999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Nonlinear Degenerate Anisotropic Elliptic Equations with Variable Exponents and L1 Data

2020-05-26 01:34:08KHELIFIHichemandMOKHTARIFares
關(guān)鍵詞:檢察機關(guān)功能

KHELIFI Hichemand MOKHTARI Fares

1Department of Mathematics and Informatics,University of Algiers,Algiers,Algeria.2 Street Didouche Mourad Algiers.

2Applied Mathematics Laboratory,Badji Mokhtar University-Annaba B.P.12,Algeria.

Abstract.This paper is devoted to the study of a nonlinear anisotropic elliptic equation with degenerate coercivity,lower order term and L1 datum in appropriate anisotropic variable exponents Sobolev spaces. We obtain the existence of distributional solutions.

Key Words:Sobolev spaces with variable exponents;anisotropic equations;elliptic equations;L1 data.

1 Introduction

In this paper we prove the existence of solutions to the nonlinear anisotropic degenerate elliptic equations with variable exponents,of the type

where Ω?RN(N ≥3)is a bounded domain with smooth boundary?Ω and the righthan d sidefinL1(Ω),We suppose thatai:Ω×R×RN →R,i=1,...,Nare Carathéodory functions such that for almost everyxin Ω and for every(σ,ξ)∈R×RNthe following assumptions are satisfied for alli=1,...,N

whereβ >0,α >0,and(1,+∞)are continuous functions andis such that

We introduce the function

The nonlinear termg:Ω×R×RN →R is a Carathéodory function such that for a.e.x∈Ω and all(σ,ξ)∈R×RN,we have

whereb:R+→R+is a continuous and increasing function with finite values,c ∈L1(Ω)and?ρ>0 such that:

In[1],the authors obtain the existence of renormalized and entropy solutions for the nonlinear elliptic equation with degenerate coercivity of the type

Forg ≡0 andf ∈Lm(·)(Ω),withm(x)≥m-≥1,equation of the from(1.1)have been widely studied in[2],where the authors obtain some existence and regularity results for the solutions.Ifg≡|u|s(x)-1u,

andf ∈Lm(Ω),withm ≥1,existence and regularity results of distributional solutions have been proved in[3].

As far as the existence results for our problem(1.1)there are three difficulties associated with this kind of problems.Firstly,from hypothesis(1.2),the operator

the operatorAis not coercive.Because,iftends to infinity then

So,the classical methods used in order to prove the existence of a solution for(1.1)cannot be applied. The second difficulty is represented in the fact thatg(x,u,?u)can not be defined frominto its dual,but fromintoL1(Ω). The third difficulty appears when we give a variable exponential growth condition(1.2)forai. The operatorApossesses more complicated nonlinearities;thus,some techniques used in the constant exponent case cannot be carried out for the variable exponent case.For more recent results for elliptic and parabolic case,see the papers[4–8]and references therein.

The paper is organized as follows.In Section 2,we present results on the Lebesgue and Sobolev spaces with variable exponents both for the isotropic and the anisotropic cases,and state the main results.The proof of the main result will be presented in Section 3.We start by giving an existence result for an approximate problem associated with(1.1).The second part of Section 3 is devoted to proving the main existence result by using a priori estimates and then passing to the limit in the approximate problem.

2 Preliminaries and statement of the main result

2.1 Preliminaries

In this sub-section,we recall some facts on anisotropic spaces with variable exponents and we give some of their properties.For further details on the Lebesgue-Sobolev spaces with variable exponents,we refer to[9–11]and references therein.Let Ω be a bounded open subset of RN(N ≥2),we denote

and

LetWe define the space

then the expression

holds true.We define the variable exponents Sobolev spaces by

which is a Banach space equipped with the following norm

Next,we defineas the closure ofinW1,p(·)(Ω). Finally,we introduce a natural generalization of the variable exponents Sobolev spacesthat will enable us to study with sufficient accuracy problem(1.1).Letwhereare continuous functions.We introduce the anisotropic variable exponents Sobolev spaces

with respect to the norm

We introduce the following notationas

Then

where p+is defined as in(2.1)(1.5),and C is a positive constant independent of u.Thusis an equivalent norm on

Proof.Put

Thanks to(Proposition 2.1 in[3]),we have

Using the convexity of the applicationwe obtain

We will use through the paper,the truncation functionTkat heightk(k >0),that isTk(s):=max{-k,min{k,s}}.

