999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

同時最優化時間表長與總完工時間的雙代理單機序列分批排序問題

2020-09-05 06:58:06韓鑫鑫
工程數學學報 2020年4期
關鍵詞:排序大學

何 程, 韓鑫鑫

(河南工業大學理學院,鄭州 450001)

1 Introduction

The multi-agent scheduling problem was introduced by Agnetis et al[1]and Baker and Smith[2]. There are several agents, each agent has a job set. The agents have to schedule their jobs on a common processing resource, i.e., a single machine, and each agent wishes to minimize an objective function that depends on the completion times of his own set of jobs. The problem is to find a schedule that satisfies each agent’s requirements for his own objective function.

Scheduling problems involving multiple agents arise naturally in many applications in which negotiation procedures are needed. For example, in industrial management,the multi-agent scheduling problem is formulated as a sequencing game, where the objective is to devise some mechanisms to encourage the agents to cooperate with a view to minimize the overall cost (Curiel et al[3]and Hamers et al[4]).

By now, the multi-agent scheduling problem has been extensively investigated.Agnetis et al[5]studied single-machine scheduling problems with multiple agents, and the considered objective functions are the maximum of regular functions, the number of tardy jobs, and the total weighted completion time. Cheng et al[6,7]and Yuan[8]also the studied the multi-agent scheduling on a single machine.

2 Preliminaries

1) pXjis the processing time of job JXj(X ∈{A,B}, j =1,2,··· ,nX).

2) CXj(σ) is the completion time of job JXjin σ(X ∈{A,B}, j =1,2,··· ,nX).

3 Pareto optimal algorithm

Without loss of generality, we may regard the batches of agent A as a single big batch BAwith the processing time

Lemma 2For each Pareto optimal point of problem,there exists a corresponding effective Pareto optimal schedule.

and at least one of the inequalities is strict, which contradicts to the Pareto optimality of σ. So (i) follows.

This contradicts to the Pareto optimality of σ. So (ii) follows.

Let Fl(j) be the minimum total completion time of jobs {JB1,JB2,··· ,JBj} with l batches and the starting time be zero. The recursion equation for l ≤j ≤lb is:

with initial conditions

F0(0)=0 and F0(j)=+∞, for j >0,

Fl(j)=+∞, for j lb,

where αlj=max{l ?1,j ?b}, βlj=min{j ?1,(l ?1)b}.

Then we define

Finally, we define

Thus, we have the following conclusion by Lemma 3.

Algorithm POP Step 0Calculate

4 Unbounded model

Similar to Lemma 1, we may get the following lemma.

with the initial conditions

F0(0)=0 and F0(j)=+∞, for j >0,

Fl(j)=+∞, for j

猜你喜歡
排序大學
排排序
“留白”是個大學問
排序不等式
《大學》征稿簡則
大學(2021年2期)2021-06-11 01:13:48
《大學》
大學(2021年2期)2021-06-11 01:13:12
48歲的她,跨越千里再讀大學
海峽姐妹(2020年12期)2021-01-18 05:53:08
大學求學的遺憾
恐怖排序
節日排序
刻舟求劍
兒童繪本(2018年5期)2018-04-12 16:45:32
主站蜘蛛池模板: 怡红院美国分院一区二区| 亚洲无码一区在线观看| 免费国产在线精品一区| A级全黄试看30分钟小视频| 毛片卡一卡二| 亚洲天堂视频在线观看免费| JIZZ亚洲国产| 亚洲大尺码专区影院| 精品国产电影久久九九| 97久久超碰极品视觉盛宴| 无码福利视频| 亚洲日韩AV无码一区二区三区人| 成年午夜精品久久精品| 国产亚洲欧美在线人成aaaa| 国产精品熟女亚洲AV麻豆| 国产a v无码专区亚洲av| 国产高清无码麻豆精品| 亚洲一区二区三区国产精华液| 亚洲女人在线| 国产人前露出系列视频| 色哟哟国产精品| 亚洲免费福利视频| 国产精品视频公开费视频| 日本少妇又色又爽又高潮| 试看120秒男女啪啪免费| 国产免费高清无需播放器| 第一页亚洲| 国产精品午夜福利麻豆| 久久福利网| 国产97公开成人免费视频| 婷婷激情亚洲| 日本久久免费| 成人va亚洲va欧美天堂| 热热久久狠狠偷偷色男同| 不卡午夜视频| 国产成人a毛片在线| 亚洲中字无码AV电影在线观看| 亚洲精品欧美日韩在线| 在线国产毛片| 中日韩一区二区三区中文免费视频 | 麻豆精品在线| av手机版在线播放| 国产swag在线观看| 精品久久国产综合精麻豆| 黄色网页在线观看| 中国一级毛片免费观看| 色屁屁一区二区三区视频国产| jijzzizz老师出水喷水喷出| 久久一日本道色综合久久| 国产在线观看第二页| 欧美午夜在线观看| 亚洲精品无码日韩国产不卡| 夜夜操狠狠操| 国产香蕉97碰碰视频VA碰碰看 | 日韩欧美国产三级| 国产草草影院18成年视频| 在线精品亚洲国产| 国内精品免费| 亚洲看片网| 欧美精品1区| 欧美精品另类| 亚洲国产天堂在线观看| 91青青草视频在线观看的| 无码不卡的中文字幕视频| 波多野衣结在线精品二区| 久久一色本道亚洲| 91久久大香线蕉| 54pao国产成人免费视频| 欧美日韩理论| 国产精品制服| 中文字幕人妻av一区二区| 最新国产麻豆aⅴ精品无| 日韩毛片免费视频| 九九久久99精品| 久久狠狠色噜噜狠狠狠狠97视色 | 婷婷综合亚洲| 99热这里只有精品5| 国产成人综合亚洲欧洲色就色| 欧美午夜性视频| 综合五月天网| 日韩乱码免费一区二区三区| 亚洲日韩每日更新|