999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

COMMON COUPLED FIXED POINT THEOREMS FOR CONTRACTIVE MAPPINGS OF MANY VARIABLES IN FUZZY METRIC SPACES

2021-01-16 09:59:26WANGShiboHUXinqi
數學雜志 2021年1期

WANG Shi-bo,HU Xin-qi

(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

Abstract:In this paper,we propose a notion of coincidence point between mappings in any number of variables.The main results of this paper are generalizations of the main results of fixed point theorems in partially ordered fuzzy metric spaces from low dimension to high dimension.

Keywords: fixed point theorem;metric space;fuzzy metric space;partially ordered set;compatible mapping

1 Introduction

Since Zadeh[1]introduced the concept of fuzzy sets,many authors have extensively developed the theory of fuzzy sets and applications.George and Veeramani[2,3]gave the concept of fuzzy metric space and defined a Hausdorfftopology on this fuzzy metric space which have very important applications in quantum particle physics particularly in connection with both string and E-infinity theory.

The notion of coupled fixed points was introduced by Guo and Lakshmikantham[4]in 1987.In a recent paper,Gnana-Bhaskar and Lakshmikantham[5]introduced the concept of mixed monotone property for contractive operators of the formF:X×X→X,whereXis a partially ordered metric space,and the established some coupled fixed point theorems.Lakshmikantham and′Ciri′c[6]discussed the mixed monotone mappings and gave some coupled fixed point theorems which can be used to discuss the existence and uniqueness of solution for a periodic boundary value problem.

Shaban Sedghi et al[7]gave a coupled fixed point theorem for contractions in fuzzy metric spaces,and Jin-xuan Fang[8]gave some common fixed point theorems underφcontractions for compatible and weakly compatible mappings in Menger probabilistic metric spaces.Xin-Qi Hu[9]proved a common fixed point theorem for mappings under?contractive conditions in fuzzy metric spaces.B.S.Choudury et.al.[10]established coupled coincidence point and coupled fixed point results for compatible mappings in partially ordered fuzzy metric spaces and gave an example to illustrate the main theorems.In 2015,Jinxuan-Fang[11]generlized a crucial fixed point theorem for probabilistic?-contraction on complete Menger space.Other more works on this topic can be found in[12-23].

Now we propose a notion of coincidence point between mappings cases of these results that are already known under some contractive conditions.

2 Mathematical Preliminaries

First we give some definitions.

Definition 2.1(see[2])A binary operation?:[0,1]×[0,1]→[0,1]is continuoust-norm if?satisfies the following conditions:

(1)?is commutative and associative;

(2)?is continuous;

(3)a?1=afor alla∈[0,1];

(4)a?b≤c?dwhenevera≤candb≤dfor alla,b,c,d∈[0,1].

Thet?norm ?M=min is an example oft-norm of H-type,but there are some othert-norms?of H-type.

Obviously,? is a H-typetnorm if and only if for anyλ∈(0,1),there existsδ(λ)∈(0,1)such that?m(t)>1?λfor allm∈N,whent>1?δ.

Definition 2.3(see[2])A 3-tuple(X,M,?)is said to be a fuzzy metric space ifXis an arbitrary nonempty set,?is a continuoust-norm andMis a fuzzy set onX2×(0,+∞)satisfying the following conditions,for eachx,y,z∈Xandt,s>0,

(FM-1)M(x,y,t)>0;

(FM-2)M(x,y,t)=1 if and only ifx=y;

(FM-3)M(x,y,t)=M(y,x,t);

(FM-4)M(x,y,t)?M(y,z,s)≤M(x,z,t+s);

(FM-5)M(x,y,·):(0,∞)→[0,1]is continuous.

Let(X,M,?)be a fuzzy metric space.Fort>0,the open ballB(x,r,t)with a centerx∈Xand a radius 01?r}.

A subsetA?Xis called open if for eachx∈A,there existt>0 and 0

Example 2.4Let(X,d)be a metric space.De finet-norma?b=aband for allx,y∈Xandt>0,M(x,y,t)=.Then(X,M,?)is a fuzzy metric space.We call this fuzzy metricMinduced by the metricdthe standard fuzzy metric.

