999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

火龍果采后病原菌的分離鑒定及抑制效應研究

2020-11-09 03:09:31胡翠平黃慧燕周桂
南方農業學報 2020年7期

胡翠平 黃慧燕 周桂

摘要:【目的】分離鑒定廣西采后火龍果果實上的病原真菌,明確病原菌菌株對季銨化殼聚糖(HTCC)的敏感特性,為火龍果果實的采后病害防治提供科學依據。【方法】采用常規組織分離法從采后貯藏自然發病的火龍果果實上分離病原菌,經致病性鑒定后,依據菌株形態學特性和rDNA-ITS序列分析,確定病原真菌的分類地位。采用菌絲生長速率法和PI染色法,觀察HTCC對病原真菌菌絲生長及菌絲細胞膜的影響。【結果】從采后貯藏自然發病的白心火龍果果實上分離到1株絲狀真菌菌株E;致病性測定結果表明,菌株E為火龍果采后病害病原真菌;經形態學特性和rDNA-ITS序列分析,將菌株E鑒定為新月彎孢菌(Curvularia lunata)。HTCC對菌株E的作用結果顯示,HTCC對菌株E的菌絲生長具有較強抑制作用,其抑制作用與HTCC濃度呈正相關,0.25、0.50、0.75和1.00 mg/mL HTCC對菌株E的抑菌率分別為20.84%、50.05%、72.91%和83.23%;HTCC處理能破壞菌株E的菌絲細胞膜通透性,降低細胞膜的完整性。【結論】新月彎孢菌能引起廣西采后火龍果發生真菌病害,依據HTCC對該菌的抑制效果,火龍果采后流通過程中可使用HTCC來減輕病害發生。

關鍵詞: 火龍果;采后病害;真菌;rDNA-ITS序列;季銨化殼聚糖;細胞膜

中圖分類號: S436.679? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2020)07-1560-08

Abstract:【Objective】Isolation and identification of pathogenic fungi from postharvest pitaya in Guangxi and identification of the sensitive characteristics of the purified strains to quaternized chitosan(HTCC), so as to provide theoretical basis for the identification and control of postharvest fungal diseases of pitaya. 【Method】The fungi on the fruit of pitaya were isolated and purified from pitaya fruits which were naturally diseased after post harvest storage by common tissue isolation method. After pathogenicity identification, the taxonomic status of the fungi was determined according to the morphological characteristics and rDNA-ITS sequence of the strains. At the same time, the effects of HTCC on mycelial growth and cell membrane of pathogenic fungi were observed by the methods of mycelial growth rate and PI staining. 【Result】A filamentous fungus E was isolated from white pitaya fruits which were naturally diseased after post harvest storage. The results of pathogenicity test showed that strain E was pitaya post harvest disease pathogenic fungus, which was identified as Curvularia lunata by morphological characteristics analysis and rDNA-ITS sequence. The results showed that HTCC had a strong inhibitory effect on the mycelial growth of fungus E in a dose-dependent manner, and the inhibition rates of 0.25,0.50,0.75 and 1.00 mg/mL HTCC were 20.84%,50.05%,72.91% and 83.23%; HTTC treatment could destroy the membrane permeability and reduce the integrity of the membrane of fungus E. 【Conclusion】C. lunata can cause post harvest pitaya fungus disease in Guangxi. According to the inhibition effect of HTCC on the disease, HTCC can be used to reduce the occurrence of the disease in the process of post harvest circulation.

Key words: pitaya; post harvest disease; fungus; rDNA-ITS sequence; quaternized chitosan; cell membrane

Foundation item: Guangxi Natural Science Foundation(2014GXNSFAA118076); Project of Guangxi Scientific Research and Technology Development(14125008-1-2); Key Project of Science and Technology Research in Guangxi Universities(ZD2014041)

