、土壤養分循環等方面發揮著至關重要的作用[1]。土壤微生物群落組成及活性變化是衡量土壤質量和肥力的一個重要指標[2]。影響土壤微生物群落組成發生變化的因素很多,如耕作方式、水分管理和施肥措施等。其中,干濕交替是土壤微生物群落經常面臨的環境變化。近年來,由于全球氣候變化導致干旱和降水的模式會不斷發生改變[3],氣候變化模型預測未來土壤干濕交替的頻率和強度將更大[4],因此探討干濕交替對土壤微生物群落的影響具有重要意義。目前關于干濕交替對土壤微生物群落的影響已有一些報道,例如包麗君和賈仲君[5]研究了干濕交替對水稻土中古菌群落結構的影響,發現反復的干濕交替并未顯著影響水稻土古菌的主要類群組成,但古菌的絕對數量和相對豐度發生了一定程度的變化;王苑等[6]研究發現多次干濕交替顯著影響土壤微生物群落結構,大大降低土壤真菌與細菌的比例,使細菌成為優勢種群。已有研究大部分僅關注某些特定土壤微生物類群對干濕交替的響應,也有一部分研究采用磷脂脂肪酸法(PLFA)或變性梯度凝膠電泳(PCR-DGGE)方法考察干濕交替對整個土壤微生物群落的影響,然而這些方法在對數量少但具有重要功能的土壤微生物類群的檢測上有較大的局限性,極有可能低估土壤微生物的物種組成并高估其豐度[7]。而高通量測序技術則能在整體微生物群落水平分析微生物遺傳多樣性,并能較為客觀地反映其中低豐度的重要功能微生物。
東北黑土區是我國的糧食主產區,然而長期的傳統耕作導致農田黑土退化嚴重[8-10]。由于傳統耕作方式頻繁地耕翻,又加之缺少有機物料歸還,使土壤微生物的群落多樣性和數量顯著下降[11-12]。近年來免耕秸稈還田作為一項提高土壤有機質含量、改善土壤結構和生物特性的有力措施受到了廣泛關注。長期不同耕作方式使土壤的水氣熱和養分狀況等理化性質發生變化[13-16],從而對土壤微生物群落的多樣性和結構有著顯著的影響[17-19]。路怡青等[20]對免耕和常規耕作的土壤微生物群落的數量進行了比較研究,發現免耕土壤微生物群落的數量顯著大于常規耕作。Zhang等[21]研究了傳統耕作與免耕對黑土微生物群落的影響,發現免耕秸稈還田顯著增加了土壤微生物群落中真菌與細菌比例。然而目前關于不同耕作方式下農田土壤微生物群落對干濕交替響應的研究還鮮見報道。本文通過室內培養實驗,利用高通量測序的方法,研究免耕和壟作土壤在經過不同頻率和強度的干濕交替后,其土壤微生物群落的多樣性、豐度和結構的變化規律,對預測干旱對不同耕作方式土壤功能的影響具有重要意義。
試驗土壤為黑土,取自吉林省德惠市米沙子鄉黑土農田試驗基地(44°12′N,25°33′E)長期定位試驗樣地。該區屬于中溫帶大陸性季風氣候,年均氣溫4.4 ℃,年均降雨量520 mm。長期試驗開始于2001年秋,布置不同的耕作與作物輪作處理,每種處理包含3個重復小區,隨機區組設計。本研究選取其中的免耕和壟作處理,種植作物均為玉米(L.)連作。免耕對土壤的擾動小,主要是播種和施肥時免耕播種機切刀開溝的擾動;壟作除播種、中耕和鋤草外,其他時期不進行土壤擾動,中耕時在作物種植行頂端起壟。兩種耕作方式下秸稈全部還田,每年在播種時施用N 100 kg·hm–2、P 45.5 kg·hm–2、K 78 kg·hm–2,在玉米第6葉時期追施N 50 kg·hm–2[22]。
土壤樣品采集于2014年春季播種前,用土鉆采集0~10 cm 表層土壤。每個小區散點取樣后混合成為一個樣品。新鮮土樣裝入冷藏箱帶回實驗室,剔除可見根系和石塊并混勻后過4 mm篩,在冰箱中保存。
設計五個不同頻率和強度的干濕交替處理:(1)對照處理(CK),土壤含水量保持在田間持水量的 60%;(2)1次中等干旱—澆水循環(MDW1),使土壤含水量從田間持水量的 60%逐漸下降至萎焉點的120%并保持該水平12 d后澆水,使土壤含水量恢復至田間持水量的60%并保持2 d;(3)1次極干旱—澆水循環(VDW1),使土壤含水量從田間持水量的60%逐漸下降至萎焉點的80%并保持在該水平,12 d后進行澆水使土壤含水量恢復至田間持水量的60%并保持2 d;(4)3次中等干旱—澆水循環(MDW3),使土壤含水量從田間持水量的60%逐漸下降至萎焉點的120%并保持在該水平,12 d后進行澆水使土壤含水量恢復至田間持水量的60%并保持2 d,設置3次循環,每次周期為14 d;(5)3 次極干旱—澆水循環(VDW3),使土壤含水量從田間持水量的60%逐漸下降至萎焉點的80%并保持在該水平,12 d后進行澆水使土壤含水量恢復至田間持水量的60%并保持2 d,設置3次循環,每次周期為14 d。其中干旱—澆水循環的周期是根據預試驗的結果設置的,預試驗發現土壤含水量從田間持水量的60%逐漸下降至不同目標含水量所需的最長時間為12 d。
