999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

磷肥施用對(duì)土壤呼吸及其組分影響的研究進(jìn)展

2020-11-10 04:39:47肖華翠楊柳明李一清
福建農(nóng)業(yè)科技 2020年7期

肖華翠 楊柳明 李一清

摘 要:土壤磷肥大量輸入,增加土壤磷有效性,將顯著影響陸地生態(tài)系統(tǒng)碳循環(huán)過(guò)程。土壤呼吸作為碳循環(huán)過(guò)程中的關(guān)鍵組分在全球碳平衡和氣候變暖中扮演重要的角色,其對(duì)磷肥響應(yīng)模式及機(jī)制是當(dāng)前生態(tài)學(xué)研究領(lǐng)域的熱點(diǎn)問(wèn)題。綜述了土壤呼吸及其組分對(duì)磷肥的響應(yīng),發(fā)現(xiàn)磷肥對(duì)土壤呼吸及其組分的影響表現(xiàn)為增加、降低和無(wú)影響,且因生態(tài)系統(tǒng)類型、施磷量、施磷時(shí)長(zhǎng)不同而不同。磷肥主要通過(guò)改變土壤pH、可溶性有機(jī)碳、植物生產(chǎn)力、凋落物、微生物群落組成等影響土壤呼吸的環(huán)境因子,直接或間接影響土壤呼吸及其組分。未來(lái)應(yīng)重點(diǎn)關(guān)注施磷對(duì)土壤呼吸組分的影響及微生物學(xué)作用機(jī)制,同時(shí)開(kāi)展土壤呼吸組分對(duì)磷肥介導(dǎo)的多種環(huán)境因子變化的響應(yīng)研究,為全面認(rèn)識(shí)磷肥對(duì)全球碳平衡的調(diào)控提供理論參考。

關(guān)鍵詞:磷肥;土壤呼吸;異養(yǎng)呼吸;土壤碳循環(huán);調(diào)控

中圖分類號(hào):S154 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):0253-2301(2020)07-0006-09

DOI: 10.13651/j.cnki.fjnykj.2020.07.002

Research Progress on the Effects of Phosphorus Fertilizer Applicationon Soil Respiration and Its Components

XIAO Hua-cui1,2, YANG Liu-ming1,2*, LI Yi-qing1,2

(1. Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology,

Fujian Normal University, Fuzhou, Fujian 350007, China; 2. School of Geographical

Science, Fujian Normal University, Fuzhou, Fujian 350007, China)

Abstract: A large amount of soil phosphorus input will increase the availability of soil phosphorus, which will significantly affect the carbon cycle process of terrestrial ecosystem. As a key component of carbon cycle, soil respiration plays an important role in the global carbon balance and climate warming. The response mode and mechanism of soil respiration to phosphorus fertilizer is a hot issue in the current ecological research field. In this paper, the response of soil respiration and its components to phosphorus fertilizer was reviewed. It was found that the effects of phosphorus fertilizer on soil respiration and its components were increased, decreased, and no effect, and varied depending on the types of ecosystem, the application amount of phosphorus, and the duration of phosphorus application. The? phosphorus fertilizer mainly affected the soil respiration and its components directly or indirectly by changing the environmental factors such as soil pH, soluble organic carbon, plant productivity, litter, and microbial community composition. In the future, we should focus on the effects of phosphorus application on the soil respiration components and the microbiological mechanism. At the same time, the response of soil respiration components to the changes of various environmental factors mediated by phosphorus fertilizer should be studied, so as to provide theoretical reference for comprehensively understanding the regulation of phosphorus fertilizer on the global carbon balance.

Key words: Phosphorus fertilizer; Soil respiration; Heterotrophic respiration; Soil carbon cycle;Regulation

隨著全球氣候變化備受關(guān)注,土壤呼吸作為溫室氣體CO2的重要來(lái)源,其通量、源與匯的精確估算及測(cè)定受到極大的重視[1]。土壤呼吸是土壤內(nèi)部CO2向大氣擴(kuò)散的過(guò)程,主要由自養(yǎng)呼吸和異養(yǎng)呼吸構(gòu)成[2]。據(jù)估計(jì),全球范圍內(nèi)土壤呼吸每年向大氣釋放約75 pgC,僅次于海洋釋放的CO2含量[3-4],同時(shí)土壤是地球上最大的活性碳庫(kù)[5],因此土壤呼吸速率的任何微小改變都將可能引起大氣CO2濃度顯著變化甚至對(duì)全球碳平衡產(chǎn)生重要影響。土壤呼吸還是土壤肥力的重要指示器[6],受土壤養(yǎng)分[7]、凋落物輸入及分解[8]、根生物量和微生物[9]、磷沉降[10]等諸多環(huán)境條件的影響。因此,揭示土壤呼吸對(duì)環(huán)境條件變化的響應(yīng)及規(guī)律對(duì)深入探討陸地生態(tài)系統(tǒng)碳循環(huán)過(guò)程具有重要意義。

磷是植物生長(zhǎng)和代謝所需的重要養(yǎng)分,是維持生態(tài)系統(tǒng)生產(chǎn)力的關(guān)鍵因子[11]。近年來(lái),人類活動(dòng)(施用無(wú)機(jī)磷肥、糞肥和生物質(zhì)燃燒)極大地增加了生物圈磷輸入量[12-13]。據(jù)統(tǒng)計(jì),截至2015年磷輸入量高達(dá)1.7 Tg,是其自然背景值的2.5~5.0倍[14]。加之,來(lái)自大氣礦物氣溶膠(野火的灰塵和飛灰)的磷沉降由于其難揮發(fā)性正持續(xù)強(qiáng)烈地影響陸地生態(tài)系統(tǒng)土壤呼吸,進(jìn)而改變?nèi)蛏鷳B(tài)系統(tǒng)碳循環(huán)過(guò)程及格局[12]。然而,在農(nóng)用磷肥及磷沉降背景下,土壤呼吸動(dòng)態(tài)變化對(duì)磷肥輸入的響應(yīng)不一致,表現(xiàn)為增加、降低和無(wú)顯著影響[15-17]。最近,Camenzind等[11]對(duì)熱帶森林生態(tài)系統(tǒng)施磷對(duì)土壤呼吸影響研究進(jìn)行meta分析表明磷介導(dǎo)的植物生物量增加是導(dǎo)致土壤呼吸激增的關(guān)鍵因素;而在相同區(qū)域的另一項(xiàng)meta分析結(jié)果卻得出磷添加導(dǎo)致微生物生物量和植物生物量共同增加是導(dǎo)致土壤呼吸增加的主要因素,且這種效應(yīng)通常不發(fā)生在其他生態(tài)系統(tǒng)類型中[18]。因此,與熱帶森林生態(tài)系統(tǒng)相比,其他生態(tài)系統(tǒng)中磷添加對(duì)土壤呼吸的影響有所不同。可見(jiàn),土壤呼吸對(duì)磷肥輸入的響應(yīng)存在較大差異,同時(shí)在全球尺度上土壤呼吸對(duì)磷輸入響應(yīng)的一般模式及主要調(diào)控機(jī)制仍不清楚。鑒于施磷對(duì)土壤呼吸影響的不確定性,本研究就磷添加對(duì)土壤呼吸的影響及其作用機(jī)制進(jìn)行總結(jié),以期在全球變化背景下,為探求合理磷養(yǎng)分管理方式、減緩?fù)寥罍厥覛怏w排放、增加土壤固碳潛力提供理論參考。

