999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

RESEARCH ANNOUNCEMENTS ON“ESTIMATES OF DIRICHLET EIGENVALUES FOR DEGENERATEμ-LAPLACE OPERATOR”

2020-03-14 09:07:26CHENHuaCHENHonggeLIJinning
數學雜志 2020年2期

CHEN Hua,CHEN Hong-ge,LI Jin-ning

(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

1 Introduction and Main Results

For n≥2,we consider the following Dirichlet eigenvalue problem

on a bounded open domain??Rn,with smooth boundary??,whereis a degenerate elliptic operator generated by a system of real vector fields X=(X1,X2,···,Xn),namely,

We assume that the system of real vector fields X=(X1,X2,···,Xn)is defined in Rnby Xj=μj(x)?xj,whereμ1,···,μnare real continuous nonnegative functions in Rnsatisfying following assumptions:

(H1)μ1=1,andμj(x)=μj(x1,···,xj?1)for j=2,···,n.

(H2)For each j=1,···,n,μj∈C1(RnΠ),where

(H3)μj(x)>0 and xk(?xkμj)(x)≥0 for all x∈RnΠ,1≤k≤j?1,j=2,...,n.Furthermore,μj(x1,···,?xk,···,xj?1)=μj(x1,···,xk,···,xj?1)for all 1≤k≤j?1,j=2,···,n.

(H4)There exists a constantσj,k≥0 such thatholds for all 1≤k≤j?1,j=2,···,n.

Then,we define some positive constantsε1,...,εnas

and an index Q as

We remark that assumption(H1)allows us to write the operatorin the form=Recently,Kogoj and Lanconelli in[3]studied such degenerate elliptic operators under the following additional assumption:

(H6)There exists a group of dilations(δt)t>0,

with 1=α1≤ α2≤ ···≤ αn such thatμi isδt homogeneous of degreeαi?1,i.e.,

We next introduce the following weighted Sobolev spacesL2(Rn);j=1,2,···,n}associated with the real vector fields X=(X1,X2,···,Xn),thenis a Hilbert space endowed with normNow let?be a bounded open domain in Rnwith smooth boundary such thatwe denote bythe closure ofwith respect to the normWe know thatis a Hilbert space as well.

In this paper,the Dirichlet eigenvalue problem(1.1)of degenerate elliptic operator?will be considered in the weak sense innamely,

Based on assumptions(H1)–(H5)above,we can show that the Dirichlet eigenvalue problem(1.6)has a sequence of discrete eigenvalueswhich satisfy 0<λ1≤ λ2≤···≤ λk≤ ···andλk→+∞as k→+∞.

By using the regularity results of Franchi and Lanconelli[2]we can prove that the problem(1.6)has discrete Dirichlet eigenvalues.Then,by using the process of refinement in Li-Yau[4],we obtain an explicit lower bound estimates of Dirichlet eigenvaluesλkas follows.

Theorem 1.1Let X=(X1,···,Xn)be real continuous vector fields defined in Rnand satisfy assumptions(H1)–(H5).Assume that?is a bounded open domain in Rnwith smooth boundary such thatIf we denote byλkthe kthDirichlet eigenvalue of operator?on?,then for any k≥1,we have

where Q is defined by(1.4)andandΓ(x)is the Gamma function,|?|is the n-dimensional Lebesgue measure of?and C=C(X,?)is a positive constant.

Remark 1Sincethen Theorem 1.1 implies that the kthDirichlet eigenvalueλksatisfiesfor all k≥1.

Remark 2In general,for degenerate case we haveIf Q=n,the operator will be non-degenerate and the positive constant C can be replaced bythus estimate(1.7)will be the generalization as the Li-Yau’s lower bound estimate in[4].

Moreover,if the vector fields satisfy assumption(H6),then we have the following sharper lower bounds.

Theorem 1.2Let X=(X1,···,Xn)be real continuous vector fields defined in Rnand satisfy assumptions(H1)–(H3)and(H6).Assume that?is a bounded open domain in Rnwith smooth boundary such thatDenote byλkthe kthDirichlet eigenvalue of operator?on?,andis the homogeneous dimension of Rnwith respect to(δt)t>0.Then for any k≥1,we have

Remark 3If the vector fields admit the homogeneous structure assumptions(H1)–(H3)and(H6),then assumptions(H4)and(H5)will be also satisfied.But we cannot deduce assumption(H6)from assumptions(H1)–(H5),for example,X=(?x1,?x2,(|x1|α+|x2|β)?x3)withα>β>0.