將低溫保存的土樣裝入底部用封口膜擋住的 PVC 管(高5 cm、直徑4.8 cm),使得管中的土壤容重達到田間對應耕作處理下的土壤容重。不同耕作方式下土壤的裝入量(按干土重計)為免耕115.75 g、壟作113.04 g。兩種耕作處理一共裝30個PVC管(2種耕作×5種干濕交替×3個重復)。用注射器向裝好的 PVC 管中均勻地加入蒸餾水,使得土壤含水量達到田間持水量的60%,然后將PVC管豎直放入250 mL的培養瓶中,用封口膜封口以減少水分蒸發而同時不造成厭氧條件。然后放入培養箱中,在20 °C條件下預培養2周,然后按照上述干濕交替試驗設計進行。土樣的逐漸變干是通過在培養瓶中放入裝有硅膠干燥劑(50 g)的小燒杯來實現的。在樣品變干的過程中不定期稱量PVC管以了解水分的損失情況,同時更換硅膠干燥劑,當土壤含水量下降至目標含水量后將小燒杯移除。對土樣進行澆水是通過用注射劑向土壤表面均勻加入蒸餾水來實現的,通過稱量PVC管確定水分加入量。當干濕交替實驗結束后立即采集土壤進行土壤理化性質和微生物群落分析。土壤有效磷采用0.5 mol·L–1NaHCO3溶液浸提—鉬銻抗比色法測定,土壤速效鉀采用1 mol·L–1NH4OAc浸提(1︰10土液比)、火焰光度法(型號AP1200)測定[23]。土壤pH使用復合電極測定,土水比為1︰5。土壤全碳和全氮含量采用元素分析儀測定(Elementar CN Analyzer,德國)。
土壤DNA的提取采用Power Soil@DNA Isolation Kit試劑盒(Mo Bio公司,美國),采用1%瓊脂糖凝膠電泳和Nanodrop 2000分光光度計檢測所提取DNA的質量,然后于–20℃低溫保存。
對細菌16s rRNA的V3-V4區域進行PCR擴增,所用引物是338F(5’-ACTCCTACGGGAGGCAGC AG-3’)和806R(5’-GGACTACHVGGG TWTCTAAT- 3’)。PCR反應體系(25 μL)包括2.5 μL 10×Pyrobest Buffer,2 μL dNTPs(5 mmol·L–1),1 μL 338F/806R(10 μmol·L–1),0.4 U Pyrobest DNA聚合酶,15 ng DNA模板。PCR反應程序:95℃預變性5 min;95℃變性30 s,55℃退火30 s,72℃延伸60 s,25個循環;72℃延伸10 min。
用2%瓊脂糖凝膠提取擴增子,用試劑盒(Axygen Biosciences,美國)對擴增子進行純化后上Illumina Miseq測序平臺進行測序。首先使用QIIME軟件對原始序列進行質量控制,和過濾,移除低質量的原始序列,用過濾后的序列進行后續分析。對每個樣品的reads數進行統計,并用UCLUST軟件根據序列相似性進行聚類,選擇97%作為相似性閾值,得到可操作分類單元表(OTU)。
利用單因素方差分析(ANOVA)和圖基檢驗(Tukey’s HSD)考察干濕交替對不同土壤理化性質、多樣性指數及相對豐度的影響。應用R軟件(version 3.4.4)進行主成分分析(PCA)和冗余分析(RDA)。用OringinPro 2015和R軟件作圖。
免耕和壟作土壤的pH、全氮、全碳和有效磷變化趨勢一致,均不受干濕交替處理的影響;而速效鉀隨著干濕交替的頻率和強度的加強呈顯著降低趨勢(表1)。與對照處理相比,不同頻率和強度的干濕交替顯著降低了免耕土壤微生物的Chao1指數和香農指數,尤其是在3次極干旱—澆水循環條件下降低最顯著(表2)。干濕交替對壟作土壤微生物Chao1指數和香農指數的影響相對較小,僅3次極干旱—澆水循環處理土壤Chao1指數顯著低于對照。兩種耕作處理相比,壟作土壤中的兩種微生物多樣性指數均顯著高于免耕土壤(表2)。