0 引言

【研究意義】火龍果(Hylocereus spp.)別稱紅龍果、青龍果、仙密果等,是一種仙人掌科量天尺屬植物,原產于中美洲地區,20世紀90年代初引入我國臺灣試種后陸續在廣東、海南、福建和廣西等地推廣,是一種被廣泛關注的熱帶亞熱帶果樹(許偉東等,2002;王壯等,2014;張振華等,2019)。火龍果果實營養豐富,功用獨特,除富含糖、維生素、蛋白質、氨基酸、脂肪酸及礦質元素等營養成分外,還含有多種功能性物質,如類黃酮、白蛋白、膳食纖維、色素、甾醇和苷類化合物,具有預防疾病、增強免疫力、調節激素及解毒等功效,是一種具有營養和藥用價值的綠色保健水果(縱偉等,2007;蔡永強等,2008;王彬等,2009;徐慧等,2010)。由于火龍果潛在的利用價值,我國火龍果的種植規模不斷擴大。廣西地處亞熱帶季風氣候區,具有適宜火龍果生長的溫度、光照、降水和土壤等條件,火龍果產業發展迅猛,目前廣西已成為我國火龍果種植面積最大的區域(黃艷芳等,2017)。但火龍果采后極易腐爛變質,一方面是由于火龍果呼吸代謝旺盛,自然衰老;另一方面則因微生物侵染,火龍果采后病害發生較嚴重,其中真菌病害最普遍(林珊宇等,2018)。因此,開展火龍果采后病害及其防治研究,對廣西火龍果產業的可持續發展具有重要意義。【前人研究進展】火龍果常見病害主要有炭疽病、潰瘍病、黑斑病、根霉病和果腐病等。Taba等(2007)研究發現仙人掌平臍蠕孢(Bipolaris cactivora)能引起火龍果腐爛。Hawa等(2009)首次報道新月彎孢菌(Curvularia lunata)可引起馬來西亞紅肉火龍果病害。崔志婧等(2011)研究結果表明尖孢鐮刀菌(Fusarium oxysporum)和單隔鐮刀菌(F. dimerum)是引起上海市進口火龍果軟腐病的病原真菌。Guo等(2013)研究發現平頭炭疽菌(Colletotrichum truncatum)可引起火龍果炭疽病,是我國首次報道該菌株引起的火龍果炭疽病。郭力維等(2014)首次發現引起火龍果采后果腐病的桃吉爾霉(Gilbertella persicaria)。胡美姣等(2015)鑒定出2種火龍果采后病害病原,即平頭炭疽菌和單隔鐮刀菌。姚昇華等(2015)研究結果表明仙人掌平臍蠕孢是引起上海市進口越南紅心火龍果黑腐病的病原。Oeurn等(2015)從泰國洛伊火龍果果實上分離到仙人掌平臍蠕孢、膠孢炭疽菌(C. gloeosporiodes)和匍枝根霉(Rhizopus stolonifer)3種真菌,致病性試驗確定3種真菌均能使采后火龍果發生病害。王會會等(2016)認為新暗色柱節孢是火龍果潰瘍病致病菌。李國林等(2018)用電子鼻檢測到桃吉爾霉侵染火龍果果實后氣味的變化,表明桃吉爾霉可劣化火龍果品質。林珊宇等(2018)首次發現引起火龍果軟腐病的木賊鐮刀菌(F. equiseti)。目前對火龍果采后病害防治的方法有低溫貯藏、熱處理、輻射保鮮、化學藥劑處理及氣體熏蒸處理等(崔志婧等,2011;李敏等,2012;朱迎迎等,2014;Ngoc et al.,2017),物理防治成本較高,化學防治則使病原菌產生抗藥性,藥劑殘留還會危害人體健康(杜彩蓮等,2018)。隨著人們對食品安全的重視,開發新型的綠色生物農藥代替傳統殺菌劑已成為當前研究熱點之一。殼聚糖作為迄今為止在自然界中發現的唯一陽離子堿性多糖,不僅無毒安全、可生物降解,還具有廣譜的抗菌性能,同時能促進植物宿主防御反應,對多種植物病害具有防治作用(Bautista-Ba?os et al.,2006;Wang et al.,2014;Kaur et al.,2018)。然而,殼聚糖溶解性較差,只溶于酸性溶液,限制了其應用范圍。季銨化改性可有效提高殼聚糖水溶性。研究表明,季銨化殼聚糖(Quaternized chitosan,HTCC)比殼聚糖具有更好的抑菌作用,可用于控制一些植物病原菌(Guo et al.,2007;Badawy,2010;Badawy and Rabea,2014;Liu et al.,2018)。殼聚糖及其衍生物因其優異的性能,在果蔬貯藏保鮮和植物病害防治方面應用前景廣闊。【本研究切入點】廣西火龍果種植面積大,但采后火龍果真菌病害較普遍,嚴重制約其產業發展。目前,有關火龍果采后病害防治研究相對較少。【擬解決的關鍵問題】采用常規組織分離法從采后貯藏自然發病的火龍果果實上分離病原菌,經致病性測定后,結合菌株形態學特性和rDNA-ITS序列分析,確定病原真菌分類地位,并進一步測定HTCC對火龍果病原真菌的抑制效應,以期為火龍果果實的采后病害防治提供理論與實踐依據。

1 材料與方法

1. 1 試驗材料

病原菌菌株與培養基:病原菌菌株于采后貯藏自然發病的白心火龍果果實上分離獲得;PDA培養基購自北京索萊寶科技有限公司。主要試劑及儀器:DL2000 Plus DNA Ladder和2×Taq PCR Master Mix購自Biomiga公司;HTCC購自酷爾化學科技(北京)有限公司;碘化丙錠溶液(1 mg/mL)、活性氧檢測試劑盒和ddH2O購自北京索萊寶科技有限公司;通用引物ITS1和ITS4由深圳華大基因科技有限公司合成;PCR儀購自Biometra公司;電泳儀和電泳槽購自Bio-Rad公司;熒光顯微鏡購自Olympus公司。

1. 2 試驗方法

1. 2. 1 病原菌分離純化 選取火龍果病果,參照常規組織分離法分離病原真菌(張成玲等,2019),取病健交界處組織塊,用70%酒精和2%次氯酸鈉溶液進行表面消毒后放入PDA培養基中,28 ℃恒溫培養,待菌落長出后用無菌竹簽挑取邊緣菌絲植入另一PDA培養基內,28 ℃繼續培養;經3次繼代培養可得純化菌種,將其接種于PDA斜面培養基,并置于4 ℃冰箱保存備用。

1. 2. 2 病原菌致病性能鑒定 參照許玲等(2003)的有傷接種方法進行菌株致病性鑒定。用70%酒精對火龍果果實進行表面消毒,再用無菌蒸餾水沖洗后晾干。用滅菌竹簽在火龍果果實表面刺破5個孔,使孔眼集中在直徑約5 mm的范圍內,用5 mm無菌打孔器取純化后的真菌塊,將其反貼于傷口處,室溫培養,以PDA培養基作為空白對照,定期觀察火龍果接種處是否有病害癥狀出現。

1. 2. 3 病原菌形態學觀察 用無菌竹簽挑取純化后病原真菌菌絲接種于PDA培養基上,28 ℃恒溫培養,觀察菌落形態、菌絲疏密性、顏色等特征。熒光顯微鏡下觀察菌株菌絲、產孢結構和孢子形態等特征。

