姜明君
(蓋州市水利事務服務中心,遼寧 蓋州 115200)
模糊綜合評價法是利用模糊數學的手段處理多要素模糊性、不確定性問題的有效方法,按照不同的要素類型可將其分為一級或多級模糊評價。若涉及不同層次且要素類型較多,則難以利用一級模糊法全面的反映待評價對象,文章對水庫大壩安全水平利用二級模糊綜合法評估。通過兩級模糊綜合評價系統的反映水庫大壩的安全狀態,按照先一級、后二級的評價次序完成相應的計算分析,其中一級模糊評價結果如式(1)所示:
Bi=Ai·Ri=(bi1,bi2,…,bi m)
(1)
二級模糊綜合評判矩陣利用形成的一級模糊評價結果構成,評價分析時組成的二級模糊評判矩陣如式(2)所示:
(2)
按照梯階層次框架構建的多要素綜合評價體系如圖1。

圖1 水庫大壩的安全鑒定層次
水庫大壩安全狀態依據《水庫大壩安全評價導則》(SL 258—2019)劃分為A、B、C三類,此分類方法給出的判斷標準還不夠深入、細致,因此一般適用于簡單的評判。為了更加合理細致的劃分大壩安全水平,工程實踐中通常應用四等級劃分法,由此形成的評語集為V={v1,v2,v3,v4}四級,對應級別為Ⅰ級、Ⅱ級、Ⅲ級、Ⅳ級且對應的評語為安全、基本安全、不安全和很不安全。
選用升半梯形和降半梯形的方法對正態分布隸屬函數加以修正,由此將其轉化為平直段以保證不同區段的隸屬度均為1,分段修正的隸屬函數如式(3)~式(6)所示:
(3)
(4)
(5)
(6)
式中:依據不同等級的量化區間端點值確定各個參數值,詳見表2。

表2 不同等級隸屬函數的參數值
對于各要素重要度的對比分析,傳統的層次分析法認為僅有一種情況反映兩個要素的重要度,以此絕對化具有模糊性、不確定性的分析過程。評價分析時,對于感知數不同決策者可能存在差異,所以比較分析兩個要素時更傾向于賦予模糊量。此外,運用模糊數學法確定隸屬函數時缺乏科學依據,涉及的定性因素較多且無法客觀反映實際情況。針對以上問題,對每個要素權重利用模糊層次分析法求解,將層次分析法存在的不足利用模糊數學法加以改進,兩種方法的運算流程如圖2。

圖2 權重計算的一般流程
從圖2可知,相對于層次分析法比較過程模糊層次分析法構造的比較矩陣,可以更好的反映各要素的不確定性特征;另外,采用模糊層次分析法計算每個元素權重時未考慮一致性檢驗的問題。
設論域上的三角模糊數為M=(l,m,p),其中l≤m≤p,將兩個三角模糊數依據三角模糊理論定義為M1=(l1,m1,p1)≥M2=(l2,m2,p2),如公式(7)所示:
(7)
式中:K(M1≥M2)為模糊程度;定義K(M≥M1,M2,…,M)=minK(M≥Mi)為大于其他m個數時三角模糊數M的程度。
運用三角模糊數Mij=(lij,mij,pij)衡量因素集U={u1,u2,…,un}中元素ui與uj的的模糊性判斷重要程度,其中i,j=1,2,…,n;lij、mij、pij為先對重要性判斷的兩個要素的最低、最可能和最高可能重要性程度。
邀請專家兩兩對比同一層次的要素,利用數學的方法衡量兩元素相對重要度的比較數值,每次比較分析均會出現三種情形,由此可形成n×n階判斷矩陣,表達式如式(8)所示:
(8)
采用定量標度的方式確定Mij中每個定性的比較判斷值,模糊層次分析法中引入文獻提出的1~9標度法,其評判依據如表3。

表3 重要度標度準則
根據公式(7)和1~9標度準則(表3)構造因素集U={u1,u2,…,un}的判斷矩陣,定義ui的單要素判斷和所有要素的總體模糊判斷程度如式(9)、式(10)所示:
(9)
(10)