兩種耕作方式的土壤中均檢測到變形菌門(Proteobacteria)、酸桿菌門(Acidobacteria)、放線菌門(Actinobacteria)、綠彎菌門(Chloroflexi)、擬桿菌門(Bacteroidetes)、Saccharibacteria、芽單胞菌門(Gemmatimonadetes)、厚壁菌門(Firmicutes)、浮霉菌門(Planctomycete)、疣微菌門(Verrucomicrobia)和Parcubacteria等11個菌門,將相對豐度低于1%的微生物合并為Other。
免耕土壤干濕交替處理后微生物在門水平上的相對豐度如圖1a所示。其中變形菌門(Proteobacteria)在土壤各處理中是極其優勢的門類,其占比最大(47.85%~54.1%),相對豐度在1次極干旱—澆水處理下最高,而在1次中等干旱—澆水處理下最低。與對照相比,干濕交替后免耕土壤中浮霉菌門(Planctomycetes)和疣微菌門(Verrucomicrobia)的相對豐度顯著增加(<0.05),并且干濕交替的頻率和強度越大,其相對豐度越高,尤其在3次極干旱—澆水處理中的相對豐度增幅分別為240.0%和176.4%。而免耕土壤中的Saccharibacteria菌門和Parcubacteria菌門的相對豐度與對照相比,隨著干濕交替強度和頻率的增大而降低,兩類微生物相對豐度的降幅在3次極干旱—澆水處理中達到55.9%(Saccharibacteria)和89.3%(Parcubacteria)。免耕土壤中厚壁菌門(Firmicutes)及其他菌門的相對豐度變化不明顯。

表1 不同干濕交替處理對免耕和壟作土壤理化性質的影響
注:CK,對照;MDW1,1次中等干旱—澆水循環;VDW1,1次極干旱—澆水循環;MDW3,3次中等干旱—澆水循環;VDW3,3次極干旱—澆水循環。同列不同小寫字母表示該耕作方式向下各處理差異顯著(<0.05),平均值后面的數字為標準差。下同。Note:CK,Control;MDW1,one round of moderate dry-wet alternation;VDW1,one round of extreme dry-wet alternation;M DW3,three rounds of moderate dry-wet alternation;VDW3,three rounds of extreme dry-wet alternation. Different lowercase letters in the same row indicate significant difference between treatments(<0.05),means ± standard deviations. The same below.

表2 不同干濕交替處理對免耕和壟作土壤微生物多樣性的影響
壟作土壤干濕交替處理后微生物在門水平上的相對豐度如圖1b所示。壟作土壤中變形菌門(Proteobacteria)和酸桿菌門(Acidobacteria)的相對豐度顯著低于免耕土壤(<0.05),而放線菌門(Actinobacteria)的相對豐度顯著高于免耕土壤(<0.05)。變形菌門(Proteobacteria)在壟作土壤中的相對豐度也最大,而且其相對豐度在對照處理時最低,在3次中等干旱—澆水處理中最高。干濕交替后壟作土壤中Saccharibacteria門和Parcubacteria門的相對豐度顯著下降,而芽單胞菌門(Gemmatimonadetes)的相對豐度顯著提高。厚壁菌門(Firmicutes)及其他菌門相對豐度的變化不明顯。
免耕土壤中占比最大的菌屬是鞘氨醇單胞菌屬(),占比達18%~30%(圖2a)。與對照相比,免耕土壤中乳桿菌屬()、根霉菌屬()、硝基菌屬()和Groundwatermetagenome菌屬隨著干濕交替的頻率和強度的增加而降低。芽單胞菌屬()等其他的菌屬變化不顯著。壟作土壤的鞘氨醇單胞菌屬()、乳桿菌屬()、假橄欖屬()、根霉屬()和顆粒菌屬()的相對豐度低于免耕土壤,而壟作土壤的未分類()和其他(Other)的菌屬的相對豐度高于免耕土壤(圖2b)。鞘脂單胞菌屬()在壟作土壤中相對豐度占比最高(14%~21%)。與對照相比,壟作土壤中鞘氨醇單胞菌屬()和Groundwater metagenome菌屬隨著干濕交替的頻率和強度的增強其相對豐度降低,而芽單胞菌屬()隨著干濕交替的頻率和強度的增強其相對豐度增加。根霉菌屬()等其他菌屬變化不顯著。