1. 2. 4 病原菌rDNA-ITS鑒定 用簡易微波爐法提取DNA(潘力等,2010)。利用真菌通用引物ITS1(5'-TCCGTAGGTGAACCTGCGG-3')和ITS4(5'-TCCTCCGCTTATTGATATGC-3')進行PCR擴增。PCR反應體系20 μL:2×Taq PCR Master Mix 10 μL,10 μmol/L ITS1和ITS4引物各1 μL,DNA模板1 μL,ddH2O 7 μL。擴增程序:94 ℃預變性10 min;94 ℃ 30 s,55 ℃ 45 s,72 ℃ 1 min,進行35個循環;72 ℃延伸10 min。擴增產物經1%瓊脂糖凝膠電泳檢測后送至北京擎科新業生物技術有限公司進行純化、測序。測序結果在NCBI上進行BLAST比對,選取同源性較高及形態相近的菌株序列,用MEGA 7.0中的鄰接法(Neighbor-joining,NJ)構建其系統發育進化樹,使用Bootstraps進行自檢,1000次重復。

1. 2. 5 HTCC對病原真菌菌絲生長的抑制作用 參考Jia等(2016)的方法進行測定,配制含不同濃度HTCC的PDA培養基,121 ℃高壓滅菌15 min后倒平板,以不含HTCC的PDA培養基作為空白對照。PDA培養基凝固后,在28 ℃培養7 d的菌株邊緣,用無菌打孔器打下直徑5 mm的菌餅,反貼于PDA培養基中央,Parafilm封口膜密封,28 ℃培養5 d后,用游標卡尺測量菌落直徑。

1. 2. 6 HTCC對病原真菌菌絲細胞膜完整性的影響

參考Ouyang等(2018)的方法對病原菌菌絲進行碘化丙錠(Propidium iodide,PI)染色。無菌打孔器取直徑5 mm的菌餅反貼于HTCC濃度為0.5 mg/mL的PDA培養基上,無菌水作對照,28 ℃培養3 d后,于菌落邊緣斜插無菌蓋玻片,繼續培養2 d,取出蓋玻片,置于潔凈載玻片上,滴加50 μg/mL的PI染色液避光染色10 min后,蒸餾水洗去多余染色液,熒光顯微鏡下觀察熒光強度。

1. 3 統計分析

試驗數據利用Excel 2007和SPSS 23.0進行整理、繪圖和統計分析。

2 結果與分析

2. 1 病原菌分離及致病性測定結果

采用常規組織分離法從采后貯藏自然發病的白心火龍果果實上分離到1株絲狀真菌,將其命名為E。采用有傷接種方法將菌株E回接至健康白心火龍果果實,結果顯示,空白對照傷口無明顯病害癥狀出現(圖1-A),而回接菌株E的傷口出現略凹陷的病斑(圖1-B)。由此確定菌株E為火龍果采后病害病原真菌。

2. 2 病原菌形態特征觀察結果

菌株E在PDA培養基上生長旺盛,菌落均勻、近似圓形,初期為白色,后菌落中心逐漸變為灰黑色,菌絲絨狀致密(圖2-A和圖2-B)。在光學顯微鏡下觀察,該菌株菌絲透明,分枝,有隔膜;分生孢子梗叢生或散生;分生孢子呈褐色,梭形或近橢圓形,直立或彎曲,有隔膜,無縊縮(圖2-C)。

2. 3 rDNA-ITS同源性比對及系統發育分析結果

測序結果表明,菌株E的rDNA-ITS序列大小為556 bp,將其上傳至NCBI進行BLAST比對,結果(圖3)顯示,菌株E的rDNA-ITS與C. lunata(KJ767095.1/KX443633.1/LC317566.1)、Curvularia sp.(HE86184 3.1/HE861844.1)、Cochliobolus lunatus(HQ248191.1)、C. aeria(KT283679.1/LC314151.1/LC314152.1)和Fungal endophyte(KF436144.1)的同源性均在99.0%以上。基于真菌rDNA-ITS序列構建的系統發育進化樹也顯示,病原真菌菌株E與C. lunata、Curvularia sp.、C. lunatus、C. aeria和F. endophyte在同一分支。結合菌株E的形態學特征并參考前人的相關研究(Avasthi et al.,2015),將其鑒定為新月彎孢菌(C. lunata)。

2. 4 HTCC對菌株E菌絲生長的抑制作用

如圖4所示,HTCC能抑制菌株E的菌絲生長,其抑制作用與HTCC濃度呈正相關,0.25、0.50、0.75和1.00 mg/mL HTCC對菌株E的抑菌率分別為20.84%、50.05%、72.91%和83.23%,均與CK(0.0 mg/mL)差異顯著(P<0.05)。

2. 5 HTCC對菌株E菌絲細胞膜完整性的影響

PI本身不熒光,但與細胞內DNA結合后,在綠色激發光下能發出紅色熒光,當完整的細胞膜受損后,PI進入細胞內并與核酸結合發出熒光,其熒光強度能反映出細胞膜完整性。如圖5所示,未經處理的菌絲,暗場下基本無紅色熒光產生,而經0.50 mg/mL HTCC處理過的菌絲,則顯示出較強烈的紅色熒光。表明HTCC處理后病原真菌菌株E的菌絲細胞膜完整性受損,使PI進入胞內與核酸結合,故熒光強度增強。