1 施磷對(duì)土壤呼吸及其組分的影響

1.1 施磷對(duì)總呼吸的影響

土壤呼吸是土壤碳庫(kù)向大氣碳庫(kù)輸入的主要途徑[1]。施磷對(duì)土壤呼吸的影響主要取決于生態(tài)系統(tǒng)類型、植物凈初級(jí)生產(chǎn)力、環(huán)境條件等[2,10,19]。熱帶和亞熱帶生態(tài)系中施磷通常促進(jìn)土壤呼吸,這是由于熱帶亞熱生態(tài)系統(tǒng)土壤含磷量低,一方面施磷緩解微生物磷限制、加速有機(jī)碳礦化,另一方面磷肥施入增加植物根系生物量,促進(jìn)土壤呼吸[20]。Wei等[20]對(duì)亞熱帶常綠闊葉林土壤施磷得出土壤呼吸平均增量為1.6%。Gnankambary等[21]對(duì)熱帶森林施磷得出磷肥顯著促進(jìn)土壤異養(yǎng)呼吸。Malik等[22]對(duì)澳大利亞森林土壤施用有機(jī)和無(wú)機(jī)磷后土壤呼吸顯著增加,Liu等[15]也得出相同結(jié)論。Ouyang等[23]得出中國(guó)西南森林土壤施磷后CO2釋放量短期內(nèi)急劇增加。另外,室內(nèi)培養(yǎng)通常促進(jìn)土壤呼吸,一方面因?yàn)榱姿猁}離子易于與土壤中的結(jié)合位點(diǎn)結(jié)合,導(dǎo)致有機(jī)化合物解吸;另一方面施磷緩解微生物磷限制,促進(jìn)土壤呼吸[24-25]。而原位施磷對(duì)土壤呼吸通常無(wú)顯著影響,這可能與光合產(chǎn)物分配、菌根呼吸等有關(guān)[24]。

相較于施磷對(duì)熱帶亞熱帶森林土壤呼吸的促進(jìn)作用,施磷對(duì)高緯度陸地生態(tài)學(xué)系統(tǒng)土壤呼吸的影響尚無(wú)一致性結(jié)論,并且因生態(tài)系統(tǒng)類型不同而異(表1)。在濕地生態(tài)系統(tǒng)中,通常施磷對(duì)土壤呼吸起抑制作用

[24]。Song等[16]對(duì)中國(guó)東北沼澤土壤施磷研究發(fā)現(xiàn)磷肥抑制土壤呼吸,歸因于磷肥介導(dǎo)的微生物活性、叢枝菌根真菌降低,與Christensen等[25]和Illeris等[26]結(jié)論一致。草地生態(tài)系統(tǒng)中磷肥施入通常促進(jìn)土壤呼吸[7],而北極半沙漠地區(qū)磷肥通常降低土壤呼吸,當(dāng)pH值高于6.8時(shí),土壤液相中二氧化碳和碳酸氫鹽之間的平衡可能會(huì)改變,有利于合成碳酸氫鹽,從而減少土壤中二氧化碳的排放

[21]。總之,施磷導(dǎo)致農(nóng)田土壤呼吸增加31.70%,森林土壤呼吸增加9.20%,尤其熱帶森林土壤呼吸高達(dá)17.40%,濕地土壤呼吸降低13.70%[10]。

1.2 施磷對(duì)自養(yǎng)呼吸的影響

自養(yǎng)呼吸包括根呼吸和根系微生物呼吸組成,根呼吸是自養(yǎng)呼吸的主要來(lái)源[37]。自養(yǎng)呼吸占土壤總呼吸的比例因研究區(qū)域及方法而不同,但通常占土壤呼吸的40%~60%[38]。施磷對(duì)自養(yǎng)呼吸的影響缺乏一致性。Mori等[39]對(duì)熱帶金合歡林土壤施磷得出磷肥導(dǎo)致根呼吸和總呼吸分別增加16%和23%。Cleveland等[40]對(duì)哥斯達(dá)黎加森林土壤施磷研究發(fā)現(xiàn),磷肥導(dǎo)致土壤呼吸增加。然而也有研究得出相反結(jié)論。Lovelock等[41]得出當(dāng)葉片磷含量大于0.12%時(shí),施磷導(dǎo)致土壤呼吸急劇下降。Wang等[42]對(duì)杉木幼林研究得出施磷導(dǎo)致自養(yǎng)呼吸平均降低23.6%。

菌根真菌是植物根際區(qū)微生物的主體和大氣CO2的一個(gè)重要來(lái)源[43]。目前,施磷對(duì)菌根呼吸影響研究相對(duì)較少,已有報(bào)道往往因生態(tài)系統(tǒng)的不同而不同。有研究表明磷肥顯著影響菌根真菌對(duì)玉米根系的侵染率,土壤有效磷與菌根真菌侵染率反比,但對(duì)叢枝菌根多樣性和群落結(jié)構(gòu)沒(méi)有影響[44]。與此同時(shí),施磷量也是影響菌根呼吸的重要因子,高水平磷添加會(huì)對(duì)菌根真菌的形成和生長(zhǎng)產(chǎn)生抑制作用,菌根呼吸降低[45],而適量磷添加則可以增加菌根真菌的多樣性[46]。生態(tài)系統(tǒng)類型對(duì)菌根也有影響,Xiao等[47]認(rèn)為在喀斯特生態(tài)系統(tǒng)中,叢枝菌根真菌豐度對(duì)氮添加敏感,而多樣性對(duì)磷添加更敏感;而Camenzind等[48]研究表明施磷對(duì)菌根呼吸起抑制作用。

