王會文
(三亞市道路運輸管理處,海南 三亞 572000)
目前針對縱向預應力損耗的研究較多,而針對豎向預應力損耗的研究卻相對較少。實際上,豎向預應力鋼筋的失效風險更大,所以提高對豎向預應力損耗研究的重視程度十分必要[1-2]。本文以某鹽津河二橋主橋箱梁為研究對象,針對案例橋豎向預應力損耗開展研究。案例橋梁垂向預應力筋選用直徑32 mm的40Si2MnMoV 精軋螺紋粗鋼筋,其抗拉強度標準值為930 MPa,設計彈塑性模量E 為2.0×105MPa;選用梁頂一端拉張方式,對應錨具型號為YGM32;垂向預應力管道選用SBG 塑料制波紋圓管;垂向預應力鋼筋的放置間隔為0.5 m,梁頂單端拉張。
試驗對象為與主墩中心線距離18.80 m 斷面中的垂向預應力鋼筋 N23、N23′、N23″。箱體梁中間腹板側N23′長度12 493 m;下游側腹板位置N23″長度12 450 m;上游側腹板位置N23 長度12 535 m。箱體梁腹板垂向預應力筋配置見圖1。
依據所選鋼筋拉張控制應力837 MPa,對應千斤頂拉張控制力為637 kN,所以采用量程為800 kN的穿心式壓力感受器。其內徑為38 mm,外徑為92 mm,高度為80 mm,詳細規格見圖2。
將穿心式壓力感受器裝配在垂向預應力筋錨固端,見圖3;現場感受器裝配和垂向預應力測試見圖4。

圖1 箱體梁腹板垂向預應力筋配置圖(單位:cm)

圖2 垂向預應力筋壓力感受器示意圖(單位:mm)

圖3 垂向預應力筋錨固端及拉張端大樣圖(單位:cm)
在實際施工中,拉張目標梁段全部垂向預應力筋需4 h,拉張完畢后進行注灌漿。在垂向預應力筋拉張和注灌漿后,在第 4、6、8、11、14、19 個月時分別開展測試,具體方法如下:

圖4 感受器現場圖
(1)拉張垂向預應力筋至拉張控制應力,并記錄壓力感受器示數、鋼筋伸長量、光纖感受器示數和拉張端實際拉張應力。
(2)待預應力放松后,完成數據記錄。
(3)注灌漿后開展連續檢測。半個月里需每天測試2 次,隨時間推移,測試間隔可逐漸增大。
拉張垂向預應力筋時和錨固后對應有效預應力測試結果見表1。

表1 拉張垂向預應力筋與錨固后對應有效預應力測試結果 單位:MP a
由表1 可知,針對垂向預應力筋 N23、N23′、N23″,拉張錨固時各項損耗總和依次是29.9 MPa、39.9 MPa、45.2 MPa,分別占起始拉張應力的3.6%、4.8%和5.4%;垂向預應力筋錨固損耗值比彈塑性壓縮損耗值更大。
拉張垂向預應力筋傳力錨固對應有效預應力測試結果見表2。
由表2 可知:傳力錨固后205 d 的總損耗依次是42.8 MPa、30.9 MPa、30.5 MPa,依次占起始拉張應力的5.2%、3.7%、3.7%。錨固后180 d 內,垂向預應力損耗基本實現,各鋼絞線有效預應力幾乎維持恒定。

表2 拉張垂向預應力筋傳力錨固對應有效預應力測試結果 單位:MP a
第1 批預應力損耗亦是瞬時損耗,定義為加施預應力后在較短時間內已經基本實現的損耗,其組成總體包括鋼筋回縮、錨具形變、摩擦損耗及混凝土彈塑性壓縮損耗和對接縫壓縮損耗。
3.1.1 摩擦損耗
由于存在摩擦損耗,致使選用單端拉張方式開展拉張的垂向預應力筋對應有效預應力從拉張端向錨固端逐漸遞減,將感受器裝配至拉張端會致使摩擦損耗無法測得。所以,現場測試垂向預應力時,均在錨固端裝配感受器[3]。此時,能夠依據拉張端及錨固端預應力測試值直接計算出摩擦損耗,而其理論值可參考《公路鋼筋混凝土及預應力混凝土橋涵設計規范》(JTG 3362—2018)(以下簡稱《橋規》)的相應計算方法求得3 根測試用垂向預應力筋的摩擦損耗,計算值及實際測量值見表3。

表3 垂向預應力筋摩擦損耗計算值及實際測量值 單位:MP a
由表3 可知:因為垂向預應力筋相對較短,其摩擦損耗所占總損耗比例(0.62%)比縱向預應力筋摩擦損耗所占總損耗比例(5.7%)小很多;垂向預應力筋的摩擦損耗計算值與實際測量值比較符合。
3.1.2 對接縫壓縮、鋼筋回縮及錨具形變損耗
針對后張法混凝土構件,垂向預應力筋放張時會產生接縫壓縮、鋼筋回縮及錨具形變損耗,可選用超拉張工藝降低此項損耗值。在現場測試垂向預應力時,由對接縫壓縮、鋼筋回縮及錨具形變引發的預應力損耗能夠通過錨固端有效預應力開展實際測試。3 根測試用垂向預應力筋的對接縫壓縮、鋼筋回縮及錨具形變損耗計算值及實際測量值見表4。