3 討論

查閱文獻發現,火龍果采后常見的病原真菌有仙人掌平臍蠕孢(Taba et al.,2007;姚昇華等,2015;Oeurn et al.,2015)、尖孢鐮刀菌(崔志婧等,2011),單隔鐮刀菌(崔志婧等,2011;胡美姣等,2015)、桃吉爾霉(郭力維等,2014;李國林等,2018)、平頭炭疽菌(胡美姣等,2015)、膠孢炭疽菌(Oeurn et al.,2015)和匍枝根霉(Oeurn et al.,2015)等。本研究從發病的白心火龍果果實上分離得到1株病原真菌,經形態學特性、rDNA-ITS序列分析,將其鑒定為新月彎孢菌,是首次發現新月彎孢菌引起我國火龍果采后病害。此外,Hawa等(2009)也發現新月彎孢菌是馬來西亞紅肉火龍果的病原真菌。

在我國,由新月彎孢菌引起的玉米彎孢葉斑病(Curvularia leaf spot of maize)是一種嚴重的玉米病害,對我國玉米生產造成巨大影響(Liu et al.,2015;常佳迎等,2019)。新月彎孢菌具有廣泛的寄主范圍,包括膜稃草(Monteiro et al.,2003)、小麥(Iram and Ahmad,2006)、結縷草(Roberts and Tredway,2008)、黑麥草(Tian et al.,2008)、草莓(Verma and Gupta,2010)、菠菜(Pandey et al.,2011)、高粱(Panchal and Dhale,2011)、蓮花(Cui and Sun,2012)、水稻(Liu et al.,2014;楊小林等,2019)和番茄(Iftikhar et al.,2016)等。與大多數病原真菌相似,新月彎孢菌侵染植物的過程包括附著、萌發、感染結構形成、宿主滲透和宿主組織定殖,已證實多種毒力因子參與其感染過程,如黑色素、毒素、細胞壁降解酶、角質酶和激素(Gao et al.,2014b)。Liu等(2016a)通過研究新月彎孢菌中大量的角質酶基因,認為其產生的角質酶能降解不同寄主植物不同類型的角質層,可能是新月彎孢菌擁有廣泛寄主的原因之一。致病基因是疾病發展的必要條件,在了解新月彎孢菌的相關毒力因子后,科學家開始致力于研究一些毒力相關基因,如角質酶基因ClCUT7參與發病過程,在發病早期,其轉錄水平逐漸升高,ClCUT7基因缺失時,其致病性降低(Liu et al.,2016a);絲裂原活化蛋白激酶(MAPK)基因Clk1參與菌絲生長、細胞壁降解酶生物合成的正調控,Clk1功能域缺乏,影響分生孢子的產生,但有形成厚垣孢子狀結構的傾向,Clk1突變體的致病性降低(Gao et al.,2013);Ras基因的同源基因Clg2p對新月彎孢菌附著孢的形成和致病性至關重要,Clg2p通過其RA結構域與clf相互作用,在clf上游調控附著孢的形成和致病性(Liu et al.,2016b);Clt-1基因與毒素的產生和致病性密切相關(Gao et al.,2014a);Brn1基因參與1,8-二羥基萘黑色素的合成(Liu et al.,2011)。

殼聚糖是甲殼素脫乙酰化產物,是自然界最豐富的生物聚合物之一,具有無毒安全、環境兼容性好、可生物降解、可再生、生物活性和來源廣泛等優點。殼聚糖不僅可抑制多種植物病原菌的生長,還可誘導植物產生防御反應,對多種植物病害具有防治作用。殼聚糖處理能提高番茄植株對尖孢鐮刀菌引起的根腐病和冠腐病的抗性(Benhamou and Thériaul,1992)。Meng等(2010)報道350 kD殼聚糖能抑制梨黑斑病菌和輪紋病菌的菌絲生長和孢子萌發,并使梨果實過氧化物酶活性顯著提高。殼聚糖可通過誘導花生種子產生更多的酚類化合物來限制黃曲霉生長和黃曲霉毒素B1產生(Fajardo et al.,1995)。Liu等(2007)研究表明,殼聚糖能防治番茄果實采后病害,能顯著提高番茄果實中多酚氧化酶、過氧化物酶活性和酚類物質的含量。

殼聚糖線型分子鏈上含有氨基、羥基和乙酰基等功能基團,使其表現出獨特的物理、化學和生物特性,如抗菌性、生物相容性及生物可降解性等(Ali et al.,2010;Deng et al.,2010)。然而,殼聚糖溶解性較差,只溶于酸性溶液,限制了其應用范圍。對殼聚糖進行物理、化學和生物改性,如酶催化(Sun and Payne,2000)、共混(Dunia et al.,2008; Abdelghany et al.,2013 )、交聯(Wang et al.,2013)、衍生化(Luan et al.,2018)及酸解(Zhang et al.,2018)等,可增強其的溶解性、抗菌性、抗病毒、抗腫瘤、吸附性和螯合性等,因而在食品、生物醫藥和環境等領域具有廣泛的應用前景。

4 結論

從采后自然發病的白心火龍果果實上分離得到1株病原真菌菌株E,經形態學特征和分子生物學分析,確定其為新月彎孢菌。HTCC對該病原真菌的菌絲生長具有較強的抑制作用,并呈劑量依賴性,火龍果采后流通過程中可使用HTCC來減輕病害發生。

參考文獻:

常佳迎,劉樹森,馬紅霞,石潔,郭寧,張海劍. 2019. 黃淮海地區夏玉米彎孢葉斑病菌遺傳多樣性分析[J]. 中國農業科學,52(5):822-836. [Chang J Y,Liu S S,Ma H X,Shi J,Guo N,Zhang H J. 2019. Genetic diversity analysis of Curvularia lunata in summer maize in Huang-Huai-Hai Region[J]. Scientia Agricultura Sinica,52(5):822-836.]