1.3 施磷對(duì)異養(yǎng)呼吸的影響

異養(yǎng)呼吸包括非根際微生物呼吸、礦質(zhì)土壤呼吸和枯枝落葉層呼吸,但主要來(lái)源于微生物呼吸[1]。施磷對(duì)土壤異養(yǎng)呼吸的影響已有大量研究,但結(jié)果仍存在不確定性。一些研究表明施磷促進(jìn)異養(yǎng)呼吸,如Mori等[39]得出磷肥施入土壤后異養(yǎng)呼吸約增加27%。Zhong等[49]研究發(fā)現(xiàn)施磷顯著提升稻田土壤異養(yǎng)呼吸。Spohn等[50]研究?jī)煞N不同磷含量的山毛櫸森林土壤表層土施磷效果,結(jié)果表明磷施入促進(jìn)了礦質(zhì)土壤呼吸。與這些結(jié)果相反,也有研究得出磷肥輸入導(dǎo)致土壤異養(yǎng)呼吸降低。Thirukkumaran等[51]研究表明施磷肥會(huì)抑制松林土壤微生物呼吸和基礎(chǔ)呼吸,并將其歸結(jié)于鈣質(zhì)土壤中磷的滲透作用,Wang等[42]研究也發(fā)現(xiàn)施磷導(dǎo)致杉木幼林土壤異養(yǎng)呼吸平均降低17.1%。

也有研究報(bào)道施磷對(duì)土壤異養(yǎng)呼吸無(wú)顯著影響。Groffman等[52]對(duì)美國(guó)北部森林土壤施磷的研究表明,磷肥對(duì)自養(yǎng)呼吸和異養(yǎng)呼吸無(wú)顯著影響,這可能與微生物量及活性無(wú)顯著變化有關(guān)。Smith[53]在南極島嶼的研究得出磷肥施入導(dǎo)致低含磷量地區(qū)土壤微生物呼吸作用增加,而高含磷量土壤中微生物呼吸作用無(wú)顯著變化。

1.4 施磷量和時(shí)長(zhǎng)對(duì)土壤呼吸的影響

磷素作為植物和微生物生長(zhǎng)所必需的營(yíng)養(yǎng)元素,適量輸入可為植物生長(zhǎng)和微生物代謝提供營(yíng)養(yǎng)進(jìn)而增加土壤呼吸。施瑤等[54]對(duì)內(nèi)蒙古溫帶典型草原進(jìn)行6年磷添加試驗(yàn)表明,隨磷添加量增加,溫帶典型草原土壤呼吸、細(xì)菌、放線菌、真菌及真菌/細(xì)菌比呈先上升后下降趨勢(shì),均以62 kg·hm-2處理最高。Yuan等[55]對(duì)全球細(xì)根生物量分析表明,細(xì)根生物量在施磷后顯著增加,因此施磷將可能通過(guò)增加根系生物量,促進(jìn)土壤呼吸。Malik等[22]對(duì)澳大利亞的土壤施磷研究表明,高磷添加(33.2 mg·kg-1)條件下土壤累積呼吸大于低磷添加(4.1 mg·kg-1)。Lund等

[33]對(duì)北方泥炭地施磷研究得出施磷量高時(shí)(4 kg·hm-2)土壤呼吸達(dá)到最大。因此,不同土壤區(qū)系土壤微生物和植被需磷量不同,過(guò)高或過(guò)低施磷量對(duì)土壤呼吸具有負(fù)效應(yīng),適量的磷添加才能增強(qiáng)土壤碳匯。

通常情況下,微生物對(duì)磷肥施入響應(yīng)較敏感,而植被、根系等因適應(yīng)了當(dāng)前生境及土壤磷養(yǎng)分狀況[56],對(duì)磷肥添加的響應(yīng)相對(duì)緩慢,因此,長(zhǎng)時(shí)間定位觀測(cè)是精確評(píng)估土壤呼吸的關(guān)鍵。Daoust等

[32]觀察發(fā)現(xiàn)在濕潤(rùn)的草原生態(tài)系統(tǒng)中,施用磷肥后的第一年植被凈年初級(jí)生產(chǎn)量無(wú)變化,但第二年開(kāi)始則有所增加,這歸因于植被和根系對(duì)磷肥施入的滯后效應(yīng)。Turner等[57]在巴拿馬中部熱帶雨林進(jìn)行了一項(xiàng)長(zhǎng)達(dá)10年養(yǎng)分添加試驗(yàn)發(fā)現(xiàn)土壤呼吸在第1、第2年內(nèi)均顯著增加,而后期則表現(xiàn)為磷添加增加植被生物量增量。可見(jiàn),根系和植被對(duì)磷肥是一個(gè)時(shí)間動(dòng)態(tài)演變過(guò)程,長(zhǎng)期定位觀測(cè)施磷對(duì)土壤呼吸的影響尤為必要。

2 施磷對(duì)土壤呼吸的作用機(jī)制

2.1 施磷通過(guò)改變根系生物量和微生物活性直接影響土壤呼吸

由于土壤性質(zhì)時(shí)空分布的異質(zhì)性和影響土壤呼吸因子的復(fù)雜性,導(dǎo)致土壤呼吸對(duì)磷肥施入的響應(yīng)存在不確定性,通常施磷主要通過(guò)直接和間接兩種方式影響土壤呼吸(圖1)。施磷可直接對(duì)根呼吸和微生物呼吸產(chǎn)生影響。磷肥添加通過(guò)調(diào)控根生物量、徑級(jí)和菌根直接影響土壤呼吸[58]。其中,根生物量尤其是細(xì)根生物量及呼吸速率是決定植物根系總呼吸的關(guān)鍵因素[46]。