Letnbe a positive integer.Xwill benote a non-empty set andXndenote the product spaceXn=

Definition 2.5(see[6])LetXbe a non-empty set,F:X→Xandg:X→Xbe two mappings.We sayFandgare commutative(or thatFandgcommute)ifgFx=Fgxfor allx∈X.

Definition 2.6(see[6])The mappingsFandgwhereF:X→Xandg:X→X,are said to be compatible if limn→∞d(Fgxn,gFxn)=0 whenever{xn}is a sequence inX,such that limn→∞F(xn)=limn→∞g(xn)=xfor allx∈Xare satisfied.

Definition 2.7(see[6])Two mappingsFandgon a metric space(X,d)are said to be weakly compatible if they commute at their coincidence points,that is,ifFx=gxfor somex∈X,thenFgx=gFx.

Let Λn={1,2,···,n},A,Bsatisfy thatA∪B= ΛnandA∩B=?.We will denote?A,B={σ:Λn→Λn,σ(A)?Aandσ(B)?B},and={σ:Λn→Λn,σ(A)?Bandσ(B)?A}.

Let(X,≤)be a partially ordered space,x,y∈Xandi∈Λn.We use the following notation

Letσ1,σ2,···,σn,τ: Λn→Λnben+1 mappings and let Φ be the(n+1)-tuple(σ1,σ2,···,σn,τ).

Definition 2.8(see[13])LetF:Xn→X,g:X→X.A point(x1,x2,···,xn)∈Xnis called a Φ-coincidence point of the mappingsFandgif

Ifgis the identity mapping onX,then(x1,x2,···,xn)∈Xnis called a Φ- fixed point of the mappingF.

Definition 2.9Let(X,≤)be a partially ordered space.We say thatFhas the mixedg-monotone property ifFisg-monotone non-decreasing in argument ofAandg-monotone non-increasing in argument ofB,i.e.,for allx1,x2,···,xn,y,z∈Xand alli,

It is obvious that the above formula is equivalent to the following:

Definition 2.10LetF:Xn→Xandg:X→X.Fandgare called weakly compatible mappings if forx1,x2,···,xn,it satisfies it implies

3 Main Results

Lemma 3.1(see[23])Forn∈N,letgn:(0,+∞)→(0,+∞)andFn:R→[0,1].Assume that sup{F(t):t>0}=1 and for anyt>0,

If eachFnis nondecreasing,then limn→+∞Fn(t)=1 for anyt>0.

Theorem 3.2(see[21])Let(X,M,?)be a complete fuzzy metric space with ? a triangular norm of H-type.Let?∈Ψω,where Ψωis denoted as the class of all function?:[0,+∞)→[0,+∞)such that for eacht>0 there exists anrt≥tsatisfying limn→+∞?n(rt)=0.LetT:X→Xbe a mapping,M(Tx,Ty,?(t))≥M(x,y,t)for allx,y∈Xand allt>0.ThenThas a unique fixed pointx?.In fact,for anyx0∈X,limn→+∞Tnx0=x?.

ProofΨ is denoted as the class of all function?:[0,+∞)→[0,+∞)be continuous with?(t)0.Obviously,Ψ?Ψω.First we will prove Theorem 3.3 when?∈Ψ.

By Lemma 3.1,we have

Now letn∈Nandt>0,we show by induction that,for anyk∈,

This is obvious fork=0.Assume it holds for somek,by the monotonicity of?,we have

which completes the induction.By?n(1)=1 and?is a triangular norm of H-type,for anyt>0 andε>0,there isδ>0 such that ifs∈(1? δ,1],then ?n(s)>1? εfor alln∈N.

Let?∈Ψω.PutA={t>0:limn→+∞?n(t)=0},ift∈A,we denote byktthe first integer number such that

Ift∈[0,+∞)A,take anrt>tsuch thatrt∈A,and,again,denote byktthe first integer number such that

Now define a functionψ:[0,+∞)→[0,+∞)as follows:

It is proved thatψ∈Ψ(see[21]).Hence we can applyψand get theorem 3.3 proved by the condition that?∈Ψω.

