
[摘要]目的 研究1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導的帕金森病(PD)小鼠模型黑質(SN)及內側前額葉皮質(mPFC)鐵代謝相關蛋白的表達變化。方法 將12只9周齡C57BL/6J雄性小鼠隨機分為對照組和MPTP組。對照組小鼠給予生理鹽水腹腔注射,MPTP組小鼠給予MPTP 30 mg/kg腹腔注射,5 d后進行爬桿實驗檢測小鼠的運動協調能力,Western Blot檢測鐵代謝相關蛋白的表達變化。結果 爬桿實驗結果顯示,與對照組相比,MPTP組小鼠轉頭時間和下桿時間均明顯增加,差異有統計學意義(t=2.420、3.464,P<0.05)。Western Blot結果顯示,與對照組相比,MPTP組小鼠SN區的重鏈鐵蛋白(H-Ferritin)和二價金屬離子轉運蛋白1(DMT1)表達明顯增加(t=3.969、3.333,P<0.01),轉鐵蛋白受體1(TfR1)表達明顯下降(t=2.318,P<0.05);兩組mPFC區的DMT1、TfR1和H-Ferritin表達差異均無顯著性。結論 MPTP能夠改變小鼠SN區的鐵代謝相關蛋白的表達,但并不影響mPFC區鐵代謝相關蛋白的表達。
[關鍵詞]帕金森病;1-甲基-4-苯基-1,2,3,6-四氫吡啶;鐵蛋白質類;受體,轉鐵蛋白;額葉前皮質;黑質;小鼠
[中圖分類號]R338.2
[文獻標志碼]A
[文章編號]2096-5532(2021)02-0198-04
[ABSTRACT]Objective To investigate the changes in the expression of iron metabolism-related proteins in the substantia nigra (SN) and the medial prefrontal cortex (mPFC) of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson disease (PD)."Methods A total of 12 male C57BL/6J mice, aged 9 weeks, were randomly divided into control group and MPTP group. The mice in the control group were given intraperitoneal injection of normal saline, and those in the MPTP group were given intraperitoneal injection of MPTP 30 mg/kg. After 5 days, the pole test was used to observe motor coordination ability, and Western blot was used to measure the expression of iron metabolism-related proteins."Results The results of the pole test showed that compared with the control group, the MPTP group had significant increases in the time to turn around and the time to climb down the pole (t=2.420,3.464;Plt;0.05). The results of Western blot showed that compared with the control group, the MPTP group had significant increases in the expression of heavy-chain ferritin and divalent metal transporter 1 (DMT1) (t=3.969,3.333;Plt;0.01) and a significant reduction in the expression of transferrin receptor 1 (TfR1) (t=2.318,Plt;0.05) in the SN of mice, while there were no significant differences between the two groups in the expression of DMT1, TfR1, and heavy-chain ferritin in the mPFC of mice."Conclusion MPTP can change the expression of iron metabolism-related proteins in the SN of mice, but it does not affect the expression of iron metabolism-related proteins in the mPFC of mice.