石門水庫位于蓋州市大清河上游,是一座以工農業供水為主,兼具水產養殖、水力發電以及防洪排澇等功能的綜合型水庫。水庫最大庫容1.022億m3。水庫下游區域主要涉及11個鄉鎮的20多萬人和1.33萬hm2耕地,另外還有國家級重點防護的運輸干線、輸油管線等設施[1-3]。石門水庫建于1970年,于1971年11月基本竣工,受工程建設資金和技術條件限制,加之后期年久失修、管護不到位等因素,該工程存在諸多隱患。針對該水庫大壩的安全狀態,考慮利用二級模糊綜合法科學分析其安全水平[4-8]。
邀請三位長期從事水利工程安全咨詢的專家依據構建的水庫大壩安全評估體系,對識別的每個要素賦予相應的分值,統計整理其平均值如表4。然后利用文中所述公式(3)~(6),按照隸屬度確定方法求解每個要素隸屬于不同等級的程度。


表4 不同評價等級下單因素隸屬度計算結果
水庫大壩安全評價的二級因素模糊判斷矩陣按照1~9模糊層次標度準則構造,如表5。將二級因素權重利用以上方法確定,其基本流程為:①相對于其它要素單因素的模糊判斷程度利用公式(9)確定為:m(U1)=(3.81,10.00,17.00)、m(U2)=(1.86,2.05,4.31)、m(U3)=(2.85,5.66,9.00)、m(U4)=(6.00,13.00,15.00)、m(U5)=(3.62,6.28,11.00)。②將總模糊程度利用公式(10)判斷,結果為:m(∑)=(19.20,38.05,55.37)、m(∑)-1=(19.20,38.05,55.37)。③較其他因素而言,各個單因素的模糊程度利用相關公式求解:S1=(0.070,0.288,0.832)、S2=(0.035,0.056,0.224)、S3=(0.050,0.151,0.467)、S4=(0.128,0.341,0.780)、S5=(0.065,0.167,0.572)。

表5 模糊判斷的二級因素矩陣
大于其他因素時單因素的重要程度利用有關公式求解為:K(S1≥S2)=1、K(S1≥S3)=1、K(S1≥S4)=0.930、K(S1≥S5)=1,由此可構造d(U1)=min(1,1,0.930,1)=0.930。按照此方法可以依次確定d(U2)、d(U3)、d(U4)、d(U5),如表6。

表6 二級因素權重值
最終,經歸一化處理輸出二級因素權重為:A=(0.261,0.070,0.182,0.283,0.202);同理,按照以上流程和相關公式求解出一級因素權重,如表7。

表7 模糊綜合評價因素權重
求解水庫大壩安全評價中工程質量的一級模糊綜合評價值為:B1=A1·R1=[0.214,0.396,0.508,0.082];同理,依次獲取其它一級因素的模糊綜合評價矩陣為:

最后,對水庫安全評價二級模糊判斷利用相關公式確定,從而獲取隸屬于不同等級的水庫大壩安全評估值:B=A·R=(0.056,0.340,0.524,0.220)。依據最大隸屬度原則可將該水庫大壩判定為“不安全”狀態,其隸屬于Ⅲ級的值最大的0.524,為確保周邊居民安全必須采取有效的加固整治措施。
根據Ⅰ級模糊評價值可知,該水庫大壩的滲流安全、防洪標準復核、工程質量均達到不安全的Ⅲ級水平;結構安全、運行管理達到Ⅱ級基本安全和Ⅳ級極不安全狀態。其中,運行管理的安全評判等級最大,可見病害治理和設施維護不足,加之管理不善為導致該水庫大壩帶病運行的重要原因。
(1)以導則SL 258—2019為基準選擇17項一級因素和5項二級因素構建水庫大壩安全綜合評價體系,考慮相對重要度比較過程中各個因素的模糊性和不確定性特征構造判斷矩陣,將每個元素權重利用模糊層次分析法求解,較傳統的層次分析法可以更具操作性,系統、客觀的反映各要素的貢獻程度。
(2)為更好的提取各因素信息,邀請經驗豐富、專業性強的專家評判水庫大壩運行實際情況,利用模糊數學法構造各要素正態分布隸屬函數,從而獲取結果更加準確、更加符合實際狀況的隸屬度。
(3)將專家評分隸屬度計算式與模糊層次分析法相機和,該過程對專家經驗要求高且涉及到的參數信息較多,評價過程中為實現這一點存在一定的難度。實際應用過程中,對于水庫大壩的安全評價可適當的選取金屬結構、抗震安全等因素。