Remark 4If the vector fields admit the homogeneous structure assumptions(H1)–(H3)and(H6),then the lower bounds in(1.8)is sharper than(1.7)in the sense of growth order.

Furthermore, by the same condition in Krger [5], we obtain an upper bound for the Dirichlet eigenvalues of operator ?.

Theorem 1.3Let X = (X1,...,Xn) be real continuous vector fields defined in Rnand satisfy assumptions (H1)–(H5).Suppose that ? is a bounded open domain in Rnwith smooth boundary ?? such thatMoreover, we assume that there exists a constant C0> 0 such that the measure of inner neighbourhood of the boundarysatisfies thatfor anywhereis the distance function and |?| is the n-dimensional Lebesgue measure of ?.Denote by λkthe kthDirichlet eigenvalue of operator ?μon ?.Then for any k ≥, we have

Remark 5For a bounded domain ?, if the (n ? 1)-dimensional Lebesgue measure of ?? is bounded, thenThus the condition in Theorem 1.3 holds for some positive constant C0.

The details of proofs for Theorem 1.1, Theorem 1.2 and Theorem 1.3 have been given by [1].

主站蜘蛛池模板: 日韩无码黄色| 在线免费无码视频| 婷婷五月在线| 97影院午夜在线观看视频| 国模在线视频一区二区三区| 四虎亚洲精品| 亚洲全网成人资源在线观看| 中文字幕 91| 丰满少妇αⅴ无码区| 视频二区中文无码| 午夜福利无码一区二区| 国产成人精品优优av| 国产成人精品视频一区二区电影| 午夜无码一区二区三区| 高清不卡一区二区三区香蕉| 亚洲成人在线免费| 强奷白丝美女在线观看| 国产精欧美一区二区三区| 东京热高清无码精品| 熟女成人国产精品视频| 精品久久香蕉国产线看观看gif| 亚洲无卡视频| 精品国产成人a在线观看| 2021国产精品自产拍在线| 国产毛片片精品天天看视频| 2048国产精品原创综合在线| 国产成在线观看免费视频| 综合久久久久久久综合网| 手机精品视频在线观看免费| 成人免费视频一区| 亚洲精品无码成人片在线观看| 国产亚洲欧美日韩在线观看一区二区 | 国产成人综合久久精品下载| 第一页亚洲| 91口爆吞精国产对白第三集| 欧美a√在线| 色妞www精品视频一级下载| 99视频全部免费| 99视频在线免费看| 中文字幕亚洲乱码熟女1区2区| 亚洲精品桃花岛av在线| 国产99免费视频| 999国内精品视频免费| 老色鬼久久亚洲AV综合| 亚洲人成网站观看在线观看| 91麻豆精品国产高清在线| 青草视频久久| av一区二区三区在线观看| 久久a级片| 天天色综合4| 国产精品无码一二三视频| 91精品在线视频观看| 亚洲无码视频喷水| 亚洲日韩国产精品综合在线观看| 欧美亚洲香蕉| 亚洲精品无码成人片在线观看| 黄色污网站在线观看| 六月婷婷精品视频在线观看| www精品久久| 无码粉嫩虎白一线天在线观看| 日韩欧美中文亚洲高清在线| 欧美日在线观看| 欧美精品xx| 亚洲成人网在线播放| 国产日韩欧美中文| 国产精品免费电影| 欧美精品高清| 这里只有精品国产| 噜噜噜久久| 在线精品视频成人网| 国产精品不卡永久免费| 在线观看国产黄色| 女高中生自慰污污网站| 成人福利在线免费观看| 四虎影院国产| 亚洲成人精品久久| 五月天香蕉视频国产亚| 亚洲欧洲自拍拍偷午夜色无码| 青青热久免费精品视频6| 激情亚洲天堂| 亚洲AV无码精品无码久久蜜桃| 亚洲 欧美 日韩综合一区|