圖1 不同干濕交替處理后免耕(a)和壟作(b)土壤微生物在門水平上的相對豐度

圖2 不同干濕交替處理后免耕(a)和壟作(b)土壤微生物在屬水平上的相對豐度
對兩種耕作方式下的土壤微生物群落進行主成分分析,發現第一主成分的變異主要是由耕作方式不同導致的。無論何種干濕交替處理,免耕和壟作土壤微生物群落總是分布在主成分分析圖的左右兩側,說明不同耕作方式下土壤微生物群落結構差異極顯著,這與我們前期的研究結果一致[21]。為深入考察不同干濕交替處理對每種耕作方式土壤微生物群落的影響,將兩種耕作方式的主成分分析圖獨立呈現。
由圖3可知,免耕土壤主成分分析結果顯示其第一主成分(PC1)和第二主成分(PC2)的貢獻率分別為48.8%和13.9%,壟作土壤PC1和PC2的貢獻率分別為36.6%和18.6%。兩種耕作方式下的土壤微生物群落對不同干濕交替處理的響應規律較為一致。與對照相比,干濕交替顯著改變了兩種土壤的微生物群落結構,同時微生物群落的變化受干濕交替的頻率影響較大,而受干濕交替強度的影響較小。1次干旱—澆水循環和3次干旱—澆水循環處理的土壤微生物群落結構存在顯著差異,然而在相同頻率澆水循環下,不同強度的干旱處理對兩種土壤微生物群落結構組成沒有顯著影響。

圖3 干濕交替后免耕(a)和壟作(b)土壤微生物群落的主成分分析
選取土壤的有效磷、速效鉀、全氮、全碳和pH作為環境因子,對免耕和壟作土壤的微生物11個門類做冗余分析。由圖4a可知,5個理化因子解釋了20.1%的總特征值,說明理化因子對免耕土壤的微生物的含量和分布有一定的影響。其中,速效鉀是影響土壤微生物分布和數量的主要環境因素,對照處理(CK)和1次中等干旱—澆水循環(MDW1)的土壤微生物分布與速效鉀呈正相關,與pH和全氮呈負相關;1次極干旱—澆水循環(VDW1)處理土壤微生物分布與有效磷呈正相關,與全碳呈負相關;3次中等干旱—澆水循環(MDW3)處理和3次極干旱—澆水循環(VDW3)處理的土壤微生物分布與pH和全氮呈正相關,與有效磷呈負相關。圖4b表示5個理化因子對壟作土壤微生物含量和分布的影響,其解釋了51.5%的總特征值,對壟作的微生物有一定的影響。進而說明,對照處理(CK)和1次中等干旱—澆水循環(MDW1)與速效鉀呈正相關;3次中等干旱—澆水循環(MDW3)處理與有效磷、全氮和全碳呈正相關,與pH呈負相關。理化因子對壟作土壤的1次極干旱—澆水循環(VDW1)處理和3次極干旱—澆水循環(VDW3)處理的微生物分布影響較小。
土壤微生物群落結構和組成特性在土壤有機質轉化和養分循環過程中發揮著重要意義[24],而水分狀況(如干濕交替)是影響土壤微生物群落數量、結構和多樣性的重要作用因子[25-26]。本研究表明,干濕交替顯著降低了免耕土壤中微生物群落的多樣性,并且對免耕和壟作土壤微生物群落的相對豐度有著不同程度的影響。有研究表明,在干濕交替情況下土壤微生物量的降低主要表現在干旱后期,是由于干旱條件下有一部分微生物凋亡造成的[27]。在土壤中的某些微生物群落因為干旱的條件就表現出其群落的消失,在土壤濕潤后,其群落也不會再次出現。另一方面,干濕交替導致土壤膨脹收縮,破壞了土壤中的菌絲體,從而切斷了土壤與植物殘體之間搭建起“養分運輸的橋梁”,阻礙了微生物對土壤的碳氮等養分的截獲[28-29],使得微生物可利用的養分減少,直接影響了微生物的自身生長代謝,導致微生物的生物量減少、多樣性降低。

圖4 免耕(a)和壟作(b)土壤理化性質與土壤微生物門類冗余分析

