征夏明 張強



摘? 要:目的:找到一種最普遍情況下量子隱形傳態的一般表示及代數結構。方法:歸納推理與演繹推理,利用多項式相乘與張量積之間的等價性發現一般規律。結果:將多體單自由度或單體多自由度的量子隱形傳態推廣至多體多自由度,以及混合態。結論:預言多體多自由度單次量子隱形傳態的存在,并包含了已被實驗證實的所有特殊情況。
關鍵詞:量子隱形傳態;貝爾基;幺正變換
中圖分類號:O413 文獻標識碼:A ? ?文章編號:1671-2064(2020)03-0000-00
0引言
量子隱形傳態是十分有趣且充滿潛力的量子力學效應,其首次在1993年由Charles Bennett[1]等人提出,兩個粒子(包含糾纏態)的量子隱形傳態由李大創和曹卓良提出[2]。而在2015年,潘建偉、陸朝陽等人引入并成功完成了單光子多屬性的量子傳送[3]。本文中,我們將利用多粒子各個屬性之間的張量積和貝爾基(Bell states)與標準正交基之間的幺正變換得出較為普適的量子傳送表示法。
參考文獻
[1] Bennett, C. H. et al. Teleporting an unknown quantum state via dual classic and Einstein-Podolsky-Rosen channels [J].Phys. Rev. Lett,1993,70(13): 1895-1899.
[2] Li Da-Chuang et al. Teleportation of Two-Particle Entangled State via Cluster State [J].Commun. Theor. Phys,2007,47(3):464-466.
[3] Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon [J].Nature,2015,518(7540):516-519.
[4] Zwiebach Barton. Quantum Physics II [EB/OL].(2013-12)[2020-01]. https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/.
[5] Albeverio S et al. Quantum Teleportation: from Pure to Mixed States and Standard to Optimal[J]. Gender Work & Organization,2003,12(6):551-571.
[6] Harrow Aram. Quantum Physics III [EB/OL].(2016-07)[2020-01].
https://ocw.mit.edu/courses/physics/8-06-quantum-physics-iii-spring-2016/
[7] Yu Chang-Shui et al. Teleportation of Mixed States and Multipartite Quantum States[J].Commun. Theor. Phys,2007,47(6):1041-1044.
收稿日期:2020-01-12
課題:雙曲超材料聲子極化子電磁性質研究,課題編號:KF20171110。
作者簡介:征夏明(1996—),男,安徽蕪湖人,碩士研究生,研究方向:強關聯電子體系。
Quantum Teleportation of Many-body System with Multiple Degrees of Freedom
ZHENG Xia-ming1,2,3? ?ZHANG? Qiang 2,4
(1.Institute?of?Physical?Science?and?Information?Technology,?Anhui?University,?Hefei Anhui?230039;
2.Key?Laboratory?for?Photonic?and?Electronic?Bandgap?Materials,?Ministry?of?Education,?School?of?Physics?and?Electronic?Engineering,?Harbin?Normal?University,?Harbin?Heilongyjiang 150025;
3.Institute?of?Solid?State?Physics,?Chinese?Academy?of?Sciences,?Hefei Anhui?230031;
4.MOE?Key?Laboratory?of?Engineering?Dielectrics?and?its?Application,?Harbin?University?of Science?and?Technology,?Harbin?Heilongjiang? 150080)
Abstract:Objective:Finding a scheme and algebra structure of general quantum teleportation. Methods:Inductive reasoning and deductive reasoning. The equivalence between polynomial multiplication and tensor product.Results: Many-body or multi-degrees of freedom cases are generalized in multiple particles system with higher degrees of freedom, even mixed states. Conclusions:Predicting the existence of quantum teleportation of multiple particles system with higher degrees of freedom. And special cases which is proven by experiment are included.
Keywords:Quantum Teleportation;Bell State; Unitary Transform