蔡永強,向青云,陳家龍,彭玉基,王彬. 2008. 火龍果的營養成分分析[J]. 經濟林研究,26(4):53-56. [Cai Y Q,Xiang Q Y,Chen J L,Peng Y J,Wang B. 2008. Analysis of nutritional components in pitaya fruit[J]. Nonwood Forest Research,26(4):53-56.]

杜彩蓮,張燦,袁芳,李佳穎,孫廷飛,樂揚,Shaukat Ali. 2018. 溫度、pH和培養基對長毛擬青霉菌株SP053生長和繁殖的影響[J]. 南方農業學報,49(12):2447-2453. [Du C L,Zhang C,Yuan F,Li J Y,Sun T F,Yue Y,Shaukat Ali. 2018. Effects of temperature,pH and culture media on growth and sporulation of Paecilomyces penicillatus strain SP053[J]. Journal of Southern Agriculture,49(12):2447-2453.]

崔志婧,王奕文,于岳,許玲. 2011. 上海市進口火龍果軟腐病病害分析[J]. 微生物學通報,38(10):1499-1506. [Cui Z J,Wang Y W,Yu Y,Xu L. 2011. Pathogens analysis of soft rot disease of imported pitaya in Shanghai[J]. Microbiology China,38 (10):1499-1506.]

郭力維,吳毅歆,何漢興,毛自朝,何鵬博,何月秋. 2014. 云南省火龍果采后果腐病研究(英文)[J]. 果樹學報,31(1):111-114. [Guo L W,Wu Y X,He H X,Mao Z C,He P B,He Y Q. 2014. A new fruit rot disease in Hylocereus costaricensis in Yunnan Province of China[J]. Journal of Fruit Science,31(1):111-114.]

胡美姣,高兆銀,李敏,朱迎迎,陳亮. 2015. 火龍果2種采后病害病原菌的鑒定及生物學特性研究[C]//中國熱帶作物學會. 中國熱帶作物學會第九次全國會員代表大會暨2015年學術年會論文摘要集. [Hu M J,Gao Z Y,Li M,Zhu Y Y,Chen L. 2015. Identification and biological characteristics of two pathogens of postharvest diseases of pitaya[C]//China Tropical Crop Society. Proceedings of the 9th National Meeting and 2015 Academic Annual Meeting of China Tropical Crop Society.]

黃艷芳,秦媛媛,阮曉靜,蘭宗寶. 2017. 廣西火龍果產業發展現狀及可持續發展對策研究[J]. 熱帶農業科學,37(6):97-99. [Huang Y F,Qin Y Y,Ruan X J,Lan Z B. 2017. Present situation and countermeasures of sustainable development of pitaya industry in Guangxi[J]. Chinese Journal of Tropical Agriculture,37(6):97-99.]

李國林,孟繁博,鄭秀艷,黃道梅,陳曦,林茂. 2018. 紅肉火龍果貯藏期間氣味監測及桃吉爾霉對氣味的影響[J]. 食品安全質量檢測學報,9(18):74-78. [Li G L,Meng F B,Zheng X Y,Huang D M,Chen X,Lin M. 2018. Odor monitoring during storage of red pitaya and effect of Gilbertella persicariaon odor[J]. Journal of food safety and quality inspection,9(18):74-78.]

李敏,胡美姣,高兆銀,張正科,薛丁榕,楊冬平,楊波. 2012. 海南火龍果采后病害調查及防治技術研究[J]. 中國熱帶農業,(6):42-44. [Li M,Hu M J,Gao Z Y,Zhang Z K,Xue D R,Yang D P,Yang B. 2012. Investigation and control of postharvest diseases of pitaya in Hainan[J]. China Tropical Agriculture,(6):42-44.]

林珊宇,賢小勇,韋小妹,韋繼光,朱桂寧. 2018. 廣西火龍果采后病害主要病原菌分離與鑒定[J]. 中國南方果樹,47(2):6-12. [Lin S Y,Xian X Y,Wei X M,Wei J G,Zhu G N. 2018. Isolation and identification of pathogens for the postharvest diseases in pitaya fruits[J]. South China Fruits,47(2):6-12.]

潘力,崔翠,王斌. 2010. 一種用于PCR擴增的絲狀真菌DNA快速提取方法[J]. 微生物學通報,37(3):450-453. [Pan L,Cui C,Wang B. 2010. Rapid extraction of filamentous fungal DNA for PCR amplification[J]. Microbiology China,37(3):450-453.]

王彬,蔡永強,鄭偉. 2009. 火龍果果實氨基酸含量及組成分析[J]. 中國農學通報,25(8):210-214. [Wang B,Cai Y Q,Zheng W. 2009. Analysis on the amino acid content and the composition in the pitaya fruit[J]. Chinese Agricultural Science Bulletin,25(8):210-214.]

王會會,符碧海,戴俊,徐倩,王萌,陶挺燕,謝昌平,朱朝華. 2016. 火龍果潰瘍病菌的鑒定及室內藥劑篩選[J]. 中國南方果樹,45(1):8-12. [Wang H H,Fu B H,Dai J,Xu Q,Wang M,Tao T Y,Xie C P,Zhu C H. 2016. Identification of dragon fruit canker pathogen and indoor scree-ning of fungicides[J]. South China Fruits,45(1):8-12.]

王壯,王立娟,蔡永強,周俊良,馬玉華. 2014. 火龍果營養成分及功能性物質研究進展[J]. 中國南方果樹,43(5):25-29. [Wang Z,Wang L J,Cai Y Q,Zhou J L,Ma Y H. 2014. Present research of the nutritional components and functional substances of pitaya fruit[J]. South China Fruits,43(5):25-29.]

