
[摘要]目的 研究鐵過載對原代神經元發生衰老的影響。方法 取大鼠原代中腦腹側神經元進行體外培養,隨機分為對照組和實驗組,實驗組給予100 μmol/L枸櫞酸鐵銨(FAC)處理24 h,對照組用不含FAC的培養液進行處理,通過檢測細胞衰老相關β-半乳糖苷酶活性評估細胞衰老狀況。結果 與對照組相比,在100 μmol/L FAC作用24 h時,實驗組原代神經元衰老相關β-半乳糖苷酶活性增加(t=18,P<0.05)。結論 鐵過載可誘導原代神經元發生衰老。
[關鍵詞]神經元;鐵;細胞衰老
[中圖分類號]R338.2
[文獻標志碼]A
[文章編號]2096-5532(2021)02-0174-04
[ABSTRACT]Objective To investigate the effect of iron overload on the senescence of primary neurons."Methods Primary ventral midbrain neurons of rats were cultured in vitro and were randomly divided into control group and experimental group. The experimental group was treated with ferric ammonium citrate (FAC) (100 μmol/L) for 24 h, and the control group were treated with the medium without FAC. Cell senescence was evaluated based on the activity of β-galactosidase associated with cell senescence."Results Compared with the control group, the experimental group had a significant increase in the activity of β-galactosidase associated with cell senescence after being treated by 100 μmol/L FAC for 24 h (t=18,Plt;0.05)."Conclusion Iron overload can induce the senescence of primary neurons.
[KEY WORDS]neurons; iron; cell senescence
帕金森病是世界第二大神經退行性疾病,典型病理特征是黑質致密帶多巴胺能神經元進行性丟失,α-突觸核蛋白的聚集和鐵沉積[1-3]。越來越多的證據表明鐵沉積會導致多巴胺能神經元死亡,鐵過載是神經元死亡的誘因而非結果[4-5]。除了可以通過氧化損傷途徑促進多巴胺能神經元死亡,大量的鐵可以促進α-突觸核蛋白的表達[6],也可從蛋白翻譯后水平影響其磷酸化[7-8],促進蛋白聚積,進而損傷神經元[9-10]。隨著年齡增加,多種器官發生鐵聚積,腦內鐵沉積隨之不斷加劇[11],過量鐵導致的氧化水平升高又會進一步引發鐵蛋白釋放[12]。細胞衰老是細胞無法進入細胞周期而處于停滯狀態,是防止細胞不受調控持續增殖的機制,主要表現為炎性因子的分泌、β-半乳糖苷酶活性增加以及衰老相關分泌表型 [13]。隨著年齡的增加,衰老細胞在體內逐漸累積,衰老的細胞部分喪失生理活性,影響機體正常生理功能。在主要的神經退行性疾病如阿爾茨海默病、帕金森病以及亨廷頓癥病人腦內均發現了衰老的神經元和膠質細胞[14-15]。
在疾病狀態下的神經元也會出現衰老現象,據文獻報道,在γ射線誘導的小鼠胚胎成纖維細胞衰老模型中,衰老細胞的鐵水平是正常細胞的30倍之多[16]。另有研究發現,神經毒素百草枯可誘發與帕金森病相關的細胞衰老和神經病理特征[17]。
最近有研究表明,誘導胚胎干細胞分化的多巴胺能神經元也觀察到衰老表型[18]。已有實驗證實,衰老細胞內鐵含量明顯升高,衰老導致的鐵攝取和儲存異常會影響鐵介導的細胞死亡過程[11,16],衰老的細胞若不及時清除,會進一步損傷周圍細胞[19]。為了探討鐵過載能否引發神經元衰老進而引發死亡丟失,本研究用枸櫞酸鐵銨(FAC)對原代神經元進行處理,檢測其衰老發生情況。
1 材料和方法
1.1 實驗材料