有研究表明,耕作方式影響著土壤有機碳、土壤微生物量和酶活性[31-33],而土壤有機碳、土壤微生物量和酶活性影響著土壤微生物的群落組成。在本研究中壟作的土壤微生物量和微生物的多樣性顯著高于免耕土壤,這與陳娟等[34]研究相一致。其原因可能是壟作改變了田間地形,獨特的壟溝結構,改善了土壤水、熱、氣和光等條件,為微生物的繁衍生息創造了良好的環境,此外有研究表明,酸性的土壤環境會降低土壤微生物多樣性,抑制土壤微生物酶活性[35],并且壟作使土壤中的團聚體被破壞,釋放出土壤中的生物碳和有機物質,有利于微生物的生長和繁殖。Xue等[36]研究也表明,壟作能為土壤微生物提供更多的有機物質,使微生物的數量增加。壟作提高了土壤微生物的多樣性和豐富度,在一定程度上能夠增加有機質的分解,有利于作物對營養物質吸收。在本實驗中也出現,免耕土壤的3次中等干旱—澆水循環處理下微生物的豐富度顯著高于1次中等干旱—澆水循環和1次極干旱—澆水循環,這可能是土壤干旱時微生物細胞萎蔫,細胞中能量轉移受阻[37-38],養分吸收減少,微生物生長受阻。土壤中大量凋亡的微生物變成有機物質,再加之多次的干濕交替后土壤中團聚體裂解釋放出有機質[6],在濕潤后,微生物有了更好的生境,所以微生物的豐富度表現增加,而多樣性表現降低。而壟作的土壤并沒有出現這種狀況,這可能是壟作土壤在耕作的時候已經破壞了土壤的團聚體,釋放出有機質,在干濕交替實驗后,也就沒有微生物突增的基礎,這也與上文關于壟作土壤的推測一致。
干濕交替的強度對兩種耕作方式的土壤微生物群落結構影響均不大,而干濕交替的頻率顯著改變了免耕和壟作土壤的微生物群落結構。由此可見,兩種耕作方式下土壤微生物群落對環境脅迫的響應是一致的。由RDA分析顯示,免耕和壟作土壤微生物門類對環境因子的響應不相同,尤其在面對3次極干旱—澆水循環處理時,表現尤為明顯。例如壟作和免耕土壤的對照(CK)處理對速效鉀表現出相關性,但是相關程度不同,在3次極干旱—澆水循環的環境脅迫下,免耕土壤微生物門類與pH和全氮表現出相關,但是壟作土壤微生物與5個環境因子均表現出不相關。這就說明,兩種土壤的微生物門類分布和數量存在差異。由相對豐度可以看出,免耕的土壤微生物群落在面對環境脅迫時,各個菌門之間的比例變化不大,菌屬變化較大,而壟作的變化則與之相反,如Parcubacteria菌門變化了96.76%,芽單胞菌門(Gemmatimonadetes)變化了60.84%,在屬水平上,壟作土壤微生物的結構變化小于免耕,例如免耕的鞘氨醇單胞菌屬()和芽單胞菌屬()變化了61.11%和68.71%,而壟作變化了50.01%和23.51%。在門水平上,免耕土壤的微生物的結構變化要小于壟作土壤的微生物,這有可能是免耕保護了土壤的團聚體,團聚體為土壤中微生物提供了庇護,保證了其微生物各個群落之間的結構穩定[39]。在環境脅迫解除后,由團聚體庇護的群落開始繁殖,保證了其群落結構的穩定。這在某種意義上說明,免耕對微生物的群落起到了保護作用,而在屬水平上,這種保護作用并沒有起效,更多反映出的是壟作提供了良好的土壤條件,減小菌屬對環境變化時的沖擊力。但在生產實踐中對作物的影響,還需進一步實驗證明。
干濕交替的頻率越高干旱強度越大,免耕土壤微生物的多樣性越低;而干濕交替對壟作土壤微生物多樣性的影響不顯著。兩種耕作方式下,干濕交替頻率的不同導致土壤微生物群落結構發生明顯改變,而干濕交替的強度對土壤微生物群落結構沒有顯著影響。
[1] Copley J. Ecology goes underground. Nature,2000,406(6795):452—454.
[2] Harris J A. Measurements of the soil microbial community for estimating the success of restoration. European Journal of Soil Science,2003,54(4):801—808.
[3] Lei W,Charles A L. Global climate change and its impacts. Advances in Water Science,2003,14(5):667—674.
[4] Huntington T G. Evidence for intensification of the global water cycle:Review and synthesis. Journal of Hydrology,2006,319(1):83—95.