[KEY WORDS]Parkinson disease; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; ferritins; receptors, transferring; prefrontal cortex; substantia nigra; mice
帕金森病(PD)是中老年人神經退行性疾病中僅次于阿爾茲海默病的第二大神經系統疾病,其主要的臨床表現為運動障礙,主要的病理變化為黑質(SN)多巴胺能神經元受損,但其病因和發病機制目前尚未完全闡明。眾多研究結果已證實,鐵代謝障礙參與了PD的發病[1-3]。1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)是由1-甲基-4-苯基-4-丙氧基哌啶(MPPP)合成的副產物[4]。MPTP本身不具有毒性,但進入大腦后在單胺氧化酶B(MAO-B)的作用下轉化成具有毒性的甲基-苯基-吡啶離子(MPP+),被多巴胺轉運體(DAT)特異性轉運到SN多巴胺能神經元內誘導PD的發生[5-8]。有研究表明,MPTP能夠誘導小鼠SN鐵的沉積[9]。最新研究發現,腦內鐵運輸具有兩條途徑,其中一條途徑為腹側海馬(vHip)到內側前額葉皮質(mPFC)再到SN[10]。但是,此途徑異常是否是導致PD模型SN區鐵沉積的重要原因,目前尚未有報道。本研究采用MPTP誘導PD小鼠模型,檢測其SN區及mPFC區鐵代謝相關蛋白的表達變化。
1 材料與方法
1.1 實驗材料
1.1.1 實驗動物 SPF級8周齡雄性C57BL/6J小鼠購自北京維通利華實驗動物公司。飼養條件:溫度(21±2)℃,濕度(50±5)%,12-12 h循環晝夜光照,自由飲水進食。實驗前適應實驗室環境1周。
1.1.2 實驗藥品 MPTP(Sigma-Aldrich),用生理鹽水稀釋成6 g/L,注射量為30 mg/kg。
1.2 實驗方法
1.2.1 動物分組及處理 將12只雄性C57BL/6J小鼠隨機分為對照組和MPTP組,每組6只小鼠。MPTP組小鼠連續5 d給予MPTP 30 mg/kg腹腔注射構建亞急性PD動物模型,對照組小鼠給予等量生理鹽水腹腔注射。
1.2.2 爬桿實驗 自制直徑1.2 cm、高50 cm的直木桿,桿頂部有一小木球,用紗布包裹防止小鼠打滑。實驗前1 d訓練小鼠,實驗時在安靜的實驗環境下將小鼠頭向上放于爬桿頂端,用秒表記錄小鼠開始運動至完全轉為頭向下的時間(轉頭時間)和小鼠爬下桿至四肢落地的時間(下桿時間)。每次檢測間隔1 min,共檢測5次,取平均值。
1.2.3 Western Blot檢測SN和mPFC區鐵代謝相關蛋白的表達變化 行為學檢測結束后,給予小鼠聯合麻藥(水合氯醛+烏拉坦)40 g/L腹腔注射麻醉,在冰上迅速解剖SN和mPFC區,將剖出組織按每4 mg加入100 μL裂解液充分研磨后冰上裂解30 min,4 ℃下以12 000 r/min離心20 min,提取上清。用BCA蛋白測定試劑盒測定蛋白濃度。按1∶4加入Loading buffer,金屬浴100 ℃煮5 min。蛋白經 SDS-PAGE 電泳(電壓80~120 V)后濕轉至 PVDF膜上,用含有50 g/L脫脂奶粉的TBST溶液室溫封閉2 h,再分別加入二價金屬離子轉運蛋白1(DMT1,1∶800)、轉鐵蛋白受體1(TfR1,1∶1 000)、鐵蛋白重鏈(H-Ferritin,1∶1 000)和β-actin(1∶10 000)一抗,4 ℃搖床過夜。加HRP偶聯的二抗(用TBST稀釋至1∶10 000),室溫孵育1 h。用UVP BioDoc-It成像系統(美國Upland)和ECL高靈敏化學發光液試劑盒(Milipore)顯影,采用Image J分析軟件進行灰度值分析。
1.3 統計學分析
應用SPSS 18.0軟件進行統計學分析,計量資料結果以x2±s表示,兩組數據間比較用Student’s t檢驗,P<0.05表示差異有統計學意義。
2 結 果
2.1 MPTP對小鼠運動功能的影響
爬桿實驗結果顯示,對照組和MPTP組小鼠轉頭時間分別為(1.925±0.182)和(3.242±0.513)s,下桿時間則分別為(6.001±0.396)和(9.872±1.045)s,MPTP組小鼠轉頭時間和下桿時間與對照組相比較均明顯增加,差異具有統計學意義(t=2.420、3.464,P<0.05)。
2.2 MPTP對小鼠SN區鐵代謝相關蛋白表達的影響
本文實驗結果表明,與對照組相比較,MPTP組小鼠SN區H-Ferritin、DMT1蛋白的表達明顯增加(t=3.969、3.333,P<0.01),TfR1蛋白的表達明顯下降(t=2.318,P<0.05)。見表1。
2.3 MPTP對小鼠mPFC區鐵代謝相關蛋白表達的影響
兩組小鼠mPFC區DMT1、TfR1和H-Ferritin蛋白表達比較,差異均無顯著性(t=0.096~0.4279,P>0.05)。見表2。
3 討 論
PD是中老年人常見的神經系統變性疾病,其臨床特征為靜止性震顫、肌強直、運動減少等運動障礙。目前PD的病因和發病機制尚不明確,可能與環境因素、遺傳因素、氧化應激以及炎癥反應等有關。有研究表明,SN區的鐵沉積參與了PD的發病[11-12]。在MPTP和6-羥基多巴胺(6-OHDA)構建的PD小鼠模型中均出現了明顯的鐵沉積及鐵代謝相關蛋白的表達異常[13-18]。