首先,磷肥施入直接提高土壤有效磷含量,導(dǎo)致細(xì)根新陳代謝速率加快,根系呼吸速率也相應(yīng)增加[46]。根系徑級(jí)方面,磷肥輸入引起徑級(jí)變化進(jìn)而影響土壤呼吸,通常根呼吸速率隨徑級(jí)的增大而減小

[59]。菌根真菌還具備協(xié)助植物獲取磷養(yǎng)分、吸收水分和維持土壤穩(wěn)定性等功能[60],對(duì)磷輸入較為敏感[61]。磷輸入改變土壤微域環(huán)境進(jìn)而影響菌根豐度、多樣性和群落組成,但是其對(duì)磷肥的響應(yīng)情況因不同生態(tài)系統(tǒng)類型、土壤磷養(yǎng)分的狀況不同而存在差異[62]。總體上,磷有效性高的土壤,磷添加會(huì)抑制菌根真菌呼吸,而磷有效性低的土壤,適量磷添加則有利于菌根真菌定殖,進(jìn)而菌根呼吸起促進(jìn)作用[63]。

其次,施磷可以通過(guò)直接影響微生物生物量、微生物群落結(jié)構(gòu)和微生物活性進(jìn)而影響土壤異養(yǎng)呼吸[49,64],主要響應(yīng)機(jī)制包括以下幾個(gè)方面:其一,土壤磷素有效性是調(diào)控微生物生長(zhǎng)和維持呼吸的關(guān)鍵養(yǎng)分之一,但是施磷對(duì)土壤微生物生物量的影響存在增加、降低兩種情形,而土壤微生物生物量的改變則會(huì)導(dǎo)致土壤呼吸增加或降低;其二,施磷后土壤微生物生物量無(wú)顯著變化,但改變細(xì)菌或真菌優(yōu)勢(shì)度即改變微生物群落結(jié)構(gòu),進(jìn)而改變微生物基質(zhì)利用方式(降解木質(zhì)素和纖維素的真菌種類和數(shù)量增加)進(jìn)而間接影響土壤異養(yǎng)呼吸[65]。

最后,任何微生物呼吸均在酶的參與下完成,土壤酶活性在土壤異養(yǎng)呼吸過(guò)程中發(fā)揮著重要作用[66]。通常磷肥降低磷酸酶活性,磷添加通過(guò)直接抑制土壤微生物或植物根系分泌磷酸酶或者通過(guò)降低土壤微生物對(duì)磷的需求,從而抑制磷酸酶活性[67]。然而,磷肥對(duì)其他酶活性的影響尚無(wú)統(tǒng)一規(guī)律,Jing等[35]對(duì)高山草地研究發(fā)現(xiàn),施磷抑制0~10 cm土層中多數(shù)不穩(wěn)定碳循環(huán)相關(guān)酶的活性,土壤異養(yǎng)呼吸降低;而Xiao等[47]通過(guò)meta分析表明,施磷顯著刺激過(guò)氧化物酶活性、抑制磷酸酶活性,表明磷添加能增加難降解有機(jī)碳降解,從而增加異養(yǎng)呼吸。

2.2 施磷通過(guò)改變土壤碳輸入數(shù)量和質(zhì)量間接影響土壤呼吸

施磷能夠改變植被生產(chǎn)力,進(jìn)而影響輸入土壤的凋落物量、枯枝落葉及根系的分解速率、更新分泌物等土壤碳輸入數(shù)量和質(zhì)量,間接影響土壤呼吸[28]。首先,磷肥施入增加植物初級(jí)生產(chǎn)力和固碳能力,提高土壤中新鮮凋落物和根系分泌物的活性碳輸入,進(jìn)而對(duì)土壤原有難分解有機(jī)碳分解產(chǎn)生正激發(fā)效應(yīng)[27]。其次,新鮮凋落物層是細(xì)菌和真菌等生存的主要場(chǎng)所,凋落物增加導(dǎo)致微生物群落向速生微生物群落轉(zhuǎn)變,微生物豐度增加,土壤異養(yǎng)呼吸作用加強(qiáng),磷肥施入促進(jìn)難分解凋落物的分解和有機(jī)碳的礦化[66]。可見(jiàn)施磷后凋落物碎屑、根系分泌物等有機(jī)碳輸入數(shù)量和質(zhì)量的改變是引起土壤呼吸改變的間接因素。另外,凋落物輸入量的改變還會(huì)影響土壤微氣候(濕地、水分),進(jìn)而影響土壤異養(yǎng)呼吸。

根呼吸作用的主要碳底物源于光合產(chǎn)物,磷肥對(duì)根呼吸的影響取決于磷肥輸入后初級(jí)生產(chǎn)力和光合產(chǎn)物在根系上分配比例的變化情況[68]。當(dāng)植物生產(chǎn)力受磷限制時(shí),磷肥施入后植物可利用的磷養(yǎng)分增加,植物葉面積指數(shù)和葉片磷養(yǎng)分濃度提高[46],光合作用增強(qiáng),進(jìn)而導(dǎo)致植物地下碳分配的數(shù)量增加,導(dǎo)致植物用于根呼吸的碳底物(植物地上部分光合產(chǎn)物對(duì)地下的分配)增加,從而導(dǎo)致根呼吸作用增強(qiáng)。然而,當(dāng)土壤磷有效性提高到一定水平后,也可能導(dǎo)致光合產(chǎn)物向地下部分分配比例降低,進(jìn)而影響土壤呼吸。齊敏興等[69]研究不同磷水平對(duì)紫花苜蓿光合作用影響表明,高磷量導(dǎo)致紫花苜蓿葉綠素含量、光合作用減小,進(jìn)而地下分配比例減少。因此,施磷影響光合作用間接驅(qū)動(dòng)根呼吸。此外,施磷還能通過(guò)影響植物種間競(jìng)爭(zhēng)關(guān)系,調(diào)節(jié)土壤微域環(huán)境、細(xì)根生物量、凋落物的輸入數(shù)量和質(zhì)量影響根系呼吸[7,20],并且其響應(yīng)程度往往因研究區(qū)域和生態(tài)系統(tǒng)類型而異。

