



[摘要] 目的 研究未發生明顯微血管病變階段糖尿病視網膜病變(DR)視盤旁視網膜神經纖維(RNFL)結構和視功能的變化及其關系。
方法 按照最新DR分級標準,將未發生明顯微血管病變的糖尿病病人分為血糖控制理想組(A組)、血糖控制欠佳組(B組),同時選取未患全身性疾病和眼部疾病的健康人作為對照組(C組)。所有研究對象均行視盤光學相干斷層掃描、電生理檢查和視野檢查,分析并比較各組視盤旁RNFL厚度、P100波潛伏期與振幅、視野平均變異值(MD)、視野指數(VFI)等差異。
結果 A組、B組、C組上方、下方、鼻側RNFL厚度的差異有統計學意義(F=848.027~1 053.009,P<0.05),其中上方RNFL厚度在A組與B組、B組與C組間差異有統計學意義(q=29.187、30.065,P<0.05),下方和鼻側RNFL厚度組間兩兩比較差異均有統計學意義(q=16.552~39.405,P<0.05)。A組、B組、C組P100波潛伏期與振幅比較差異均有統計學意義(F=355.888~1 448.447,q=-28.097~22.240,P<0.05)。A組、B組、C組視野MD和VFI比較差異均有統計學意義(F=342.451~847.972,q=3.952~19.461,P<0.05)。上方、下方、鼻側RNFL厚度與P100波潛伏期呈負相關(r=-0.884~-0.588,P<0.05),與P100波振幅、視野MD、VFI呈正相關(r=0.540~0.938,P<0.05)。
結論 在早期DR未出現明顯微血管病變時,病人視盤旁就已發生RNFL變薄改變,以上方、下方及鼻側為主,且血糖控制欠佳者上述改變更為顯著。隨著RNFL厚度的改變,病人的視功能發生不同程度的下降,兩者具有顯著相關性。
[關鍵詞] 糖尿病視網膜病變;視盤;神經纖維;體層攝影術,光學相干;誘發電位,視覺;視野
[中圖分類號] R774;R587.26
[文獻標志碼] A
[文章編號] 2096-5532(2021)03-0437-05
doi:10.11712/jms.2096-5532.2021.57.026
[開放科學(資源服務)標識碼(OSID)]
[網絡出版] https://kns.cnki.net/kcms/detail/37.1517.R.20200821.1601.003.html;2020-08-24 10:18:00
CHANGES IN OPTIC DISC STRUCTURE AND VISUAL FUNCTION IN EARLY DIABETIC RETINOPATHY AND THEIR CORRELATION
ZHANG Yuanchao, ZHAO Ying, ZHOU Zhanyu, WANG Liangyu, LI Yuanyi
(Department of Ophthalmology, Qingdao Municipal Hospital, Third Clinical Medical College of Qingdao University, Qingdao 266011, China)
[ABSTRACT]Objective To investigate the changes in retinal nerve fiber layer (RNFL) structure and visual function and their correlation in diabetic retinopathy (DR) without microangiopathy.
Methods According to the latest grading criteria for DR, diabetic patients without microangiopathy were divided into ideal blood glucose control group (group A) and poor blood glucose control group (group B), and healthy individuals without systemic diseases or eye diseases were enrolled as control group (group C). All subjects underwent spectral-domain optical coherence tomography for the optic disc, electrophysiological examination, and visual field examination, and the three groups were compared in terms of RNFL thickness, P100 wave latency and amplitude, visual field mean deviation (MD), and visual field index (VFI).
Results There were significant differences in RNFL thickness above and below the optic disc and at the nasal sides of the optic disc between groups A, B, and C (F=848.027-1 053.009,Plt;0.05); there was a significant difference in RNFL thickness above the optic disc between group A and group B, as well as between group B and group C (q=29.187,30.065;Plt;0.05), and there were also significant differences in RNFL thickness below the optic disc and at the nasal sides of the optic disc between any two groups (q=16.552-39.405,Plt;0.05). There were significant differences in P100 latency and amplitude between groups A, B, and C (F=355.888-1 448.447,q=-28.097 to 22.240,Plt;0.05). There were significant differences in visual field MD and VFI between groups A, B, and C (F=342.451-847.972,q=3.952-19.461,Plt;0.05).