鐵代謝對于正常腦功能的發育至關重要。鐵攝取主要通過轉鐵蛋白(Tf)-轉鐵蛋白受體(TfR)途徑和非轉鐵蛋白結合鐵(NTBI)轉運途徑。Tf-TfR途徑被認為是大腦攝取鐵的主要途徑,而TfR1是該途徑的主要受體。NTBI途徑主要通過DMT1來攝取二價鐵離子。鐵的儲存主要由鐵蛋白來完成,鐵蛋白由H-Ferritin和輕鏈鐵蛋白(L-Ferritin)組成,H-Ferritin具有亞鐵氧化酶的活性,能將二價鐵離子轉為三價鐵離子;L-Ferritin存在成核位點,能促進鐵核的形成。在腦鐵代謝過程中任何環節異常均可能引起鐵代謝障礙,導致疾病的發生。有病例對照研究結果表明,Tf-TfR可能參與了PD的發病,其機制可能與多巴胺能神經元內的鐵代謝失調或線粒體功能障礙有關[19-21]。本實驗室研究證實,DMT1表達增加和鐵轉運蛋白(Fpn)表達下降可能是導致SN區鐵沉積的重要原因[14,22-23]。在PD病人和PD模型SN區均發現,鐵轉入蛋白DMT1的表達明顯升高[22-27]。有研究結果表明,PD動物模型SN區的鐵轉出蛋白Fpn表達下降[14,23,28-29],但這一結果在PD病人中并未得到證實。
最新的研究證實了腦內存在兩條鐵轉運途徑:一條是從vHip到mPFC再到SN的鐵轉運途徑;另一條則是從丘腦(Tha)到杏仁核(AMG)再到mPFC的鐵轉運途徑[10]。并且證實vHip到mPFC再到SN的鐵轉運途徑異常是焦慮發生的關鍵環節[10]。PD病人的臨床表現中,除運動功能障礙外,還存在非運動癥狀的發生如焦慮、抑郁及記憶力障礙等[30]。mPFC區主要負責情緒調節,與焦慮、抑郁等有關,但是PD病人mPFC區鐵代謝相關蛋白的表達是否發生改變尚未有文獻報道。本實驗選用MPTP誘導的亞急性PD小鼠模型,進行行為學和鐵代謝相關蛋白表達檢測。行為學實驗結果顯示,MPTP組小鼠轉頭時間和下桿時間與對照組相比均明顯延長,提示PD小鼠模型構建成功。Western
Blot結果顯示,與對照組相比,MPTP組SN區鐵代謝相關蛋白H-Ferritin和DMT1表達水平明顯增加,TfR1蛋白表達水平明顯下降。提示DMT1的表達上調可能是SN鐵沉積的重要原因,而經典鐵轉運途徑Tf-TfR途徑可能并不參與SN鐵沉積。此外,SN區H-Ferritin表達上調,可能與SN鐵水平增加有關。但mPFC區鐵代謝相關蛋白DMT1、TfR1、H-Ferritin的表達與對照組相比均無明顯變化。表明MPTP誘導的PD小鼠模型鐵代謝蛋白的表達異常僅出現在SN,而mPFC區并無明顯的改變,提示mPFC區可能本身不具有儲存鐵的能力,與有關研究結果一致[10]。
綜上所述,MPTP能夠誘導小鼠運動障礙及SN區鐵代謝相關蛋白的表達改變,但并不會引起mPFC區鐵代謝相關蛋白的表達改變。腦鐵代謝的機制十分復雜且目前尚未完全闡明,仍需進一步實驗研究。
[參考文獻]
[1]SCHWEITZER K J, BRSSEL T, LEITNER P, et al. Transcranial ultrasound in different monogenetic subtypes of Parkinson’s disease [J]. Journal of Neurology, 2007,254(5):613-616.
[2]HAGENAH J M, KNIG I R, BECKER B, et al. Substantia nigra hyperechogenicity correlates with clinical status and number of Parkin mutated alleles[J]. Journal of Neurology, 2007,254(10):1407-1413.
[3]XIE W, LI X, LI C, et al. Proteasome inhibition modeling nigral neuron degeneration in Parkinson’s disease[J]. Journal of Neurochemistry, 2010,115(1):188-199.
[4]LANGSTON J W. The MPTP story[J]. Journal of Parkin-son’s Disease, 2017,7(s1):S11-S19.
[5]LANGSTON J W, IRWIN I, LANGSTON E B, et al. 1-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra[J]. Neuroscience Letters, 1984,48(1):87-92.
[6]CHIBA K, TREVOR A, CASTAGNOLI N. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase[J]. Biochemical and Biophysical Research Communications, 1984,120(2):574-578.
[7]CASTAGNOLI N, CHIBA K, TREVOR A J. Potential bioactivation pathways for the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)[J]. Life Sciences, 1985,36(3):225-230.