[5] Bao L J,Jia Z J. Effect of simulation of dry-wet alternation on the community structure of archaea in paddy soil. Acta Pedologica Sinica,2017,54(1):191—202.[包麗君,賈仲君. 模擬干濕交替對水稻土古菌群落結構的影響. 土壤學報,2017,54(1):191—202.]
[6] Wang Y,Song X S,Wang J,et al. Effects of alternating wet and dry on soil carbon pool and organic carbon mineralization. Acta Pedologica Sinica,2014,51(2):342—350. [王苑,宋新山,王君,等. 干濕交替對土壤碳庫和有機碳礦化的影響. 土壤學報,2014,51(2):342—350.]
[7] Xia W W,Jia Z J. Technical evaluation of soil microbial communities by high-throughput sequenceng and DGGE analysis. Acta Microbiologica Sinica,2014,54(12):1489—1499. [夏圍圍,賈仲君. 高通量測序和DGGE分析土壤微生物群落的技術評價.微生物學報,2014,54(12):1489—1499.]
[8] Han X Z,Wang S Y,Song C Y,et al. Impacts of land use/cover change on black soil ecological environment. Scientia Geographica Sinica,2005,25(2):203—208. [韓曉增,王守宇,宋春雨,等. 土地利用/覆蓋變化對黑土生態環境的影響. 地理科學,2005,25(2):203—208.]
[9] Wang J K,Li S Y,Zhang X D,et al. Changes in soil fertility quality in the typical black soil regions of Northeast China in the past 20 years. Chinese Journal of Eco-Agriculture,2007,15(1):19—24. [汪景寬,李雙異,張旭東,等. 20年來東北典型黑土地區土壤肥力質量變化. 中國生態農業學報,2007,15(1):19—24.]
[10] Zhang X Y,Song Y Y,Song C Y. Degeneration process of farmland black soil. Soil and Crop,2013,2(1):1—6. [張興義,隋躍宇,宋春雨. 農田黑土退化過程. 土壤與作物,2013,2(1):1—6.]
[11] Yang D,Liu Q. Spatial variability of soil total nitrogen and organic matter in Hexi area:A case study of Ganzhou District in Zhangye City. Agricultural Research in the Arid Areas,2010,28(4):183—187. [楊東,劉強. 河西地區土壤全氮及有機質空間變異特征分析——以張掖市甘州區為例. 干旱地區農業研究,2010,28(4):183—187.]
[12] Chiu C Y,Chen T H,Imberger K,et al. Particle size fractionation of fungal and bacterial biomass in subalpine grassland and forest soils. Geoderma,2006,130(3):265—271.
[13] West T O,Post W M. Soil organic carbon sequestration rates by tillage and crop rotation:A global data analysis. Soil Science Society of America Journal,2002,66(6):13—16.
[14] Du Z L,Ren T S,Hu C S. Tillage and residue removal effects on soil carbon and nitrogen storage in the North China Plain. Soil Science Society of America Journal,2010,74(1):196—202.
[15] Sun J,Liu M,Li L J,et al. Effects of different tillage methods on soil water and heat in dry farmland in Inner Mongolia.Acta Ecologica Sinica,2010,30(6):1539—1547. [孫建,劉苗,李立軍,等. 不同耕作方式對內蒙古旱作農田土壤水熱狀況的影響. 生態學報,2010,30(6):1539—1547.]
[16] Zhang R Z,Huang G B,Cai L Q,et al. Practice of several conservation tillage practices in dryland farming on the Loess Plateau. Chinese Journal of Eco-Agriculture,2013,21(1):61—69. [張仁陟,黃高寶,蔡立群,等. 幾種保護性耕作措施在黃土高原旱作農田的實踐. 中國生態農業學報,2013,21(1):61—69.]
[17] Zhong W H,Cai Z C. Research progress in the effect of soil management measures and environmental factors on soil microbial diversity. Biodiversity Science,2004,12(4):456—465. [鐘文輝,蔡祖聰. 土壤管理措施及環境因素對土壤微生物多樣性影響研究進展. 生物多樣性,2004,12(4):456—465.]
[18] Wang G H,Jin J,Xu M N,et al. Effects of plant,soil and soil management on soil microbial community structure. Chinese Journal of Ecology,2006,25(5):550—556. [王光華,金劍,徐美娜,等. 植物、土壤及土壤管理對土壤微生物群落結構的影響. 生態學雜志,2006,25(5):550—556.]
[19] Huang M,Jiang L G,Zou Y B,et al. Changes in soil microbial properties with no-tillage in Chinese cropping systems. Biology and Fertility of Soils,2013,49(4):373–377.