徐慧,王秋玲,韋剛,莫建光. 2010. 火龍果的保健功效及其研究進展[J]. 廣西科學院學報,26(3):383-385. [Xu H,Wang Q L,Wei G,Mo J G. 2010. The health benefits and research progress of pitaya[J]. Journal of Guangxi Academy of Sciences,26(3):383-385.]

許玲,李學文,滕康寧. 2003. 果蔬采后致病真菌的檢測及其控制[J]. 食品科學,24(7):155-158. [Xu L,Li X W,Teng K N. 2003. Detection and control of postharvest pathogenic fungi in fruits and vegetables[J]. Food Science,24 (7):155-158.]

許偉東,廖劍鍬,劉加建,關金順. 2002. 火龍果引種初報[J]. 中國南方果樹,31(1):33-34. [Xu W D,Liao J Q,Liu J J,Guan J S. 2002. Preliminary report on the introduction of pitaya[J]. South China Fruits,31(1):33-34.]

楊小林,韓燁,殷得所,張瑞洋,張佑宏,張舒. 2019. 湖北稻區穗腐病病原ITS鑒定及其生物學特性分析[J]. 河南農業科學,48(4):82-87. [Yang X L,Han Y,Yin D S,Zhang R Y,Zhang Y H,Zhang S. 2019. ITS identification and biological characterization of the pathogens of rice spikelet rot disease in Hubei rice region[J]. Journal of Henan Agricultural Sciences,48(4):82-87.]

姚昇華,范詩睿,邢云萊,何嘉琳. 2015. 越南‘紅心火龍果黑腐病病原真菌鑒定及環境因素影響分析[J]. 植物生理學報,51(9):1419-1424. [Yao S H,Fan S R,Xing Y L,He J L. 2015. Pathogen identification and environmental effects analysis of black rot disease of imported Vietna-mese ‘Red pitaya[J]. Plant Physiology Journal,51(9):1419-1424.]

縱偉,劉艷芳,白新鵬. 2007. 火龍果的營養保健成分及加工[J]. 中國食物與營養,(10):46-48. [Zong W,Liu Y F,Bai X P. 2007. Nourishment components and processing of pitaya[J]. Food and Nutrition in China,(10):46-48.]

朱迎迎,陳亮,祝慶剛,張正科,李敏,高兆銀,胡美姣. 2014. 火龍果采后病害與防控技術研究進展[J]. 中國熱帶農業,(4):55-58. [Zhu Y Y,Chen L,Zhu Q G,Zhang Z K,Li M,Gao Z Y,Hu M J. 2014. Present research of postharvest diseases and control technology of pitaya[J]. China Tropical Agriculture,(4):55-58.]

張成玲,孫厚俊,趙永強,楊冬靜,徐振,馬居奎,謝逸萍. 2019. 甘薯根腐病病原分子鑒定及防治藥劑篩選[J]. 江西農業學報,31(8):46-51. [Zhang C L,Sun H J,Zhao Y Q,Yang D J,Xu Z,Ma J K,Xie Y P. 2019. Molecular detection of sweetpotato root rot disease and screening of fungicides[J]. Acta Agriculturae Jiangxi,31(8):46-51.]

張振華,林江,王文雅,許暢,楊開樣,何世偉. 2019. 火龍果潰瘍病原菌拮抗菌株的篩選與生物防治效果初探[J]. 河南農業科學,48(8):88-94.[Zhang Z H,Lin J,Wang W Y,Xu C,Yang K Y,He S W. 2019. Screening of antagonistic strains of pitaya ulcer pathogen and primary study on biocontrol effects[J]. Journal of Henan Agricultural Sciences,48(8):88-94.]

Abdelghany S M,Schmid D,Deacon J,Jaworski J,Fay F. 2013. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticle[J]. Biomacromolecules,14(2):302-310.

Ali S W,Joshi M,Rajendran S. 2010. Modulation of size,shape and surface charge of chitosan nanoparticles with reference to antimicrobial activity[J]. Journal of Computational and Theoretical Nanoscience,3(4):452-460.

Avasthi S,Gautam,A. K,Bhadauria R. 2015. Occurrence of leaf spot diseases on(L.) Burm.f. caused by species from Madhya Pradesh,India[J]. Biodiversitas Journal of Biological Diversity,16(1):79-83.

Badawy M E I. 2010. Structure and antimicrobial activity relationship of quaternary N-alkyl chitosan derivatives against some plant pathogens[J]. Journal of Applied Polymer Science,117(2):960-969.

Badawy M E I,Rabea E I. 2014. Synthesis and antifungal property of N-(aryl) and quaternary N-(aryl) chitosan derivatives against Botrytis cinerea[J]. Cellulose,21(4):3121-3137.

Bautista-Ba?os S,Hernandez-Lauzardo A N,Velazquez-Del Valle M G,Hernandez-Lopez M,Ait Barka E,Bosquez-Molina E,Wilson C L. 2006. Chitosan as a potential na-tural compound to control pre and postharvest diseases of horticultural commodities[J]. Crop Protection,25(2):108-118.

Benhamou N,Thériault G. 1992. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicislycopersici[J]. Physiological and Molecular Plant Pathology,41(1):33-52.

Cui R Q,Sun X T. 2012. First report of Curvularia lunata causing leaf spot on lotus in China[J]. Plant Disease,96(7):1068-1068.

Deng H B,Zhou X,Wang X Y,Zhang C Y,Ding B,Zhang Q H,Du Y M. 2010. Layer-by-layer structured polysaccharides film-coated cellulose nanofibrous mats for cell culture[J]. Carbohydrate Polymers,80(2):474-479.