RNFL thickness above and below the optic disc and at the nasal sides of the optic disc was negatively correlated with P100 latency (r=-0.884 to-0.588,Plt;0.05) and was positively correlated with P100 amplitude, visual field MD, and VFI (r=0.540-0.938,Plt;0.05).
Conclusion In early-stage DR without microangiopathy, RNFL becomes thinner near the optic disc, especially above and below the optic disc and at the nasal sides of the optic disc, and patients with poor blood glucose tend to have more significant changes. With the reduction in RNFL thickness, there are varying degrees of reduction in visual function, and there is a significant correlation between the change in RNFL thickness and the reduction in patient’s visual function.
[KEY WORDS]diabetic retinopathy; optic disk; nerve fibers;
tomography, optical coherence; evoked potentials, visual; visual fields
現代化的生活節奏和不健康的飲食習慣極大地促進了糖尿病的發病。我國糖尿病的患病率已超過全球平均水平[1]。糖尿病視網膜病變(DR)作為糖尿病眼部并發癥中對病人視力影響最為嚴重的疾病,早期的隱蔽性影響了其診斷與治療,晚期常因發生黃斑水腫、玻璃體出血、視網膜脫落等而造成不可避免的視力下降[2]。糖尿病微血管病變的病理機制主要以血管壁通透性的改變和內皮細胞的增生為主[3]。研究發現,在DR發生微血管病變之前便已存在神經方面的損傷,包括但不僅限于部分神經膠質細胞活化、神經細胞發生病理性死亡、微神經膠質細胞激活及影響谷氨酸代謝等[4-5]。由于尚不足以對視力產生明顯影響,臨床上大部分病人的神經改變未被早期發現[6]。糖化血紅蛋白(HbA1c)現已被證實是DR的獨立危險因素[7],可作為檢測血糖控制情況的“金標準”,在一定程度上可提示DR發生的可能和程度[8-10]。視盤光學相干斷層(OCT)掃描能夠精準、定量地測量視盤及其四周(上方、下方、鼻側、顳側)視網膜神經纖維(RNFL)厚度[11],而視盤RNFL厚度可以用來評估病人視網膜神經節細胞(RGCs)的丟失情況[12-15]。而視覺電生理檢查作為視覺傳導信號檢查中不可或缺的一個重要項目,主要反映視網膜到視皮質的傳導效能[16],在DR階段P100波的潛伏期與振幅已經有不同程度的改變[17]。有研究結果顯示,視盤RNFL厚度與視野平均變異值(MD)、視野指數(VFI)呈明顯相關[18]。目前關于DR的研究大多著眼于已發生微血管病變時病人視神經結構及視功能的改變[19],且在DR病人的常規檢查中是否需要進行視野檢查仍無定論。故本研究對未發生明顯微血管病變階段DR視盤旁RNFL結構和視功能的變化及其關系進行了探討。
1 對象和方法
1.1 研究對象