表4 垂向預應力筋錨具形變等損耗實際測量值及計算值 單位:MP a
由表4 可知:3 根測試用垂向預應力筋的對接縫壓縮、鋼筋回縮、錨具形變損耗的實際測量值都小于計算值。表明施工現場的垂向預應力鋼墊板相對平整,鋼墊板與螺母間縫隙很小,而且錨固時選用的大扳手需為長手柄,所以螺母十分牢固,相當程度上消除了鋼板與螺母間的縫隙,大大降低了錨固回縮損耗。
3.1.3 混凝土彈塑性壓縮損耗
采用后張法施工的箱體梁垂向預應力筋,其數量通常較多并且互相間距離較近。當垂向預應力筋采取分批拉張并且多于1 根時,垂向預應力是逐根加施于箱體梁腹板上,伴隨拉張順序的不同,垂向預應力筋混凝土彈塑性壓縮量亦會不同,產生的混凝土彈塑性壓縮損耗亦各不相同[4]。因為拉張后續垂向預應力筋時會引發先前拉張的預應力,所以一般情況下首根拉張的垂向預應力筋混凝土彈塑性壓縮損耗最大,而最后拉張的垂向預應力筋沒有混凝土彈塑性壓縮損耗。
考慮拉張順序的混凝土彈塑性壓縮損耗計算比較復雜,通常需憑借有限元分析軟件開展模擬拉張分析。在實際施工中,混凝土彈塑性壓縮損耗的實際測量值可依據現場測試獲得,混凝土彈塑性壓縮損耗的理論值σl4則依照如下公式計算:

式中:αEP為預應力筋彈塑性模量與混凝土彈塑性模量的比值[5];Δσpc為后張拉導致的鋼筋重心位置法向混凝土應力,MPa。
3 根測試用垂向預應力筋混凝土彈塑性壓縮損耗計算值和實際測量值見表5。
由表5 可知:垂向預應力筋混凝土彈塑性壓縮損耗值較低,且小于對接縫壓縮、鋼筋回縮及錨具形變損耗;3 根測試用垂向預應力筋混凝土彈塑性壓縮損耗計算值與實際測量值偏差較小,說明混凝土彈塑性壓縮損耗計算式在實際施工中切實可行。

表5 垂向預應力筋混凝土彈塑性壓縮損耗計算值和實際測量值 單位:MP a
依據表1 錨固和拉張后垂向有效預應力對應測試結果,可獲得3 根垂向預應力筋對應第1 批預應力損耗組成情況,見表6。

表6 垂向預應力筋對應第1 批損耗實測匯總值 單位:MPa
由表6 可知:試驗用的3 根垂向預應力筋N23、N23′、N23″的第 1 批損耗值依次是 41.3 MPa、52.0 MPa、54.4 MPa,依次占其起始拉張應力的5.0%、6.3%、6.5%:在垂向預應力筋第1 批損耗中,因為對接縫壓縮、鋼筋回縮及錨具形變所引發的損耗所占比例最大(依次占第1 批總損耗的72.0%、76.0%、82.5%)。所以為了降低垂向預應力第1 批損耗,應重點減小垂向預應力的對接縫壓縮、鋼筋回縮和錨具形變損耗。
第2 批預應力損耗的定義是加施預應力時短時間內實現的損耗,總體包括混凝土收縮徐變損耗和預應力筋松弛損耗兩部分。依據混凝土收縮徐變、垂向預應力筋松弛相關理論,計算其損耗相對復雜,所以在實際施工中依照相關規定計算方法得出此2 項損耗。垂向預應力筋松弛損耗σl5計算依據式(2);混凝土收縮徐變損耗σl6(t)計算依據式(3)。


式中:ψ 為拉張系數;ζ 為預應力鋼筋的松弛系數;σpe為傳力錨固條件下的鋼筋應力;σpc為由預應力導致的承拉區域各縱筋斷面重心部位的法向混凝土壓力;φ(t,t0)為加載齡期 t0下,計算齡期 t 的徐變常數;εcs(t,t0)為應力筋導力錨固齡期 t0下,計算齡期 t 的混凝土收縮應變;αEP為預應力筋彈塑性模量與混凝土彈塑性模量的比值。
測試垂向預應力時,因為未在現場測試混凝土應變,所以只能得出其實際測量值。同時結合式(2)和式(3),計算得出混凝土收縮徐變損耗和預應力筋松弛損耗理論值,匯總結果見表7。

表7 垂向預應力筋第2 批損耗實際測量結果匯總值 單位:MP a
根據表7 能夠得出:垂向預應力筋第2 批損耗實測均值在第 60 d、130 d、205 d 依次是 30.3 MPa、33.3 MPa 和34.7 MPa,與理論值相比,實際測量值均小于理論值;而且,垂向預應力筋對應有效預應力在150 d 后基本維持恒定。
針對案例橋箱體梁腹板垂向預應力筋,依據路橋設計規范中相關縱向預應力損耗計算規定,對混凝土收縮徐變損耗、混凝土彈塑性壓縮損耗、鋼束松弛損耗、垂向預應力筋的摩擦損耗以及錨固損耗進行了計算。根據計算結果發現:除去計算所獲得的錨固損耗顯著偏大,其他各項損耗的計算值都與實際測量值相符合。針對垂向預應力筋,錨固損耗所占比例最大,垂向預應力筋N23、N23′、N23″依次占總損耗的35.3%、47.5%和52.8%。實測錨固損耗偏小,一方面表明選用計算方法對垂向預應力筋的此項損耗開展計算相對安全,同時亦表明施工現場的垂向預應力筋拉張施工功效較佳。