2.3 施磷通過(guò)影響土壤理化性質(zhì)間接影響土壤呼吸

研究表明,施磷改變土壤氮磷比(N/P)、pH和可溶性有機(jī)碳(DOC)等,進(jìn)而間接影響土壤呼吸[10]。土壤中氮磷存在強(qiáng)耦合關(guān)系,施磷降低土壤N/P,N未受限制時(shí)適量磷添加導(dǎo)致植被更容易獲取土壤磷素,相應(yīng)地植物根系向地下擴(kuò)展減少,這將直接降低植物根系呼吸。同時(shí),根系向地下擴(kuò)展減少對(duì)土壤團(tuán)聚體的機(jī)械破壞則減少,不利于物理保護(hù)狀態(tài)的土壤有機(jī)碳的釋放[70]。然而,過(guò)量磷添加則引起N限制,導(dǎo)致土壤氮養(yǎng)分供給無(wú)法滿足植物(28∶1)和土壤微生物(7∶1)對(duì)N∶P的平均需求[71],刺激植物將更多光合產(chǎn)物地下碳分配用于氮養(yǎng)分獲取,從而影響土壤呼吸[72]。另外,磷養(yǎng)分誘導(dǎo)的土壤氮礦化相關(guān)微生物種群豐度和群落改變也會(huì)對(duì)土壤呼吸產(chǎn)生影響[73]。

磷肥施入土壤pH值升高,間接影響土壤呼吸。土壤液相中二氧化碳和碳酸氫鹽之間的平衡與土壤pH密切相關(guān),當(dāng)pH大于6.8則有利于合成碳酸氫鹽,從而降低CO2的釋放[23]。此外,pH對(duì)土壤酶具有重要的催化功能,一方面能夠通過(guò)酶空間構(gòu)象的改變影響土壤酶催化活性,進(jìn)而影響土壤酶對(duì)碳底物的分解[74]。另一方面pH增加會(huì)引起土壤微生物類群改變,影響酶的組成和來(lái)源,進(jìn)而影響土壤呼吸[75]。研究表明,土壤pH與土壤微生物間關(guān)系比較密切,通常pH值升高能提高土壤微生物活性、活化脲酶、過(guò)氧化物酶和纖維素酶等酶活性[75],進(jìn)而影響土壤呼吸,同時(shí)pH對(duì)酶的影響因土壤理化性質(zhì)、生態(tài)系統(tǒng)類型而異。因此,施磷通過(guò)提高土壤pH改變土壤微生物生物量和群落組成、酶活性,間接調(diào)控土壤呼吸。

土壤中磷酸鹽與土壤有機(jī)碳存在競(jìng)爭(zhēng)吸附位點(diǎn)的作用機(jī)制,因此磷添加改變土壤DOC含量,間接影響土壤呼吸[66]。濕地生態(tài)系統(tǒng)中磷肥施入導(dǎo)致DOC含量增加,碳可能以DOC的形式浸出,土壤呼吸降低;而其他生態(tài)系統(tǒng)中磷肥對(duì)DOC的影響存在不確定性[16]。施磷還可導(dǎo)致土壤DOC的分子結(jié)構(gòu)趨于簡(jiǎn)化,進(jìn)而影響土壤呼吸[10]。

3 研究展望

盡管諸多學(xué)者在施磷對(duì)土壤呼吸動(dòng)態(tài)研究方面取得了很大的進(jìn)展,獲得一些重要結(jié)論,然而由于土壤呼吸組分的多重性及影響因素的復(fù)雜性,施磷對(duì)土壤呼吸影響仍存在極大不確定性,深層次的作用機(jī)制仍不清楚。鑒于土壤呼吸對(duì)全球碳平衡調(diào)控具有重要作用,未來(lái)應(yīng)從以下幾方面加強(qiáng)土壤呼吸動(dòng)態(tài)對(duì)磷肥施用的反饋研究。

(1)大多施磷試驗(yàn)主要施用過(guò)磷酸鈣、磷酸二氫鉀、磷酸氫二鈉等含磷化合物,雖然土壤磷含量增加,但是土壤鈣、鉀、鈉等微生物和植物所需的養(yǎng)分含量也同時(shí)增加,多養(yǎng)分元素的協(xié)同作用導(dǎo)致磷素對(duì)土壤呼吸變化的貢獻(xiàn)存在極大不確定性。因此在研究方法上需要重點(diǎn)關(guān)注如何排除其他養(yǎng)分對(duì)施磷效果的干擾。此外,自然磷沉降及農(nóng)業(yè)上施磷肥是一個(gè)漸進(jìn)的過(guò)程,加上植物對(duì)磷肥的響應(yīng)緩慢,長(zhǎng)期定位觀測(cè)施磷對(duì)土壤呼吸的影響仍是今后努力的方向。

(2)由于生態(tài)系統(tǒng)的差異性和環(huán)境過(guò)程的復(fù)雜性,應(yīng)從多要素、多過(guò)程、多途徑等方面綜合分析施磷對(duì)土壤呼吸的影響。據(jù)統(tǒng)計(jì)全球陸地生態(tài)系統(tǒng)面積的40%均受磷限制,然而當(dāng)前大量研究集中關(guān)注施磷對(duì)磷相對(duì)缺乏的熱帶及亞熱帶地區(qū)土壤呼吸的影響,而對(duì)磷有效性相對(duì)高的高緯度地區(qū)的研究則相對(duì)較少。隨著大氣氮沉降加劇和全球氣溫升高,高緯度地區(qū)土壤氮磷養(yǎng)分限制狀況有可能發(fā)生改變,磷肥施用與氮沉降、大氣變暖對(duì)土壤呼吸的影響是否存在交互作用仍不清楚。因此今后需要拓寬研究的空間尺度,并且關(guān)注氣候變化下磷肥施用對(duì)土壤呼吸的影響。

(3)過(guò)去很長(zhǎng)一段時(shí)間由于缺乏有效分離土壤呼吸的方法,當(dāng)前大部分研究還僅限于關(guān)注施磷對(duì)土壤總呼吸的影響,而對(duì)構(gòu)成土壤呼吸的各個(gè)組分的觀測(cè)較少,其中對(duì)菌根呼吸的關(guān)注尤為鮮見(jiàn),一定程度上限制了施磷對(duì)土壤呼吸機(jī)理的理解。因此未來(lái)研究在關(guān)注施磷對(duì)土壤總呼吸影響的同時(shí),還應(yīng)關(guān)注施磷對(duì)土壤呼吸不同組分的影響。

(4)微生物菌群結(jié)構(gòu)改變是施磷后土壤異養(yǎng)呼吸變化的主要調(diào)控機(jī)制,但是目前相關(guān)研究還有待進(jìn)一步深入,將宏基因組、宏轉(zhuǎn)錄組以及宏蛋白組等目前較為先進(jìn)的分子生物手段用于揭示施磷對(duì)土壤微生物組成、結(jié)構(gòu)以及功能的影響,有助于揭示施磷對(duì)土壤異養(yǎng)呼吸影響的微生物學(xué)機(jī)制。

參考文獻(xiàn):

[1]RAICH J W,SCHLESINGER W H.The global carbon carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J].Chemical and Physical Meteorology,1992,44 (2):81-99.