2019年8月—2020年1月,從我院眼科就診的糖尿病病人中選取眼底檢查無異常的DR病人51例。排除標準:青光眼,虹膜新生血管,有高眼壓史者;已行玻璃體切除術、視網膜激光光凝術等眼底手術者;晶體渾濁,不能查見后極部視盤周邊視網膜區域者;存在黃斑變性或黃斑水腫病變者;病理性高度近視(球面鏡差>6.00 D)者;存在視網膜視神經疾病者;存在病理性視盤異常者。入選病人51例(102眼),男23例,女28例;年齡50~78歲,平均64.60歲。將其中HbA1c≤7%的27例病人歸為血糖控制理想組(A組),HbA1c>7%的24例病人歸為血糖控制欠佳組(B組)。選取年齡相近的30例健康者作為對照組(C組)。3組年齡、性別比較差異無顯著性(P>0.05)。見表1。
1.2 研究方法
所有研究對象均行視盤OCT掃描、電生理檢查和視野檢查,檢查均由同一位有經驗的技師完成。
1.2.1 頻域OCT掃描測量視盤旁RNFL厚度 應用德國Carl Zeiss Meditee公司的SD-OCT成像儀。散瞳后于我院特檢室行視盤OCT檢查,利用系統自帶軟件對所有結果進行比對,獲取視盤旁平均及4個方向的RNFL厚度值。
1.2.2 圖形視覺誘發電位測量不同頻率下P100波潛伏期和振幅 應用德國Roland電生理系統檢查,選擇頭部中線枕骨粗隆上2 cm、正中線近發跡處和右耳垂作為電極接觸點。病人坐于暗室中距離電腦屏幕1 m的位置,注視不動點,選擇黑白翻轉棋格作為誘發圖形,記錄高頻與低頻時P100波潛伏期和振幅。注意檢查前切忌散瞳,檢查過程中遮蓋對側眼。
1.2.3 視野檢查 應用美國Humphrey視野計,測量中央視野30°光閾值。將病人視力調整到最佳矯正視力,囑病人緊盯注視點,用余光感受亮點。記錄視野MD及VFI。
1.3 統計學分析
使用SPSS 24.0軟件進行統計學分析,多組計量資料均數比較采用方差分析,組間兩兩比較采用SNK-q檢驗,以P<0.05為差異有統計學意義。
2 結" 果
2.1 各組RNFL厚度比較
A組、B組、C組上方、下方、鼻側RNFL厚度的差異具有統計學意義(F=848.027~1 053.009,P<0.05),C組、A組、B組的厚度逐漸變薄。其中上方RNFL厚度在A組與B組、B組與C組間差異有統計學意義(q=29.187、30.065,P<0.05),而在A組與C組之間差異無統計學意義(q=0.532,P>0.05);下方和鼻側RNFL厚度組間兩兩比較差異均有統計學意義(q=16.552~39.405,P<0.05)。3組平均及顳側RNFL厚度比較差異均無統計學意義(F=1.822、0.112,P>0.05)。見表2。
2.2 各組圖形視覺誘發電位檢查結果比較
A組、B組、C組P100波潛伏期和振幅比較差異均有統計學意義(F=355.888~1 448.447,q=-28.097~22.240,P<0.05)。見表3。
2.3 各組間視野檢查結果比較
A組、B組、C組視野MD和VFI比較差異均有統計學意義(F=342.451~847.972,q=3.952~19.461,P<0.05)。見表3。
2.4 視盤旁RNFL厚度與視野MD、VFI、P100波潛伏期和振幅的相關性
對所有研究對象進行相關性分析,結果顯示上方、下方、鼻側RNFL厚度與P100波潛伏期呈負相關(r=-0.884~-0.588,P<0.05),與P100波振幅、視野MD、VFI呈正相關(r=0.540~0.938,P<0.05)。見表4。
3 討" 論
HbA1c可以反映病人近3個月的血糖平均水平[20],是預測糖尿病病人發生微血管病變風險的重要指標,將其控制在正常范圍內能在極大程度上延緩DR的發生[21]。有研究結果表明,2型糖尿病病人HbA1c水平會影響黃斑區血液灌注量和無血管區形態[22]。因此,HbA1c管理對于DR的預防與控制有重要意義。