FAC(Sigma),胎牛血清(依科賽(澳洲源)),SA-β-Gal染色試劑盒(CST,9860S),DMEM高糖培養液(Gibco,1210038)以及DMEM/F12培養液(Hyclone,SH30023.01),D-多聚賴氨酸、B27(Gibco),β-阿糖胞苷、青鏈霉素混合液、0.01 mol/L磷酸鹽緩沖液(PBS)(索萊寶)和倒置顯微鏡(OLYMPUS,IX73)。
1.2 實驗方法
1.2.1 中腦腹側原代神經元培養 將深度麻醉的孕12~14 d的Wistar大鼠用醫用乙醇噴灑消毒后,用手術剪沿大鼠的腹中線剪開至腹腔完全暴露,用鑷子取出串珠樣胚胎,放在預冷的DMEM培養液中,迅速轉移至超凈工作臺上。用尖鑷將胎鼠剝離出來,先在解剖顯微鏡下將中腦組織塊取出轉移至新鮮的DMEM培養液中,再在鏡下修剪掉多余組織塊和血管膜,保留蝴蝶狀腹側,加入適量胰蛋白酶,置37 ℃培養箱中孵育消化,5 min后加入終止液終止消化。用1 mL移液槍輕柔地吹打盡量使組織塊分散,靜置片刻后吸取上清至50 mL離心管中,重新加入新鮮的DMEM培養液5 mL,重復上述步驟3次。將上清以1 000 r/min離心5 min后棄上清,加入含有B27的DMEM/F12完全培養液,輕輕吹打成均勻的單細胞懸液,接種到12孔板上,每孔1×105個細胞,放入細胞培養箱中培養,1 d后更換一半培養液,此后每隔2 d更換新鮮培養液,7 d后成熟的神經元可用于后續實驗。經β-阿糖胞苷處理,神經元純度達90%以上,符合實驗要求。
1.2.2 實驗分組及處理 將細胞隨機分為對照組和實驗組。實驗組細胞加入100 μmol/L的FAC作用24 h,對照組細胞用不含FAC的低血清培養液進行處理。
1.2.3 細胞衰老相關β-半乳糖苷酶活性檢測 應用SA-β-Gal染色試劑盒檢測細胞衰老相關β-半乳糖苷酶活性。FAC處理24 h后,用0.01 mol/L PBS潤洗細胞2次,每次30 s,每孔細胞加入1 mL固定液,室溫固定15 min,用0.01 mol/L PBS沖洗細胞2次,每次30 s,棄掉洗液,每孔加入1.5 mL染色液,用封口膜密封細胞培養板防止染液蒸發,置37 ℃恒溫箱中孵育過夜。用0.01 mol/L PBS潤洗細胞2次,每次30 s,在奧林巴斯倒置顯微鏡明場下觀察并獲取圖像,陽性細胞顯示為亮藍色。
1.3 統計學分析
應用GraphPad Prism軟件進行統計學分析。計量資料結果以x2±s表示,兩獨立樣本比較采用t檢驗。以P<0.05表示差異有統計學意義。
2 結 果
與對照組相比較,實驗組細胞衰老相關β-半乳糖苷酶陽性染色明顯增強(圖1),對照組著色細胞比例為(2.077±0.440)%,實驗組著色細胞比例為(25.200±1.164)%,兩組比較差異具有統計學意義(n=3,t=18,P<0.05)。提示100 μmol/L FAC作用于原代神經元24 h,細胞衰老相關β-半乳糖苷酶活性增加,表明100 μmol/L FAC可以誘導原代神經元發生衰老。
3 討 論
鐵是維持生命活動的關鍵微量金屬元素之一,在中樞神經系統中發揮重要作用,參與腦內線粒體呼吸、軸突髓鞘化以及神經遞質的形成[12]。鐵作為活潑金屬,也可以催化多種生化反應,增加氧化應激,過量的活性氧損傷細胞膜、核酸及蛋白結構,引發細胞毒性[20]。枸櫞酸是鐵的天然螯合劑,枸櫞酸鐵為枸櫞酸與鐵離子形成的鐵鹽,是美國食品和藥物管理局(FDA)批準的補鐵藥劑[21]。本實驗所用的FAC是枸櫞酸鐵更具溶解性的形式,添加FAC可模擬高鐵環境,以探討鐵過載對神經元細胞衰老的影響。
對于體外培養細胞的衰老研究,衰老相關的β-半乳糖苷酶的活化是常用的生物學特征[22-23]。β-半乳糖苷酶是溶酶體水解酶,通常在pH值為4時表現出活性;而在衰老的細胞中,pH值為6時有活性,利用β-半乳糖苷酶底物進行染色,就能從正常細胞中區分出衰老細胞[24]。本實驗采用100 μmol/L FAC處理原代神經元24 h,觀察到β-半乳糖苷酶的陽性染色明顯增強,提示細胞衰老的發生。
越來越多的證據表明,鐵穩態失衡促進神經退行性疾病的發展[25-28],鐵沉積是帕金森病一個主要的病理特征,也是人們普遍認為的發病誘因。有研究證實,細胞內鐵過載會增加氧化還原水平[29-30],促進α-突觸核蛋白的聚積,進而發揮細胞毒性作用,如二價鐵可以通過與α-突觸核蛋白mRNA的C端ASP-121、Asn-122、Glu-123位結合,在轉錄水平促進α-突觸核蛋白表達,也可以在轉錄后水平參與蛋白磷酸化等修飾過程,促進蛋白聚集發揮細胞毒性作用[31-32],并且α-突觸核蛋白寡聚過程產生活性氧是鐵依賴性的[33]。鐵過載增加細胞內氧化應激水平可能是誘導衰老的重要機制。本實驗結果表明,鐵過載會誘發神經元衰老,這為后續進行神經元變性死亡研究提供了新的思路。但處于衰老狀態的神經元細胞是通過何種通路逐漸死亡丟失,神經元衰老與目前已知凋亡、壞死和鐵死亡之間是否存在因果或先后關系,衰老在神經元變性死亡過程中的具體機制還有待進一步的研究探討。