[2]BOWDEN R D,NADELHOFFER K J,BOONE R D,et al.Contributions of above ground litter,below ground litter,and root respiration to total soil respiration in a temperate mixed hardwood forest[J].Canadian Journal of Forest Research,1993,23 (7):1402-1407.

[3]SCHLESINGER W H,ANDREWS J A.Soil respiration and the global carbon cycle[J].Biogeochemistry,2000,48:7-20.

[4]BOND-LAMBERTY B,THOMSON A.Temperature-associated increases in the global soil respiration record[J].Nature,2010,464:579-582.

[5]楊慶朋,徐明,劉洪升,等 .土壤呼吸溫度敏感性的影響因素和不確定性[J] .生態(tài)學(xué)報(bào),2011,31(8):2301-2311.

[6] OREN R,ELLSWORTH D S,JOHNSEN K H,et al.Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere[J].Nature,2001,411:469- 472.

[7]REN F,YANG X,ZHOU H,et al.Corrigendum:Contrasting effects of nitrogen and phosphorus addition on soil respiration in an alpine grassland on the Qinghai-Tibetan Plateau[J].Scientific Reports,2017,7:398-405.

[8]REJMANKOVA E,SIROVA D.Wetland macrophyte decomposition under different nutrient conditions:relationships between decomposition rate,enzyme activities and microbial biomass[J].Soil Biology & Biochemistry,2007,39 (2):526-538.

[9] SUNDQVIST M K,LIU Z,GIESLER R,et al.Plant and microbial responses to nitrogen and phosphorus addition across an elevational gradient in subarctic tundra[J].Ecology,2013,95:1819-1835.

[10]FENG J,ZHU B.A global meta-analysis of soil respiration and its components in response to phosphorus addition[J].Soil Biology & Biochemistry,2019,135:38-47.

[11]CAMENZIND T,HATTENSCHWILER S,TRESEDER K K,et al.Nutrient limitation of soil microbial processes in tropical forests[J].Ecological Monographs,2018,88 (1):4-21.

[12]MAHOWLAD N,JICKELLS T D,BAKER A R,et al.Global distribution of atmospheric phosphorus sources,concentrations and deposition rates,and anthropogenic impacts[J].Global Biogeochemical Cycles,2008,22:37-42.

[13]PENUELAS J,POULTER B,SARDANS J,et al.Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe[J].Nature Communication,2013,(1):2934-2940.

[14]DU E,DE V W,HAN W,et al.Imbalance phosphorus and nitrogen deposition in china's forest[J].Atmospheric Chemistry and Physics,2016,16:8571-8579.

[15]LIU L,GUNDERSEN P,ZHANG T,et al.Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China[J].Soil Biology & Biochemistry,2012,44:31-38.

[16]SONG C,LIU D,SONG Y,et al.Effect of exogenous phosphorus addition on soil respiration in Calamagrostis angustifolia freshwater marshes of Northeast China[J].Atmospheric Environment,2011,45 (7):1402-1406.

[17]TYREE M C,SEILER J R,AUST W M,et al.Long-term effects of site preparation and fertilization on total soil CO2 efflux and heterotrophic respiration in a 33-year-old Pinus taeda L.plantation on the wet flats of the Virginia Lower Coastal Plain[J].Forest Ecology and Management,2006,234:363-369.

[18]MORI T,LU X,AOYAGI R,et al.Reconsidering the phosphorus limitation of soil microbial activity in tropical forests[J].Functional Ecology,2018,32:1145-1154.

[19]LUO Y Q,ZHOU X H.Soil Respiration and the Environment[J].Academic Elsevier,2006,6:457-465.

[20]WEI S Z,TIE L H,LIAO J,et al.Nitrogen and phosphorus co-addition stimulates soil respiration in a subtropical evergreen broad-leaved forest[J].Plant and Soil,2020,4:228-307.

[21]GANAKAMBARY Z,ILSTEDT U,NYBERG G,et al.Nitrogen and phosphorus limitation of soil microbial respiration in two tropical agroforestry parklands in the south-Sudanese zone of Burkina Faso:The effects of tree canopy and fertilization[J].Soil Biology & Biochemistry,2018,40:350-359.

[22]MALIK M A,MARSCHNER P,KHAN K S.Addition of organic and inorganic P sources to soil-Effects on P pools and microorganisms[J].Soil Biology & Biochemistry,2012,49:106-113.

[23]OUYANG X J,ZHOU G Y,HUANG Z L,et al.Effect of N and P addition on soil organic C potential mineralization in forest soils in South China[J].Environment Science,2008,20:1082-1089.

[24]LI Y,NIU S,YU G,et al.Aggravated phosphorus limitation on biomass production under increasing nitrogen loading:a meta-analysis[J].Global Change Biology,2016,22:934-943.

[25]CHRISTENSEN T R,JONASSON S,MICHELSEN A,et al.Environmental controls on soil respiration in the Eurasian and Greenlandic Arctic[J].Journal of Geophysical Research,1998,3:29015-29021.

[26]ILLERIS L,MICHELSEN S,JONASSON S.Soil plus root respiration and microbial biomass following water,nitrogen,and phosphorus application at a high arctic semi desert[J].Biogeochemistry,2003,65:15-29.

[27]ANDREW T,NOTTINGHAM,BENJAMIN L,et al.Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils[J].Soil Biology & Biochemistry,2015,80:26-33.