[20] Lu Y Q,Zhu A N,Zhang J B,et al. Effects of no-tillage and straw return on soil enzyme activity and microbial community. Chinese Journal of Soil Science,2014,45(1):85—90. [路怡青,朱安寧,張佳寶,等. 免耕和秸稈還田對土壤酶活性和微生物群落的影響. 土壤通報,2014,45(1):85—90.]
[21] Zhang B,He H B,Ding X L. et al. Soil microbial community dynamics over a maize(L.)growing season under conventional-tillage and no-tillage practices in a rainfed agroecosystem. Soil & Tillage Research,2012,124(4):153—160.
[22] Ding X L,Zhang B,Zhang X D,et al. Effects of tillage and crop rotation on soil microbial residues in a rainfed agroecology system of northeast China. Soil & Tillage Research,2011,114(1):43–49.
[23] Bao S D. Soil and agricultural chemistry analysis. Beijing:China Agriculture Press,2000:103—101,79—87. [鮑士旦. 土壤農化分析. 北京:中國農業出版社,2000:101—103,79—87.]
[24] Bell T,Newman J A,Silverman B W,et al. The contribution of species richness and composition to bacterial services. Nature,2005,436(7054):1157—1160.
[25] Wu J,Brookes P C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biology & Biochemistry,2005,37(3):507—515.
[26] Zhang B,Yao S H,Hu F. Microbial biomass dynamics and soil wettability as affected by the intensity and frequency of wetting and drying during straw decomposition. European Journal of Soil Science,2010,58(6):1482—1492.
[27] Hamer U,Unger M,Makeschin F. Impact of air-drying and rewet-ting on PLFA profiles of soil microbial communities. Journal of Plant Nutrition and Soil Science,2007,170(2):259—264.
[28] van der Heijden M G A,Martin F M,Selosse M A,et al. Mycorrhizal ecology and evolution:The past,the present and the future. New Phytologist,2015,205(4):1406—1423.
[29] van der Heijden M G A,Klironomos J N,Ursic M,et al. Mycorrhizal fungal diversity determines plant biodiversity,ecosystem variability and productivity. Nature,1998,396(6706):69—72.
[30] Helen G,Philip M,Richard D. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biology & Biochemistry,2008,40(2):302—311.
[31] Wang X J,Zhang R Z,Bi D M,et al. Effects of conservation tillage on soil organic carbon components. Journal of Soil and Water Conservation,2009,23(2):115—121. [王新建,張仁陟,畢冬梅,等. 保護性耕作對土壤有機碳組分的影響. 水土保持學報,2009,23(2):115—121.]
[32] Cambardella C A,Elliott E T. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Science Society of America Journal,1992,56(3):777—783.
[33] Zhou L K. Soil enzymology. Beijing:Science Press,1987:263—278. [周禮愷. 土壤酶學. 北京:科學出版社,1987:263—278.]
[34] Chen J,Ma Z M,Liu L L,et al. Effects of different tillage methods on soil organic carbon,microbial biomass and enzyme activity. Journal of Plant Nutrition and Fertilizers,2016,22(3):667—675. [陳娟,馬忠明,劉莉莉,等. 不同耕作方式對土壤有機碳、微生物量及酶活性的影響. 植物營養與肥料學報,2016,22(3):667—675.]
[35] Sinsabaugh R L,Lauber C L,Weintraub M N,et al. Stoichiometry of soil enzyme activity at global scale. Ecology Letters,2008,11(11):1252—1264.
[36] Xue L Z,Li M,Frank S G,et al. Effects of raised-bed planting for enhanced summer maize yield on rhizosphere soil microbial functional groups and enzyme activity in Henan Province,China. Field Crops Research,2012,13(2):28—37.
[37] Rosacker L L,Kieff T L. Biomass and adenylate energy charge of a grassland soil during drying. Soil Biology & Biochemistry,1990,22(8):1121—1127.
[38] Fierer N,Schimel J P. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid re-wetting of a dry soil. Soil Science Society of America Journal,2003,67(3):798—805.
[39] Lupwayi N Z,Arshad M A,Rice W A,et al. Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management. Applied Soil Ecology,2001,16(3):251—261.