[8]HEIKKILA R E, MANZINO L, CABBAT F S, et al. Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors[J]. Nature, 1984,311(5985):467-469.
[9]LIU H Y, WU H, ZHU N, et al. Lactoferrin protects against iron dysregulation, oxidative stress, and apoptosis in 1-me-thyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson’s disease in mice[J]. Journal of Neurochemistry, 2020,152(3):397-415.
[10]WANG Z, ZENG Y N, YANG P, et al. Axonal iron transport in the brain modulates anxiety-related behaviors[J]. Nature Chemical Biology, 2019,15(12):1214-1222.
[11]HAGENAH J M, BECKER B, BRGGEMANN N, et al. Transcranial sonography findings in a large family with homozygous and heterozygous PINK1 mutations[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2008,79(9):1071-1074.
[12]BRGGEMANN N, HAGENAH J, STANLEY K, et al. Substantia nigra hyperechogenicity with LRRK2 G2019S mutations[J]. Movement Disorders, 2011,26(5):885-888.
[13]WARD R J, ZUCCA F A, DUYN J H, et al. The role of iron in brain ageing and neurodegenerative disorders[J]. The Lancet Neurology, 2014,13(10):1045-1060.
[14]WANG J, JIANG H, XIE J X. Ferroportin1 and hephaestin are involved in the nigral iron accumulation of 6-OHDA-lesioned rats[J]. The European Journal of Neuroscience, 2007,25(9):2766-2772.
[15]MA Z G, WANG J, JIANG H, et al. Myricetin reduces 6-hydroxydopamine-induced dopamine neuron degeneration in rats[J]. Neuroreport, 2007,18(11):1181-1185.
[16]WANG J, XU H M, YANG H D, et al. Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins[J]. Neurochemistry International, 2009,54(1):43-48.
[17]YOUDIM M B. What have we learnt from CDNA microarray gene expression studies about the role of iron in MPTP induced neurodegeneration and Parkinson’s disease[J]? Journal of Neural Transmission Supplementum, 2003(65):73-88.
[18]HARE D J, ADLARD P A, DOBLE P A, et al. Metallobiology of 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine neurotoxicity[J]. Metallomics, 2013,5(2):91-109.
[19]RHODES S L, BUCHANAN D D, AHMED I, et al. Pooled analysis of iron-related genes in Parkinson’s disease: association with transferrin[J]. Neurobiology of Disease, 2014,62:172-178.
[20]KALIVENDI S V, KOTAMRAJU S, CUNNINGHAM S, et al. 1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide[J]. The Biochemical Journal, 2003,371(pt 1):151-164.
[21]KAUR D, LEE D, RAGAPOLAN S, et al. Glutathione depletion in immortalized midbrain-derived dopaminergic neurons results in increases in the labile iron pool: implications for Parkinson’s disease[J]. Free Radical Biology amp; Medicine, 2009,46(5):593-598.
[22]JIANG H, SONG N, XU H M, et al. Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent[J]. Cell Research, 2010,20(3):345-356.
[23]SONG N, WANG J, JIANG H, et al. Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease[J]. Free Radical Biology amp; Medicine, 2010,48(2):332-341.
[24]SALAZAR J, MENA N, HUNOT S, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(47):18578-18583.
[25]BURDO J R, MENZIES S L, SIMPSON I A, et al. Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat[J]. Journal of Neuroscience Research, 2001,66(6):1198-1207.
[26]HUANG E, ONG W Y, CONNOR J R. Distribution of divalent metal transporter-1 in the monkey basal Ganglia[J]. Neuroscience, 2004,128(3):487-496.
[27]GUNSHIN H, ALLERSON C R, POLYCARPOU-SCH-WARZ M, et al. Iron-dependent regulation of the divalent metal ion transporter[J]. FEBS Letters, 2001,509(2):309-316.
[28]LEE D W, RAJAGOPALAN S, SIDDIQ A, et al. Inhibition of prolyl hydroxylase protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity: model for the potential involvement of the hypoxia-inducible factor pathway in Parkinson disease[J]. The Journal of Biological Chemistry, 2009,284(42):29065-29076.
[29]JIANG H, QIAN Z M, XIE J X. Increased DMT1 expression and iron content in MPTP-treated C57BL/6 mice[J]. Sheng Li Xue Bao, 2003,55(5):571-576.
[30]CRIPPA J A S, HALLAK J E C, ZUARDI A W, et al. Is ca nnabidiol the ideal drug to treat non-motor Parkinson’s disease symptoms[J]? European Archives of Psychiatry and Clinical Neuroscience, 2019,269(1):121-133.
(本文編輯 馬偉平)