[參考文獻]
[1]HE N Y, LANGLEY J, HUDDLESTON D E, et al. Increased iron-deposition in lateral-ventral substantia nigra pars compacta: a promising neuroimaging marker for Parkinson’s disease[J]. NeuroImage Clinical, 2020,28:102391.
[2]AN H D, ZENG X Y, NIU T F, et al. Quantifying iron deposition within the substantia nigra of Parkinson’s disease by quantitative susceptibility mapping[J]. Journal of the Neurological Sciences, 2018,386:46-52.
[3]PRZEDBORSKI S. The two-century journey of Parkinson di-sease research[J]. Nature Reviews Neuroscience, 2017,18(4):251-259.
[4]NDAYISABA A, KAINDLSTORFER C, WENNING G K.Iron in neurodegeneration-cause or consequence[J]? Frontiers in Neuroscience, 2019,13:180.
[5]PIETRACUPA S, MARTIN-BASTIDA A, PICCINI P. Iron metabolism and its detection through MRI in parkinsonian di-sorders: a systematic review[J]. Neurological Sciences, 2017,38(12):2095-2101.
[6]ZHOU Z D, TAN E K. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases[J]. Molecular Neurodegeneration, 2017,12(1):75.
[7]TAKAHASHI M, KO L W, KULATHINGAL J, et al. Oxidative stress-induced phosphorylation, degradation and aggregation of α-synuclein are linked to upregulated CK2 and cathepsin D[J]. European Journal of Neuroscience, 2007,26(4):863-874.
[8]LINGOR P, CARBONI E, KOCH J C. Alpha-synuclein and ]iron: two keys unlocking Parkinson’s disease[J]. Journal of"Neural Transmission (Vienna, Austria:1996), 2017,124(8):973-981.
[9]JIANG H, SONG N, JIAO Q, et al. Iron pathophysiology in Parkinson diseases[J]. Advances in Experimental Medicine and Biology, 2019,1173:45-66.
[10]LI W J, JIANG H, SONG N, et al. Dose- and time-dependent alpha-synuclein aggregation induced by ferric iron in SK-N-SH cells[J]. Neuroscience Bulletin, 2010,26(3):205-210.
[11]WARD R J, ZUCCA F A, DUYN J H, et al. The role of iron in brain ageing and neurodegenerative disorders[J]. The Lancet Neurology, 2014,13(10):1045-1060.