Theorem 3.4Let(X,M,?,≤)be a complete ordered fuzzy metric space with ? a triangular norm of H-type.Let Φ =(σ1,σ2,···,σn,τ)be(n+1)-tuple of mappings from Λninto itself such thatτ∈?A,Bis a permutation and verifying thatσi∈?A,Bifi∈Aandσi∈ifi∈B.Let?:[0,+∞)→[0,+∞),? ∈Ψω,F:Xn→Xandg:X→Xbe two mappings,F(Xn)?g(X),Fis continuous and has the mixedg-monotone property,Fandgare weakly compatible mappings and

ProofLetY=Xn.For(x1,x2,···,xn),(y1,y2,···,yn)∈Xn,t>0,M?and binary relationonYare defined as

It is easy to verify that(Y,)is a partially ordered set and(Y,M?,?)is a complete fuzzy metric space.Then(Y,M?,?,)is a complete ordered fuzzy metric space.

For(x1,x2,···,xn)∈Y,:Y→Y,:Y→Yare defined as

which implies that

Fori∈A,ifj∈A,then there existsk∈Asuch thatσi(j)=τ(k);ifj∈B,then there existsk∈Bsuch thatσi(j)=τ(k).So,we have

That is

That is,

Continuing in this way,we can get

Similarly,fori∈B,we can have

and

Then

that is,

Following all the conditions of Theorem 3.3 and the proof,we can haveFandg,at least,one Φ-coincidence point.

It is obvious that,ifFandgare compatible,then they are weakly compatible.So,we have the following theorem.

Theorem 3.5Let(X,M,?,≤)be a complete ordered fuzzy metric space with ? a triangular norm of H-type.Let Φ =(σ1,σ2,···,σn,τ)be(n+1)-tuple of mappings from Λninto itself such thatτ∈?A,Bis a permutation and verifying thatσi∈?A,Bifi∈Aandσi∈ifi∈B.Let?:[0,+∞)→[0,+∞),? ∈Ψω,F:Xn→Xandg:X→Xbe two mappings,F(Xn)?g(X),Fis continuous and has the mixedg-monotone property,Fandgare compatible mappings and

Corollary 3.6Let(X,M,?,≤)be a complete ordered fuzzy metric space with ? a triangular norm of H-type.?:[0,+∞)→[0,+∞),?∈Ψω,LetF:X2→Xandg:X→Xbe two mappings,F(X2)?g(X),Fis continuous and has the mixedg-monotone property,Fandgbe weakly compatible mapping and

Similarly,in Theorem 3.5,letn=3,we have Λ3={1,2,3},A={1,3},B={2}.σ1,σ3∈?A,Bandσ2∈,thenσ1(1)={1},σ1(2)={2},σ1(3)={3},σ2(1)={2},σ2(2)={1},σ2(3)={2}andσ3(1)={3},σ3(2)={2},σ3(3)={1}.Then we have the following corollary.

Corollary 3.7Let(X,M,?,≤)be a complete ordered fuzzy metric space with ? a triangular norm of H-type.?:[0,+∞)→[0,+∞),?∈Ψω,LetF:X3→Xandg:X→Xbe two mappings,F(X3)?g(X),Fis continuous and has the mixedg-monotone property,Fandgbe weakly compatible mapping and

RemarkWhenFandgare commutative,they are weakly compatible,so we have the following theorem.

Theorem 3.8Let(X,M,?,≤)be a complete ordered fuzzy metric space with ? a triangular norm of H-type.Let Φ =(σ1,σ2,···,σn,τ)be(n+1)-tuple of mappings from Λninto itself such thatτ∈?A,Bis a permutation and verifying thatσi∈?A,Bifi∈Aandσi∈ifi∈B.Let?:[0,+∞)→[0,+∞),? ∈Ψω,F:Xn→Xandg:X→Xbe two mappings,F(Xn)?g(X),Fis continuous and has the mixedg-monotone property,Fandgare commutative,and

RemarkLetk∈[0,1),taking?(t)=ktin Theorem 3.4,3.5,3.8,we obtain the following corollaries.