[28]MEYER N,WELP G,RODIONOV A,et al.Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil[J].Soil Biology & Biochemistry,2018,119:152-161.

[29]CLEVELAND C C,TOWNSEND A R,SCHMIDT S K.Phosphorus limitation of microbial processes in moist tropical forests:evidence from short-term laboratory incubations and field studies[J].Ecosystems,2002,5:680-691.

[30]TEKLAY T,NORDGREN A,MALMER,A.Soil respiration characteristics of tropical soils from agricultural and forestry land-uses at Wondo Genet (Ethiopia) in response to C,N and P amendments[J].Soil Biology & Biochemistry,2006,38:125-133.

[31]POEPLAU C,BOLINDER M A,KIRCHMANN H,et al.Phosphorus fertilization under nitrogen limitation can deplete soil carbon stocks:evidence from Swedish meta-replicated long-term field experiments[J].Biogeosciences,2015,12 (19):16527-16551.

[32]DAOUST R J,CHILDERS D L.Ecological effects of low level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem[J].Oecologia,2004,141 (4):672-686.

[33]LUND M,CHRISTENSEN T R,MASTEPANOV M,et al.Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates[J].Biogeosciences,2009,6:2135-2144.

[34]GUO H,YE C,ZHANG H,et al.Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow[J].Soil Biology & Biochemistry,2017,113 (6):26-34.

[35]JING X,YANG X,REN F,et al.Neutral effect of nitrogen addition and negative effect of phosphorus addition on topsoil extracellular enzymatic activities in an alpine grassland ecosystem[J].Applied Soil Ecology,2016,107:205-213.

[36]JOHNSON L C,SHAVER G R,CADES D,et al.Plant Carbon-Nutrient Interactions Control CO2 Exchange in Alaskan Wet Sedge Tundra Ecosystems[J].Ecology,2000,81 (2):453-469.

[37]宋文琛,同小娟,李俊,等 .三源區(qū)分土壤呼吸組分研究[J].生態(tài)學(xué)報(bào),2017,37 (22):7387-7396.

[38]SUBKE J A,INGLIMA I,COTRUFO M F.Trends and methodological impacts in soil CO2 efflux partitioning:a meta analytical review[J].Global Change Biology,2006,12:921-943.

[39]MORI T,OHTA S,ISHIZUKA S,et al.Effects of phosphorus application on root respiration and heterotrophic microbial respiration in Acacia mangium plantation soil[J].Tropics,2013,22:113-118.

[40]CLEVELAND C C,TOWENSEND A R.Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere[J].Proceedings of the National Academy of Sciences,2006,103:10316-10321.

[41]LOVELOCK C E,F(xiàn)ELLER I C,REEF R,et al.Variable effects of nutrient enrichment on soil respiration in mangrove forests[J].Plant and Soil,2014,379 :135-148.

[42]WANG Q K,ZHANG W D,SUN T,et al.N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest[J].Agricultural and Forest Meteorology,2017,232:66-73.

[43]馮歡,蒙盼盼 .菌根真菌與植物共生營(yíng)養(yǎng)交換機(jī)制研究進(jìn)展[J] .應(yīng)用生態(tài)學(xué)報(bào),2019,30 (10):3596-3604.

[44]KAHILUOTO H,KETOJA E,VESTBERG M,et al.Promotion of AM utilization through reduced P fertilization[J].Field studies Plant Soil,2001,23 (1):65-79.

[45]OLSSON P A,BAATH E,JAKOBSEN I.Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of Fatty Acid signatures[J].Applied & Environmental Microbiology,1997,63 (9):3531-3538.

[46]JONASSON S,HAVSTROM M,JENSEN M,et al.In situ mineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate change[J].Oecologia,1998,95:179-186.

[47]XIAO D,CHEN R,LIU X,et al.Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems[J].Biology and Fertility of Soils,2019,55:457-469.

[48]CAMENZIND T,HEMPEL S,HOMEIER J,et al.Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest[J].Global Change Biology,2014,20:3646-3659.

[49]ZHONG W H,CAI Z C.Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay[J].Applied Soil Ecology,2007,36 (2-3):84-91.

[50]SPOHN M ,SCHLEUSS P M.Addition of inorganic phosphorus to soil leads to desorption of organic compounds and thus to increased soil respiration[J].Soil Biology and Biochemistry,2018,6:220-226.

[51]THIRUKKUMARAN C M,PARKINSON D.Microbial respiration,biomass,metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers[J].Soil Biology & Biochemistry,2000,32:59-66.

[52]GROFFMAN P M,F(xiàn)ISK M C.Phosphate additions have no effect on microbial biomass and activity in a northern hardwood forest[J].Soil Biology & Biochemistry,2011,43:2441-2449.

[53]SMITH V R.Moisture,carbon and inorganic nutrient controls of soil respiration at a sub-Antarctic island[J].Soil Biology & Biochemistry,2005,37:81-91.

[54]施瑤,王忠強(qiáng),張心昱,等 .氮磷添加對(duì)內(nèi)蒙古溫帶典型草原土壤微生物群落結(jié)構(gòu)的影響[J] .生態(tài)學(xué)報(bào),2014,34 (17):4943-4949.

[55]YUAN Z Y,CHEN H Y H.A global analysis of fine root production as affected by soil nitrogen and phosphorus[J].Proceedings:Biological Science,2012,279 (1743):3796-3802.

[56]MACEK P,REJMANKOVA E.Response of emergent macrophytes to experimental nutrient and salinity additions[J].Functional Ecology,2007,21:478-488.

[57]TURNER B L,WRIGHT S J.The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen,phosphorus,and potassium addition in a lowland tropical rain forest[J].Biogeochemistry,2014,117 (1):115-130.

[58]丁杰萍,羅永清,周欣,等 .植物根系呼吸研究方法及影響因素研究進(jìn)展[J] .草業(yè)學(xué)報(bào),2015,24 (5):206-216.

[59]SUN T,MAO Z.Functional relationships between morphology and respiration of fine roots in two Chinese temperate tree species[J].Plant and Soil,2011,346:375-384.

[60]RILLIG M C.Arbuscular mycorrhizae and terrestrial ecosystem processes[J].Ecology Letters,2004,7 (8):740-754.

[61]HE D,XIANG X,HE J S,et al.Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai Tibetan Plateau[J].Biology and Fertility of Soils,2016,52 (8):1059-1072.