Lemma 2.1([12]).Let g∈Lp(·)(Ω)and gn∈Lp(·)(Ω)with‖gn‖p(·)≤C.If gn(x)→g(x)almost everywhere inΩ,then gn ?g in Lp(·)(Ω).

2.2 Statement of main result

We will extend the notion of distributional solution,see[12,13],to problem(1.1)as follows:

Definition 2.1.Let f ∈L1(Ω)a measurable function u is said to be solution in the sense of distributions to the problem(1.1),if

Our main result is as follows

Theorem 2.2.Let f ∈L1(Ω).Assume(1.2)-(1.8)and(2.4).Then problem(1.1)has at least one solution in the sense of distributions.

3 Proof of the main result

3.1 Approximate solution

Let(fn)nbe a sequence inL∞(Ω)such thatfn →finL1(Ω)with|fn|≤|f|(for examplefn=Tn(f))and we consider the approximate problem

Lemma 3.1.Let f ∈L1(Ω).Assume(1.2)-(1.8)and(2.4).Then,problem(3.1)has at least one solution in the sense of distributions.

Consider the following problem

Lemma 3.2.Let f ∈L1(Ω).Assume that(1.2)-(1.8)and(2.4)hold,then the problem(3.2)has at least one solution unk in the sense of distributions.

Then by using(3.3)and(3.4)we conclude thatis bounded.For the coercivity,by using(1.4),(1.7),and(2.5),we get

then

It remains to show thatis pseudo-monotone.Let(um)mbe a sequence insuch that

We will prove that

Using(3.5),(3.8),(3.9),and thatum →uinwe have

therefore,thanks to(3.5),(3.9),and(3.10),we write

On the other hand,by(1.3),we obtain

在刑事訴訟過程中,檢察機關(guān)天生擁有比被告人更為強大的公訴權(quán),處于絕對的優(yōu)勢地位。如果檢察機關(guān)的這種天生的權(quán)力不受到外部程序控制的話很容易被濫用。庭前會議制度擁有對公訴權(quán)進行司法審查與控制的功能,能夠有效地防止檢察機關(guān)濫用公訴權(quán),可以把一些不符合起訴條件的案件排除在審判程序之外,對進入審判程序的案件起到一個篩選和過濾的功能。

In view of Lebesgue dominated convergence theorem and(3.6),we have

By(3.7)and(3.5),we get

this implies,thanks to(3.11),that

Proof.The proof uses the same technique as in(Lemma 4.1 of[3])and is omited here.

Proof.It is similar to the proof of Theorem 4.2 of[13].

3.2 A priori estimates

Proof.Leth>0.TakingTh(un)as a test function in(3.1),then

By dropping the nonnegative term in(3.13),(1.7),and(1.4)we get

then

Consequently,

TakingTh(un)as a test function in(3.1),and dropping the first nonnegative term in the left-hand side,we obtain

By combining(1.8),(3.14)and(3.15),forh=ρ,we deduce that

This ends the proof of Lemma 3.6.

3.3 The strong convergence of the truncation

Proof.Leth ≥j >0 andwn=T2j(un-Th(un)+Tj(un)-Tj(u)).We setφj(s)=s·exp(δs2),whereδ=(l(j)/(2α))2,l(j)=b(j)(1+|j|)γ++,and

LetM=4j+h.SinceDiwn=0 on{|un|>M}andφj(wn)has the same sign asunon the set{|un|>j}(indeed,ifun >jthenun-Th(un)≥0 andTj(un)-Tj(u)≥0,it follows thatwn ≥0).Similarly,we show thatwn ≤0 on the set{un <-j}.

By takingφj(wn)as a test function in(3.1),we obtain

Takingyn=un-Th(un)+Tk(un)-Tk(u),we have

that is equivalent to

where

Arguing as in[13],we can prove that

By(3.16)and(3.17)we conclude that

Using(3.18)and arguing as in[13],we get

Thanks to(3.18)and(3.19),we obtain

Then by lettinghtends to infinity in the previous inequality,we get

Thanks to Lemma 2.2,we obtain

3.4 The equi-integrability of g(x,un,?un)and passage to the limit

Thanks to(3.20),we have

Using that(ai(x,un,?un))nis bounded in,and Lemma 2.1,we obtain

Now,letEbe a measurable subset of Ω.For allm>0,we have by using(1.6)

Since(DiTm(un))nconverges strongly inthen for allε>0,there existsδ>0 such thatmeas(E)<δand

On the other hand,usingT1(un-Tm-1(un))as a test function in(3.1)form>1,we obtain

there existsm0>0 such that

Using(3.21)and(3.22),we deduce the equi-integrability ofg(x,un,?un).In view of Vitali’s theorem,we obtain

Lettingn →+∞,we can easily pass to the limit in this equation,to see that this last integral identity is true foruinstead ofun.This proves Theorem(2.2).

