江蘇省常州市新北區新橋實驗小學 萬小紅
數學教學中,教師要注重對學生數據分析觀念意識的培養,為學生提取、整理、分析數據奠定基礎。數據分析觀念包含的內容有許多:了解現實生活中的許多問題需要做調查研究、收集數據,并能夠通過分析作出判斷等等。
數據是信息的載體,包含言語、信號、圖像等諸多方面的內容。統計學的核心就是通過載體來提取有價值的內容。在平常的生活中,學生大都對收集到的數據信息比較關注,而忽視了感受數據與數據間的關聯性以及隱藏在這些數據背后的信息。因此,教師要能夠把所學內容與現實生活的相關情境有機地結合在一起,讓學生從中真正感受到數據分析的意義與價值。
如習題:“張林爸爸的身高是174 厘米,媽媽身高是170 厘米,你能從這組身高的數據中得出什么結論?”四年級學生和六年級學生在分析題意之后,得出的結論是截然不同的。在四年級學生中,幾乎所有學生都是從爸爸與媽媽的身高差角度去得出結論的,而很少有學生能夠站在平均數的角度思考和考慮問題;而在六年級學生中,幾乎有百分之九十以上的學生都會認為這道習題不應該從爸爸和媽媽的身高差角度來考慮問題,而應該從我國男性與女性的平均身高出發來考慮問題,首先要知道我國成年男性和成年女性身高的平均數是多少,這樣才能對張林爸爸與媽媽的身高情況得出結論。只有把數據的意義與數據相關的現實背景有機地結合在一起,才能使學生提取到的數據發揮出最大的價值。
由四年級學生與六年級學生對同一種數據得出不同的分析結果與結論可以看出,統計數據是依賴于現實背景而存在的,培養學生的數據分析觀念,就必須考慮現實問題的背景。據此,教師要改變傳統“重技能,輕理解”的現象,而要能夠為學生創設出真實的、有意義的情境,并讓學生真正經歷數據分析的全過程,逐步幫助學生養成用數據說話的意識。
統計學是通過數據來推斷數據產生的背景的,即便是同樣的數據,不同的學生分析后得出的結果也會有所差異,這就需要教師根據問題的不同采用合適的數據分析方法,以幫助學生學會正確分析與處理數據,提升數學教學質量。
如在教學《扇形統計圖》這一單元以后,教師可以設計以下學習活動:你知道南京市一年中什么時候雨水最多,什么時候雨水最少嗎?你知道南京市一年的降水量總共有多少嗎?請你到中國氣象局網站搜集相關數據,并就有關的問題進行整理,在對數據進行分析后得出相關結論。降雨作為人們日常生活中的一種常見現象,許多學生都想不到降雨也是有規律的,這種開放性問題的設計可以有效激發學生的探究學習興趣。在學生的匯報交流中,理解力與創造力給了教師意想不到的驚喜。有的學生從近兩年南京市的降水情況分布中,看出了降水水量分布的不均衡性;有學生從近十年的南京市降水情況分布圖中,發現了這里降水量的大致水平;有學生從南京市的降水量與全國各地降水量的分布圖中,得出了南北方降水量的差異;還有的學生把南京市每月降水量的情況以百分比的形式表現了出來。如此教學,不同的學生從數據中得出了不同的結論,他們對所學知識的印象更加深刻,深化了學生的學習效果。
由此可見,當教師在數據的收集、整理和分析的教學過程中能夠完全放手,讓學生親自參與其中的時候,學生不僅真正經歷了數據分析的全過程,而且還可以從數據中了解其中隱含的更多信息,真正顯示出了根據問題不同選擇適合方法的必要性,幫助學生積累到了廣泛的數據統計經驗,使學生的數據分析觀念得到了有效培養。
在小學階段,學生學習的數據分析內容大都是描述性統計,也就是指對于收集到的大量數據進行分析與概括,找到數據分布的特征,挖掘出其中隱含的信息,從而使學生的數據分析能力得到極大的提升。如在《平均數》的教學中,在學生對平均數有了一定了解的基礎上,教師可以用課件為學生展示這樣一組數據:

某學?;@球隊員的身高情況統計表
教師對學生說:這是在一場籃球比賽中籃球隊員的身高情況,現在在場上的隊員是2 號、5 號、8 號、9 號、10 號,你能算出這些隊員的平均身高是多少嗎?有學生認為可以把這五個隊員的身高加起來,再除以5,得出的就是這些隊員的平均身高。這位學生回答完以后,立馬有學生反駁道:這五位隊員的平均身高是161 厘米,可是籃球隊員中并沒有身高是161 厘米的呀?教師讓其他學生談談對此的看法,有學生說平均身高不一定要正好與某個隊員的身高相等,有學生說平均身高代表的是場上隊員的平均身高水平……這樣教學深化了學生對平均數的理解,提升了數學教學質量。
由此可見,在數學教學中,教師要能夠為學生提供更多參與學習討論、交流的機會,在學習過程中經歷數據的產生發展過程,深化教學價值,使學生的數據分析觀念得到有效培養。
總之,在數學教學中,教師要能夠樹立為學生思維發展而教的信念,關注學生的學習過程,注重對學生數據分析觀念思想方法的滲透,唯有如此,才能使學生在有步驟的學習活動中積累數據分析觀念,感悟數學思想方法,提升學生的數學學習能力。