[62]DELAVAUX C S,CAMENZIND T,HOMEIER J,et al.Nutrient enrichment effects on mycorrhizal fungi in an Andean tropical montane forest[J].Mycorrhiza,2017,27:311-319.

[63]COZZOLINO V,PIGNA M,DI M V,et al.Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L.and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions[J].Applied Soil Ecology,2010,45(3):262-268.

[64]RAIESI F,GHOLLARATA M.Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration,biomass and enzyme activities in a calcareous soil[J].Soil Pedobiologia,2006,50 (5):413-425.

[65]SMITH R S,SHIEL R S,BARDGETT R D,et al.Soil microbial community,fertility,vegetation and diversity as targets in the restoration management of a meadow grassland[J].Journal of Applied Ecology,2003,40:51-64.

[66]CHEN F,JOSEPH Y,XIAO F.Phosphorus enrichment helps increase soil carbon mineralization in vegetation along an urban-to-rural gradient,Nanchang,China[J].Applied Soil Ecology,2014,75:181-188.

[67]SPEIR T W,COWLING J C.Phosphatase activities of pasture plants and soils:relationship with plant productivity and soil P fertility indices[J].Biology and Fertility of Soils,1991,12 (3):189-194.

[68]LOHILA A,AURELA M,REGINA K,et al.Soil and total ecosystem respiration in agricultural fields:Effect of soil and crop type[J].Plant and soil,2003,251:303-317.

[69]齊敏興,劉曉靜,張曉磊,等 .不同磷水平對(duì)紫花苜蓿光合作用和根瘤固氮特性的影響[J] .草地學(xué)報(bào),2013,21 (3):512-516.

[70]孫寶玉,韓廣軒 .模擬增溫對(duì)土壤呼吸影響機(jī)制的研究進(jìn)展與展望[J] .應(yīng)用生態(tài)學(xué)報(bào),2016,27 (10):3394-3402.

[71]MCGRODDY M E,DAUFRESNE T,HEDIN L O.Scaling of C∶N∶P stoichiometry in forests worldwide:implications of terrestrial Redfield-type ratios[J].Ecology,2004,85 (9):2390-2401.

[72]LIU H,ZHOU G,BAI SH,et al.Differential response of soil respiration to nitrogen and phosphorus addition in a highly phosphorus-limited subtropical forest,China[J].Forest Ecology and Management,2019,448:499-508.

[73]ALLISON S D,LEBAUER D S,OFRECIO M R,et al.Low levels of nitrogen addition stimulate decomposition by boreal forest fungi[J].Soil Biology and Biochemistry,2009,41:293-302.

[74]張星星,楊柳明,陳忠,等.中亞熱帶不同母質(zhì)和森林類型土壤生態(tài)酶化學(xué)計(jì)量特征[J].生態(tài)學(xué)報(bào),2018,38 (16):5828-5836.

[75]王涵,王果,黃穎穎,等.pH變化對(duì)酸性土壤酶活性的影響[J].生態(tài)環(huán)境學(xué)報(bào),2008,17 (6):2401-2406.

(責(zé)任編輯:柯文輝)

收稿日期:2020-06-18

作者簡(jiǎn)介:肖華翠,女,1993年生,碩士,主要從事森林生態(tài)系統(tǒng)磷素生物地球化學(xué)循環(huán)研究。

通信作者:楊柳明,男,1984年生,高級(jí)實(shí)驗(yàn)師,主要從事森林生態(tài)系統(tǒng)生源要素地球化學(xué)循環(huán)研究(E-mail:yanglm2007@aliyun.com)。

主站蜘蛛池模板: 国产在线拍偷自揄拍精品| 性色生活片在线观看| 国产午夜无码片在线观看网站| 天天做天天爱天天爽综合区| 亚洲性影院| 91精品国产一区自在线拍| 欧美亚洲国产视频| 国产三级国产精品国产普男人| 五月天香蕉视频国产亚| 亚洲天堂高清| 国产成人精品一区二区| 国产一级在线播放| 日韩人妻无码制服丝袜视频| 亚洲浓毛av| 日本人妻丰满熟妇区| 欧美性久久久久| 在线欧美日韩| 在线日韩日本国产亚洲| 91网址在线播放| 亚洲va在线∨a天堂va欧美va| 在线观看国产精美视频| 又粗又硬又大又爽免费视频播放| 国产亚洲视频播放9000| 国产视频a| 久久中文无码精品| 九色视频在线免费观看| 亚洲综合九九| 99re热精品视频国产免费| 久久精品66| 极品私人尤物在线精品首页| 久久国产精品嫖妓| 日韩精品成人在线| 国产自无码视频在线观看| 高清色本在线www| 色欲不卡无码一区二区| 亚洲激情区| 亚洲精品无码抽插日韩| 国产精品乱偷免费视频| 国产大片黄在线观看| 精品国产成人三级在线观看| 成人国产精品一级毛片天堂| 国产精品无码在线看| 久热中文字幕在线| 亚洲精品动漫| 天天综合网亚洲网站| 最新国产成人剧情在线播放| 最新国产麻豆aⅴ精品无| 亚洲女人在线| 九一九色国产| 老司机精品99在线播放| 青青极品在线| 亚洲三级网站| 蜜桃视频一区二区三区| 精品福利国产| 2021天堂在线亚洲精品专区| 青青草原国产| 日韩精品高清自在线| 亚洲另类国产欧美一区二区| 国产精品成人观看视频国产 | 91美女视频在线| 国产福利微拍精品一区二区| 无码精品一区二区久久久| 日本亚洲欧美在线| 大学生久久香蕉国产线观看 | 亚洲中文字幕无码mv| 国产成人毛片| 亚洲欧美日本国产综合在线 | 国产精品jizz在线观看软件| 999国产精品| 欧美在线视频不卡第一页| 亚洲欧美在线精品一区二区| 亚洲精品无码久久久久苍井空| 亚洲有无码中文网| 精品国产Ⅴ无码大片在线观看81| 国产成人AV大片大片在线播放 | 欧美在线天堂| 午夜国产理论| 亚洲人精品亚洲人成在线| 中文字幕在线看| 97在线公开视频| 国产精品视频白浆免费视频| 国产高潮视频在线观看|