作為糖尿病的并發癥之一,DR已成為危害我國18歲以上人群視力的主要疾病[1]。早期防護和治療對于DR的控制至關重要,到了疾病后期可能因為多種原因導致視力出現斷崖式下降。其主要的病理改變是視網膜微血管破壞機制與保護機制發生失衡導致血-視網膜屏障破壞[23]。但越來越多的研究表明,DR在發生血管病變之前便已存在視網膜神經結構的破壞,以神經元發生病理性改變、軸突出現不可逆性萎縮、脫髓鞘、神經膠質細胞活化等表現多見[24]。研究發現,糖尿病病人在患病早期黃斑中心凹及其周圍的RGCs變薄,軸突變形、串珠樣改變,樹突顯著變小、分支減少,與之相對應的RNFL減少[25]。視盤血流主要由3個動脈系統供應:走行于視盤表面RNFL中的放射狀毛細血管,來源于視網膜中央動脈系統;睫狀動脈系統主要營養眼球內段以及篩板區視神經;軟腦膜血管主要負責向篩板后區視神經輸送營養[26]。DR主要引起視網膜中央動脈系統紊亂,導致視盤血供減少,從而使RNFL減少[27]。本研究結果顯示,DR病人除平均、顳側神經纖維層的厚度較正常人無明顯變化外,其余各象限神經纖維均較正常人減少,提示在未出現明顯微血管變化階段的DR病人中,神經結構的改變已經發生,且HbA1c水平越高,視神經受到的影響越大。同時本研究也觀察到,在疾病變化的過程中,病人顳側神經纖維始終未出現明顯的厚度改變,這可能是由于視網膜血管在因糖尿病發生病理性改變時不是按照對稱的方式發生的,從而導致了這種不同區域RNFL厚薄不均的表現[28]。這與TAKAHA-SHI等[29]的報道相一致。但也有研究顯示,在DR早期僅出現視盤鼻側和下方象限的RNFL厚度顯著變薄[30]。這可能由于在用OCT進行檢測時其信號強度不一引起的,低于7/10信號強度的檢測影響了RNFL厚度的測量。
DR發生神經損傷的機制目前尚未明確。可能的機制為,血-視網膜屏障的破壞導致血管通透性增加,血管內物質溢出造成組織間液增多,壓迫神經纖維,使得神經纖維發生萎縮、丟失[31]。同時,糖尿病引起的物質循環發生病理性改變,也會對視網膜神經層產生影響[32-34]。激活的蛋白質分子、活化的氧化物、腫瘤壞死因子-α等有毒物質從活化的微神經膠質細胞釋放出來,也會誘導神經出現變性現象。視覺電生理檢查主要反映的是在視覺產生過程中所發生的電位變化,與軸索和髓鞘的功能性、完整性密切相關,在神經疾病的判斷方面是必不可少的檢查手段。本研究結果顯示,P100波的潛伏期在眼底尚未出現明顯微血管病變時便出現延遲,振幅出現下降,提示早期DR便已存在視神經傳導的損害,并且血糖控制不佳會加重神經傳導的損傷。
目前尚缺乏DR對病人視野影響的臨床研究。視野MD值代表了視野閾值靈敏度的平均偏差,其以0為基數,數值增大代表閾值靈敏度降低。VFI則以百分比的形式代表視野缺失范圍。從本文結果來看,DR病人的視野MD值較正常人降低,VFI較正常人減小,說明在早期DR階段,視野便已出現缺損,這與伍春榮等[35]的研究結果相一致。且血糖控制不佳會加重視野損傷的程度。病人在疾病早期對視野缺損的主觀感受不強,可能的原因是DR早期發生的視野缺損多分散在視野周邊,未累及中心視野。既往有研究顯示,病人視野缺損的部位與視盤RNFL變薄的象限是相關的[28]。
綜上所述,在DR的早期病人視神經便已受累,以視盤上方、下方及鼻側最為顯著,結構的破壞導致了病人視功能的下降。因此,臨床上未發生明顯微血管病變的DR病人存在視功能的改變時,應著重關注病人視神經方面發生的損傷。同時,在判斷DR病人的疾病進展程度時,視覺電生理檢查聯合視野檢查應該作為常規手段,從而更加全面地評估病人的視功能。由于本研究樣本數量有限,檢查過程中難免受到操作者的主觀影響,早期DR對于視網膜神經細胞的影響仍需進一步研究。
[參考文獻]
[1]中華醫學會糖尿病學分會. 中國2型糖尿病防治指南(2017年版)[J]." 中華糖尿病雜志, 2018,10(1):4-5.