Corollary 3.9Let(X,M,?,≤)be a complete ordered fuzzy metric space with ? a triangular norm of H-type.Let Φ =(σ1,σ2,···,σn,τ)be(n+1)-tuple of mappings from Λninto itself such thatτ∈?A,Bis a permutation and verifying thatσi∈?A,Bifi∈Aandσi∈ifi∈B.Let?:[0,+∞)→[0,+∞),? ∈Ψω,LetF:Xn→Xandg:X→Xbe two mappings,F(Xn)?g(X),Fis continuous and has the mixedg-monotone property,Fandgare weakly compatible mappings and

Corollary 3.10Let(X,M,?,≤)be a complete ordered fuzzy metric space with ?a triangular norm of H-type.Let Φ =(σ1,σ2,···,σn,τ)be(n+1)-tuple of mappings from Λninto itself such thatτ∈?A,Bis a permutation and verifying thatσi∈?A,Bifi∈Aandσi∈ifi∈B.Let?:[0,+∞)→[0,+∞),? ∈Ψω,LetF:Xn→Xandg:X→Xbe two mappings,F(Xn)?g(X),Fis continuous and has the mixedg-monotone property,Fandgare compatible mappings and

Corollary 3.11Let(X,M,?,≤)be a complete ordered fuzzy metric space with ?a triangular norm of H-type.Let Φ =(σ1,σ2,···,σn,τ)be(n+1)-tuple of mappings from Λninto itself such thatτ∈?A,Bis a permutation and verifying thatσi∈?A,Bifi∈Aandσi∈ifi∈B.Let?:[0,+∞)→[0,+∞),? ∈Ψω,F:Xn→Xandg:X→Xbe two mappings,F(Xn)?g(X),Fis continuous and has the mixedg-monotone property,Fandgare commutative,and

主站蜘蛛池模板: 国产精品刺激对白在线 | 国产欧美日韩91| 中文字幕第1页在线播| 手机永久AV在线播放| 日韩东京热无码人妻| 欧美日韩第三页| 色综合五月婷婷| 亚洲人成影视在线观看| 永久免费AⅤ无码网站在线观看| 日韩黄色大片免费看| 91福利一区二区三区| 黑人巨大精品欧美一区二区区| 欧美日本二区| 高清久久精品亚洲日韩Av| 高清色本在线www| 四虎综合网| 国产成人狂喷潮在线观看2345| 国产一在线| 极品私人尤物在线精品首页 | 草逼视频国产| 久久不卡精品| 国产老女人精品免费视频| 亚洲国产理论片在线播放| 亚洲av综合网| 丁香五月激情图片| 亚洲精品欧美重口| 九九这里只有精品视频| 五月婷婷丁香综合| 永久免费无码日韩视频| 欧美日韩资源| 热伊人99re久久精品最新地| 久久精品免费国产大片| 激情综合婷婷丁香五月尤物| 国产成人久视频免费| 福利姬国产精品一区在线| 免费看黄片一区二区三区| 激情午夜婷婷| 丁香综合在线| 99热国产这里只有精品无卡顿" | Aⅴ无码专区在线观看| 中文字幕在线观| 日本精品影院| 国产精品冒白浆免费视频| 欧美一级片在线| 久爱午夜精品免费视频| 亚洲国产91人成在线| 99视频精品全国免费品| 九一九色国产| 日韩毛片视频| 国产精品美人久久久久久AV| 欧美精品v| 中文字幕人妻无码系列第三区| 无码视频国产精品一区二区| 欧美成人手机在线视频| 性欧美精品xxxx| 91久久国产成人免费观看| 香蕉综合在线视频91| 亚洲永久视频| 欧美国产菊爆免费观看 | 少妇高潮惨叫久久久久久| www.亚洲色图.com| 国产免费自拍视频| 久久精品国产91久久综合麻豆自制| 韩国v欧美v亚洲v日本v| 国产三级成人| 波多野结衣视频网站| 国产91色| 亚洲最猛黑人xxxx黑人猛交 | 国产三级毛片| 国产一级在线播放| 日本尹人综合香蕉在线观看| 欧美亚洲日韩中文| 色呦呦手机在线精品| 五月婷婷丁香色| 九九线精品视频在线观看| 国产美女无遮挡免费视频网站| 91在线无码精品秘九色APP| 国产精品99在线观看| 亚洲系列中文字幕一区二区| 91精品专区| 亚洲人成网站色7777| 国产精品免费电影|