Dunia M,García C,José L,Gomez R,Manuel S S. 2008. Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends[J]. Journal of Biomedical Materials Research. Part B:Applied Biomaterials,85B (2):303-313.

Fajardo J E,Waniska R D,Cuero R G,Pettit R E. 1995. Phenolic compounds in peanut seeds:Enhanced elicitation by chitosan and effects on growth and aflatoxin B1 production by Aspergillus flavus[J]. Food Biotechnology,9(1-2):59-78.

Gao J X,Liu T,Chen J. 2014a. Insertional mutagenesis and cloning of the gene required for the biosynthesis of the non-host-specific toxin in Cochliobolus lunatus that causes maize leaf spot[J]. Phytopathology,104(4):332-339.

Gao S G,Li Y Q,Gao J X,Suo Y J,Fu K H,Li Y Y,Chen J. 2014b. Genome sequence and virulence variation-related transcriptome profiles of Curvularia lunata,an important maize pathogenic fungus[J]. BMC Genomics,15(1):627.

Gao S G,Zhou F H,Liu T,Li Y Y,Chen J. 2013. A MAP kinase gene,Clk1,is required for conidiation and pathogenicity in the phytopathogenic fungus Curvularia lunata[J]. Journal of Basic Microbiology,53(3):214-223.

Guo L W,Wu Y X,Ho H H,Su Y Y,Mao Z C,He P F,He Y Q. 2013. First report of dragon fruit(Hylocereus undatus) anthracnose caused by Colletotrichum truncatum in China[J]. Journal of Phytopathology,162(4):272-275.

Guo Z Y,Xing R,Liu S,Zhong Z M,Ji X,Wang L,Li P C. 2007. Antifungal properties of Schiff bases of chitosan,N-substituted chitosan and quaternized chitosan[J]. Carbohydrate Research,342(10):1329-1332.

Hawa M M,Salleh B,Latiffah Z. 2009. First report of Curvularia lunata on red-fleshed dragon fruit(Hylocereus poly-rhizus) in Malaysia[J]. Plant Disease,93(9):971-971.

Iftikhar S,Shahid A A,Nawaz K,Ali S W. 2016. First report of Curvularia lunata causing fruit rot of tomato(Lycopersicum esculentum) in Pakistan[J]. Plant Disease,100(5):1013.

Iram S,Ahmad I. 2006. Aggressiveness analysis of foliar fungi to leaves of wheat and rice crops[J]. Archives of Phytopathology and Plant Protection,39(6):429-437.

Jia R X,Duan Y F,Fang Q,Wang X Y,Huang J Y. 2016. Pyri-dine-grafted chitosan derivative as an antifungal agent[J]. Food Chemistry,196:381-387.

Kaur P,Duhan J S,Thakur R. 2018. Comparative pot studies of chitosan and chitosan-metal nanocomposites as nano-agrochemicals against fusarium wilt of chickpea(Cicer arietinum L.)[J]. Biocatalysis and Agricultural Biotechnology,14:466-471.

Liu J,Tian S P,Meng X H,Xu Y. 2007. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit[J]. Postharvest Biology and Technology,44(3):300-306.

Liu L M,Huang S W,Wang L,Hou E Q,Xiao D F. 2014. First report of leaf blight of rice caused by Cochliobolus lunatus in China[J]. Plant Disease,98(5):686-686.

Liu T,Hou J M,Wang Y Y,Jin Y Z,Borth W,Zhao F Z,Liu Z,Hu J,Zuo Y H. 2016a. Genome-wide identification,classification and expression analysis in fungal-plant interactions of cutinase gene family and functional analysis of a putative ClCUT7 in Curvularia lunata[J]. Molecular Genetics and Genomics,291(3):1105-1115.

Liu T,Wang Y Y,Ma B C,Hou J M,Jin Y Z,Zhang Y L,Ke X W,Tai L M,Zuo Y H,Dey K. 2016b. Clg2p interacts with Clf and ClUrase to regulate appressorium formation,pathogenicity and conidial morphology in Curvula-ria lunata[J]. Scientific Reports,6(1):24047.

Liu T,Xu S F,Liu L X,Zhou F H,Hou J M,Chen J. 2011. Cloning and characteristics of Brn1 gene in Curvularia lunata causing leaf spot in maize[J]. European Journal of Plant Pathology,131(2):211-219.

Liu T,Zhao F Z,Wang Y Y,Hou J M,Liu L Z,Shen Y Q,Liu Z,Zhang H T,Zuo Y H. 2015. Comparative analysis of phylogenetic relationships,morphologies,and pathogenicities among Curvularia lunata isolates from maize in China[J]. Genetics & Molecular Research,14(4):12537-12546.

Liu W X,Qin Y K,Liu S,Xing R,Yu H H,Chen X L,Li K C,Li P C. 2018. Synthesis,characterization and antifungal efficacy of chitosan derivatives with triple quaternary ammonium groups[J]. International Journal of Biological Macromolecules,114:942-949.

Luan F,Wei L J,Zhang J J,Tan W Q,Chen Y,Dong F,Li Q,Guo Z Y. 2018. Preparation and characterization of qua-ternized chitosan derivatives and assessment of their antioxidant activity[J]. Molecules,23(3):516.

Meng X H,Yang L Y,Kennedy J F,Tian S P. 2010. Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit[J]. Carbohydrate Polymers,81(1):70-75.

Monteiro F T,Vieira B S,Barreto R W. 2003. Curvularia lunata and Phyllachora sp.:Two fungal pathogens of the grassy weed Hymenachne amplexicaulis from Brazil[J]. Australasian Plant Pathology,32(4):449-453.