[2]WANG F H, LIANG Y B, ZHANG F," et al." Prevalence of diabetic retinopathy in rural China: the Handan Eye Study[J]." Ophthalmology, 2009,116(3):461-467.
[3]OSHITARI T, ROY S. Diabetes: a potential enhancer of retinal injury in rat retinas[J]." Neurosci Lett, 2005,390(1):25-30.
[4]BARBER A J. A new view of diabetic retinopathy: a neurodegenerative disease of the eye[J]." Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003,27(2):283-290.
[5]謝安明,王雅君,崔麗珺. 血管內皮祖細胞與VEGF對增生性糖尿病視網膜病變新生血管形成的影響[J]." 西安交通大學學報(醫學版), 2013,34(2):233-236.
[6]VILLARROEL M, CIUDIN A, HEMFINDEZ C," et al." Neurodegeneration: an early event of diabetic retinopathy[J]." Wbrld Journal of Diabetes, 2010,1(2):57-64.
[7]LIU Y, YANG J, TAO L," et al." Risk factors of diabetic retinopathy and sight-threatening diabetic retinopathy: a cross-sectional study of 13473 patients with type 2 diabetes mellitus in mainland China[J]." BMJ Open, 2017,7(9):162-165.
[8]KNUDSEN L L, LERVANG H H, LUNDBYE-CHRISTENSEN S," et al." The North Jutland County Diabetic Retinopathy Study (NCDRS) 2. Non-ophthalmic parameters and clinically significant macular oedema[J]." British Journal of Ophthalmology, 2007,91(12):1593-1595.
[9]ZHANG X Z, SAADDINE J B, CHOU C F," et al." Prevalence of diabetic retinopathy in the United States, 2005—2008[J]." JAMA, 2010,304(6):649-656.
[10]NATHAN D M, MCGEE P, STEFFES M W," et al." Relationship of glycated albumin to blood glucose and HbA1c values and to retinopathy, nephropathy, and cardiovascular outcomes in the DCCT/EDIC study[J]." Diabetes, 2014,63(1):282-290.
[11]DIN N M, TAYLOR S R, ISA H," et al." Evaluation of retinal nerve fiber layer thickness in eyes with hypertensive uveitis[J]." Jama Ophthalmology, 2014,132(7):859-865.
[12]AGGARWAL D, TAN O, HUANG D," et al." Patterns of ganglion cell complex and nerve fiber layer loss in nonarteritic ischemic optic neuropathy by Fourier-domain optical coherence tomography[J]." Investig Ophthalmol Vis Sci, 2012,53(8):4539-4545.
[13]BELLUSCI C, SAVINI G, CARBONELLI M," et al." Retinal nerve fiber layer thickness in nonarteritic anterior ischemic optic neuropathy: OCT characterization of the acute and resolving phases[J]." Graefe's Archive for Clinical and Experimental Ophthalmology, 2008,246(5):641-647.
[14]HOOD D C, ANDERSON S, ROULEAU J," et al." Retinal nerve fiber structure versus visual field function in patients with ischemie optic neuropathy. A test of a linear model[J]." Ophthalmology, 2008,115(5):904-910.
[15]CONTRERAS I, NOVAL S, REBOLLEDA G," et al." Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography[J]." Ophthalmology, 2007,114(12):2338-2344.
[16]BANDELLO F, MENCHINI F. Diabetic papillopathy as a risk factor for progression of diabetic retinopathy[J]." Retin Phila Pa, 2004,24(1):183-184.