Example 3.1.As a prototype example,we consider the model problem

wheref ∈L1(Ω)andas in Theorem 2.2.

Acknowledgments

The authors would like to thank the referees for the useful comments and suggestions that substantially helped improving the quality of the paper.

猜你喜歡
檢察機關(guān)功能
也談詩的“功能”
中華詩詞(2022年6期)2022-12-31 06:41:24
關(guān)于非首都功能疏解的幾點思考
懷孕了,凝血功能怎么變?
媽媽寶寶(2017年2期)2017-02-21 01:21:24
“簡直”和“幾乎”的表達功能
檢察機關(guān)業(yè)務(wù)運行機制面臨的難題及解決之道
檢察機關(guān)適用刑事和解制度淺析
檢察機關(guān)預(yù)防職務(wù)犯罪探析
檢察機關(guān)強化刑事訴訟監(jiān)督權(quán)的法理闡釋
淺議檢察機關(guān)會計司法鑒定的主要職責(zé)
中西醫(yī)結(jié)合治療甲狀腺功能亢進癥31例
主站蜘蛛池模板: 一区二区三区四区日韩| 色综合综合网| 成人毛片免费在线观看| 伊人色婷婷| 精品亚洲欧美中文字幕在线看| а∨天堂一区中文字幕| 九月婷婷亚洲综合在线| 精品国产黑色丝袜高跟鞋| 成人国产精品一级毛片天堂| 久久久久九九精品影院 | 91久久偷偷做嫩草影院精品| 99re精彩视频| 日韩精品高清自在线| 波多野结衣一区二区三区88| 国产乱人视频免费观看| 欧美亚洲日韩中文| 精品五夜婷香蕉国产线看观看| 久久先锋资源| 亚洲系列中文字幕一区二区| 欧美伦理一区| 国产全黄a一级毛片| 婷婷久久综合九色综合88| 伊人无码视屏| 日韩国产 在线| 中文无码精品A∨在线观看不卡 | 国产99在线| 国产精品第一区在线观看| 色噜噜综合网| 日本高清免费一本在线观看| 欧美精品三级在线| 欧洲一区二区三区无码| 超级碰免费视频91| 香蕉在线视频网站| 日韩精品一区二区三区视频免费看| 国产av剧情无码精品色午夜| 99re免费视频| 日本a∨在线观看| 欧美亚洲国产一区| 精品久久777| 亚洲成av人无码综合在线观看| 国产麻豆另类AV| 国产91精选在线观看| 国产黄在线免费观看| 91在线无码精品秘九色APP| 免费黄色国产视频| 欧美日本在线观看| 波多野结衣在线一区二区| 欧美三级日韩三级| 精品人妻一区无码视频| 亚洲 欧美 中文 AⅤ在线视频| 国产国拍精品视频免费看 | 亚洲性日韩精品一区二区| 亚洲国产天堂在线观看| 欧美一级大片在线观看| 国产欧美在线观看视频| 久久精品波多野结衣| 91成人精品视频| 在线色综合| 国产一级视频久久| v天堂中文在线| 久久窝窝国产精品午夜看片| 青草视频在线观看国产| 国产裸舞福利在线视频合集| 成人福利在线视频| 亚洲日韩Av中文字幕无码| 精品国产欧美精品v| 无码免费视频| 国产视频一区二区在线观看| 天堂岛国av无码免费无禁网站 | 亚洲人妖在线| 欧美亚洲第一页| 亚洲视频无码| 99视频全部免费| 欧日韩在线不卡视频| 久久影院一区二区h| 一级成人a做片免费| 色香蕉影院| 免费看美女毛片| 久久综合结合久久狠狠狠97色| 亚洲人成网站观看在线观看| 多人乱p欧美在线观看| 在线国产欧美|