Responses of Soil Microbial Community to Drying-Wetting Alternation Relative to Tillage Mode
LIU Kui1, GE Zhuang1, XU Yingde1, LIU Lei1, YE Chao1, LI Ming1, ZHAO Bo1, LIANG Aizhen2, ZHANG Bin1?, WANG Jingkuan1
(1.College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; 2.Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun 130102, China; 3. School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China)
In this study, effects of dry-wet alternation on diversity, abundance and structure of the soil microbial community in the black soil of a long-term stationary field experiment in Dehui of Jilin on tillage modes, no-tillage or ridge tillage, were investigated. So far few reports were detected in the literature about responses of the soil microbial community in the soil subjected to drying-wetting alternation under no-tillage or ridge tillage. In this paper, soil samples were collected for analysis by means of high-throughput sequencing in laboratory. This research was expected to be of great significance to prediction of impacts of drought on soil functions under different tillage practices.No-tillage and ridge tillage plots in the field experiment had been cultivated with maize (L.) for 13 years. Soil samples were collected with a T sampler, ground to pass a 4-mm sieve, and then packed separately into PVC pipes with a sealing film at the bottom of each pipe to make the soil in the pipe the same in bulk density as that in the plot under no-tillage or ridge tillage. The amount of soil packed into the pipe for no-tillage was 115.75 g and for ridge tillage, 113.04 g. Five dry-wet treatments different in frequency and intensity were designed and implemented: (1) CK as control; (2) MDW1, one round of moderate dry-wet alternation; (3) VDW1, one round of very dry-wet alternation; (4) MDW3, three rounds of moderate dry-wet alternation; and (5) VDW3, three rounds of very dry-wet alternation. Soil microbial communities were investigated by means of Illumina Miseq sequencing. Soil available phosphorus and available potassium were determined with conventional analysis methods. Soil pH was determined with a composite electrode. And soil water ratio was set as 1: 5. For measuring carbon and nitrogen, a part of each treated soil sample was ground to pass a 0.85 mm sieve. Total carbon and total nitrogen of the soils were determined with the Vario Max produced by the German Elementar Company.Results show that dry-wet alternation significantly reduced microbial diversity in the soils under no-tillage, and the effect was amplified with rising frequency and intensity of the dry-wet alternation. However, dry-wet alternation did not affect microbial diversity in the soils under ridge tillage. Compared to the control, the treatments under dry-wet alternation significantly increased the relative abundances of Planctomycetes and Verrucomicrobia in the soils under no-tillage and significantly reduced the relative abundances of Saccharibacteria and Parcubacteria in the soils under either no-tillage or ridge tillage, and increased the relative abundance of Gemmatimonadetes in the soils under ridge-tillage. Relative abundances of Proteobacteria and Acidobacteria were significantly lower in the soils under ridge tillage than in the soil under no-tillage, while that of Actinobacteria was significantly higher in the soils under ridge tillage. Relative abundances of Firmicutes and phyla in the“Others”did not vary much between the two tillage modes. Frequency of dry-wet alternation did affect structure of the soil microbial community. However, intensity of drought in the treatments did not have much effect on structure of the soil microbial community. So soil microbial community structure is significantly altered by frequency of the alternation, but not by intensity of the drought in the dry-wet alternation. Redundancy analysis was conducted with available phosphorus, readily available potassium, total N, total C and pH of soil as explanatory variables and 11 phyla of microbes in the soils under no-tillage and ridge tillage as response variables. Readily available potassium was the main environmental factor affecting the distribution and quantity of soil microorganisms.Dry-wet alternation has certain significant effects on soil microbial communities, but such effects are dependent on tillage practices and frequency of the dry-wet alternation. This study is expected to provide a theoretical basis for predicting effects of arid climate on soil ecological functions.
Tillage practice; Dry-wet alternation; Soil microbial community; Black soil; Illumina Miseq sequencing
S154
A
10.11766/trxb201808230253
劉奎,葛壯,徐英德,劉磊,葉超,李明,趙搏,梁愛珍,張彬,汪景寬. 不同耕作方式下黑土微生物群落對干濕交替的響應[J].土壤學報,2020,57(1):206–216.
LIU Kui,GE Zhuang,XU Yingde,LIU Lei,YE Chao,LI Ming,ZHAO Bo,LIANG Aizhen,ZHANG Bin,WANG Jingkuan. Responses of Soil Microbial Community to Drying-Wetting Alternation Relative to Tillage Mode[J]. Acta Pedologica Sinica,2020,57(1):206–216.
* 國家自然科學基金項目(41401332)和遼寧省自然科學基金計劃重點項目(20170540794)資助Supported by the National Natural Science Foundation of China(No. 41401332)and the Natural Science Foundation of Liaoning(No. 20170540794)
,E-mail:zhangbin84@yeah.net
劉 奎(1993—),男,遼寧盤錦人,碩士研究生,主要從事土壤肥力與土壤生態研究。E-mail:505062917@qq.com
2018–08–23;
2018–11–08;
2018–11–26
(責任編輯:盧 萍)