[12]ZUCCA F A, SEGURA-AGUILAR J, FERRARI E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease[J]. Progress in Neurobio-logy, 2017,155:96-119.
[13]BAKER D J, CHILDS B G, DURIK M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan[J]. Nature, 2016,530(7589):184-189.
[14]BAKER D J, PETERSEN R C. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives[J]. The Journal of Clinical Investigation, 2018,128(4):1208-1216.
[15]KANG C, XU Q K, MARTIN T D, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4[J]. Science (New York, N Y), 2015,349(6255):aaa5612.
[16]MASALDAN S, CLATWORTHY S A S, GAMELL C, et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis[J]. Redox biology, 2018,14:100-115.
[17]CHINTA S J, WOODS G, DEMARIA M, et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson's disease [J]. Cell reports, 2018,22(4):930-940.
[18]RIESSLAND M, KOLISNYK B, KIM T W, et al. Loss of SATB1 induces p21-dependent cellular senescence in post-mitotic dopaminergic neurons[J]. Cell Stem Cell, 2019,25(4):514-530.e8.
[19]NELSON G, WORDSWORTH J, WANG C F, et al. A senescent cell bystander effect: senescence-induced senescence[J]. Aging Cell, 2012,11(2):345-349.
[20]YOU L H, LI F, WANG L, et al. Brain iron accumulation exacerbates the pathogenesis of MPTP-induced Parkinson’s di-sease[J]. Neuroscience, 2015,284:234-246.
[21]WANG H B, LI Z, NIU J L, et al. Antiviral effects of ferric ammonium citrate[J]. Cell Discovery, 2018,4:14.
[22]MARTNEZ-CU C, RUEDA N. Cellular senescence in neurodegenerative diseases[J]. Frontiers in Cellular Neuroscience, 2020,14:16.
[23]MATTSON M P, ARUMUGAM T V. Hallmarks of brain aging: adaptive and pathological modification by metabolic states[J]. Cell Metabolism, 2018,27(6):1176-1199.
[24]NOREN HOOTEN N, EVANS M K. Techniques to induce and quantify cellular senescence[J]. Journal of Visualized Experiments, 2017(123):55533
[25]XU J Z, JIA Z H, KNUTSON M D, et al. Impaired iron status in aging research[J]. International Journal of Molecular Sciences, 2012,13(2):2368-2386.
[26]SHI L Q, HUANG C, LUO Q H, et al. The association of iron and the pathologies of Parkinson’s diseases in MPTP/MPP+-induced neuronal degeneration in non-human primates and in cell culture[J]. Frontiers in Aging Neuroscience, 2019,11:215.
[27]WANG T, XU S F, FAN Y G, et al. Iron pathophysiology in Alzheimer’s diseases[J]. Advances in Experimental Medicine and Biology, 2019,1173:67-104.
[28]BAGWE-PARAB S, KAUR G. Molecular targets and therapeutic interventions for iron induced neurodegeneration[J]. Brain Research Bulletin, 2020,156:1-9.
[29]ABEYAWARDHANE D L, LUCAS H R. Iron redox chemistry and implications in the Parkinson’s disease brain[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019:4609702.
[30]ABEYAWARDHANE D L, FERNNDEZ R D, MURGAS C J, et al. Iron redox chemistry promotes antiparallel oligome-rization of α-synuclein[J]. Journal of the American Chemical Society, 2018,140(15):5028-5032.
[31]DAVIES P, MOUALLA D, BROWN D R. Alpha-synuclein is a cellular ferrireductase[J]. PloS One, 2011,6(1):e15814.
[32]OSTREROVA-GOLTS N, PETRUCELLI L, HARDY J, et al. The A53T alpha-synuclein mutation increases iron-depen-dent aggregation and toxicity[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2000,20(16):6048-6054.
[33]UGALDE C L, LAWSON V A, FINKELSTEIN D I, et al. The role of lipids in α-synuclein misfolding and neurotoxicity[J]. The Journal of Biological Chemistry, 2019,294(23):9016-9028.
(本文編輯 馬偉平)