[17]田東華. NPDR視乳頭旁 RNFL厚度及結構改變與視功能變化的相關性[J]." 國際眼科雜志, 2014,14(7):1209-1211.
[18]鞏鴻霞,龐雅菊,王蘭惠. 非動脈炎性前部缺血性視神經病變圖形視覺誘發電位與視力相關性研究[J]." 中國實用眼科雜志, 2016,34(1):12-15.
[19]OLA M S, NAWAZ M I, SIDDIQUEI M M," et al." Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy[J]." Diabetes Complications, 2012,74(1):56-64.
[20]BROWNLEE M. The pathobiology of diabetic complications: a unifying mechanism[J]." Diabetes, 2005,54(6):1615-1625.
[21]SUGIMOTO M, SASOH M, IDO M, et al. Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy[J]." Ophfha Imolog Ica, 2005,219(6):379-385.
[22]朱秋健,畢明超,趙萍,等. 2型糖尿病患者糖化血紅蛋白水平對黃斑區微循環影響的定量分析[J]." 中華眼底病雜志, 2019,35(1):8-14.
[23]TOLONEN N, HIETALA K, FORSBLOM C," et al." Associations and interactions between lipid profiles, retinopathy and nephropathy in patients with type 1 diabetes: the FinnDiane Study[J]." Journal of Internal Medicine, 2013,274(5):469-479.
[24]熊小艷,毛新幫,王嬋嬋,等. 視網膜神經纖維層厚度與糖尿病視網膜病變程度的相關性研究[J]." 眼科新進展, 2011,31(5):438-440.
[25]FRANK R N. On the pathogenesis of diabetic retinopathy[J]." Ophthalmology, 1984,91(6):626-634.
[26]HAYREH S S, ZIMMERMAN B. Visual field abnormalities in nonarteritic anterior ischemic optic neuropathy: their pattern and prevalence at initial examination[J]." Arch Ophthalmol Chic Ill: 1960, 2005,123(11):1554-1562.
[27]TANG J, KERN T S. Inflammation in diabetic retinopathy[J]." Progress in Retinalamp; Eye Research, 2011,30(5):343-358.
[28]張英楠,陳曉隆. 玻璃體切割術治療增生性糖尿病視網膜病變[J]." 眼科新進展, 2012,32(1):56-58.
[29]TAKAHASHI H, GOTO T, SHOJI T," et al." Diabetes-associated retinal nerve fiber damage evaluated with scanning laser polarimetry[J]." Am J Ophthalmol, 2006,142(1):88-94.
[30]馬進,張怡,朱鐵培,等. 非增生性糖尿病視網膜病變視乳頭旁視網膜神經纖維層改變及與視功能的相關研究[J]." 中華眼科雜志, 2013,49(6):514-520.
[31]RUNGGERBRFINDLE E, DOSSO A A, LEUENBERGER P M. Glial reactivity, an early feature of diabetic retinopathy[J]." Investigative Ophthalmologyamp;Visual Science, 2000,41(7):1971-1980.
[32]ZHANG L X, INO-UE M, DONG K," et al." Retrograde axonal transport impairment of large-and medium-sized retinal ganglion cells in diabetic rat[J]." Current Eye Research, 2000,20(2):131-136.
[33]INO-UE M, ZHANG L, NAKA H," et al." Polyol metabolism of retrograde axonal transport in diabetic rat large optic nerve fiber[J]." Investig Ophthalmol Vis Sci, 2000,41(13):4055-4058.
[34]MARTIN P M, ROON P, VAN ELLS T K," et al." Death of retinal neurons in streptozotocin-induced diabetic mice[J]." Investig Ophthalmol Vis Sci, 2004,45(9):3330-3336.
[35]伍春榮,閆洪欣,郭惠玲,等. 577 nm氪激光全視網膜激光光凝治療糖尿病視網膜病變后視野缺失的定量分析[J]." 中華眼底病雜志, 2019,1(1):65-69.
(本文編輯 馬偉平)