Ngoc N K,Phong N V,Tung N T,Hos N V,Woolf A B,Fullerform R A. 2017. Postharvest diseases and effect of hot water treatments on white fleshed dragon fruit [Hyloce-reus undatus(Haw.) Britton & Rose][J]. International Journal of Current Research in Biosciences and Plant Bio-logy,4(5):30-37.

Oeurn S,Jitjak W,Sanoamuang N. 2015. Fungi on dragon fruit in Loei Province,Thailand and the ability of Bipolaris cactivora to cause post-harvest fruit rot[J]. Asia-Pacific Journal of Science and Technology,20(4):405-418.

Ouyang Q L,Tao N G,Zhang M L. 2018. A damaged oxidative phosphorylation mechanism is involved in the antifungal activity of citral against Penicillium digitatum[J]. Frontiers in Microbiology. doi:10.3389/fmicb.2018.00239.

Panchal V H,Dhale D A. 2011. Isolation of seed-borne fungi of Sorghum(Sorghum vulgare pers.)[J]. Journal of Phytology,3(12):45-48.

Pandey R K,Gupta P K,Srivastava M,Singh S R,Gogo R. 2011. First report of brown leaf spot disease caused by Curvularia lunata infecting Indian spinach or poi(Basella rubra)[J]. Indian Phytopathology,64(2):207.

Roberts J A,Tredway L P. 2008. First report of Curvularia blight of zoysiagrass caused by Curvularia lunata in the United States[J]. Plant Disease,92(1):173.

Sun W Q,Payne G F. 2000. Tyrosinase-containing chitosan gels:A combined catalyst and sorbent for selective phenol removal[J]. Biotechnology and Bioengineering,51(1):79-86.

Taba S,Miyahira N,Nasu K,Takushi T,Moromizato Z. 2007. Fruit rot of strawberry pear(pitaya) caused by Bipolaris cactivora[J]. Journal of General Plant Pathology,73(5):374-376.

Tian P,Nan Z B,Li C J,Spangenberg G C. 2008. Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens[J]. European Journal of Plant Pathology,122(4):593-602.

Verma V S,Gupta V K. 2010. First report of Curvularia lunata causing root rot of strawberry in India[J]. Plant Di-sease,94(4):477.

Wang L T,Wu H,Qin G Z,Meng X H. 2014. Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit[J]. Food Control,41:56-62.

Wang W B,Huang D J,Kang Y R,Wang A Q. 2013. One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion[J]. Colloids and Surfaces B:Biointerfaces,106:51-59.

Zhang H K,Lu Y T,Wang Y H,Zhang X R,Wang T Y. 2018. D-Glucosamine production from chitosan hydrolyzation over a glucose-derived solid acid catalyst[J]. RSC Advances,8(10):5608-5613.

(責任編輯 麻小燕)

主站蜘蛛池模板: 国产午夜福利在线小视频| 亚洲黄网视频| 欧美在线一二区| 日本午夜三级| 高清无码手机在线观看| 久久久噜噜噜| 午夜不卡视频| 精品在线免费播放| 伊人久综合| 国产在线小视频| 高清不卡一区二区三区香蕉| 精品无码国产自产野外拍在线| 国产杨幂丝袜av在线播放| 日韩乱码免费一区二区三区| 91色在线视频| 九九精品在线观看| 欧美精品1区| 欧美精品另类| 亚洲综合色在线| 欧美成人手机在线观看网址| 亚洲欧美国产高清va在线播放| 美美女高清毛片视频免费观看| 欧美成人怡春院在线激情| 欧美人与动牲交a欧美精品| 亚洲国产成人精品无码区性色| 国产欧美在线视频免费| AV不卡在线永久免费观看| 综合成人国产| 欧美日韩中文字幕在线| 无码国产偷倩在线播放老年人| 人人爽人人爽人人片| 久久国产精品国产自线拍| 亚洲免费黄色网| 亚洲国产精品美女| 视频一本大道香蕉久在线播放 | 免费视频在线2021入口| 欧美高清日韩| 91欧洲国产日韩在线人成| 毛片免费在线视频| 欧美视频在线播放观看免费福利资源 | 91在线精品麻豆欧美在线| 香蕉久久国产精品免| 伊人久久影视| 毛片久久久| 久久公开视频| 99视频精品在线观看| 欧美激情视频二区| 国产精品欧美日本韩免费一区二区三区不卡 | 国产精品欧美亚洲韩国日本不卡| 无码一区18禁| 波多野结衣一区二区三区四区视频| 亚洲精品久综合蜜| 国产一区二区三区在线观看视频| 2020极品精品国产| 国产成人综合日韩精品无码首页 | 欧美综合区自拍亚洲综合天堂| 99视频精品在线观看| 日本爱爱精品一区二区| 日韩第九页| 制服丝袜国产精品| 亚洲欧美日韩视频一区| 人人艹人人爽| 一区二区三区精品视频在线观看| 亚洲成人网在线观看| 在线播放精品一区二区啪视频| 98超碰在线观看| 国产成人亚洲无码淙合青草| 国产伦精品一区二区三区视频优播 | 在线五月婷婷| 在线日韩一区二区| 国产玖玖视频| 成人在线天堂| 国产精品太粉嫩高中在线观看| 999精品视频在线| 中文字幕在线看视频一区二区三区| 中文字幕一区二区视频| 亚洲精品欧美日韩在线| 久青草网站| 99人妻碰碰碰久久久久禁片| 无码在线激情片| 国产JIZzJIzz视频全部免费| 色综合久久久久8天国|