



[摘要]目的 探討組蛋白去甲基化酶JMJD2B對卵巢癌細胞增殖的影響及其機制。方法 應用JMJD2B siRNA和control siRNA轉染人正常卵巢上皮IOSE80細胞和卵巢癌SKOV3細胞,實時熒光定量PCR和蛋白印跡法分別檢測細胞中JMJD2B、環氧化酶2(COX2)mRNA和蛋白的表達水平。采用細胞克隆形成實驗方法檢測SKOV3細胞的增殖情況。選取20例卵巢癌病人的癌組織及癌旁正常組織,應用實時熒光定量PCR方法檢測并比較兩種組織中JMJD2B和COX2的mRNA表達水平。結果 與IOSE80細胞比較,SKOV3細胞中JMJD2B、COX2的mRNA和蛋白水平均升高,差異有顯著性(t=13.74~19.34,Plt;0.05)。JMJD2B siRNA轉染SKOV3細胞后可以顯著下調JMJD2B和COX2 mRNA的表達水平(t=4.97~7.56,Plt;0.05),細胞的克隆形成能力明顯降低;而高表達COX2可以部分恢復細胞的克隆形成能力(F=58.23,Plt;0.05)。雙熒光素酶實驗結果顯示,抑制JMJD2B的表達可以明顯降低COX2的啟動子活性(t=35.48,Plt;0.01)。人卵巢癌組織中JMJD2B和COX2的mRNA表達水平較癌旁組織顯著升高(t=85.42、85.11,Plt;0.05),且二者呈正相關(R2=0.983,95%CI=0.984~0.995,Plt;0.01)。結論 降低JMJD2B水平可通過抑制COX2表達進而抑制人卵巢癌細胞的增殖。
[關鍵詞]卵巢腫瘤;組蛋白去甲基化酶;環氧化酶2;細胞增殖
[中圖分類號]R73-354
[文獻標志碼]A
[文章編號]2096-5532(2021)02-0250-05
[ABSTRACT]Objective To investigate the effect of the histone demethylase JMJD2B on the proliferation of ovarian cancer cells and the related mechanism. "Methods JMJD2B siRNA and control siRNA were transfected into normal human ovarian epithelial IOSE80 cells and ovarian cancer SKOV3 cells, and quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression levels of JMJD2B and COX2 in these cells. Colony-forming assay was used to measure the proliferation of SKOV3 cells. Cancer tissue and normal adjacent tissue were collected from 20 patients with ovarian cancer, and quantitative real-time PCR was used to measure the mRNA expression levels of JMJD2B and COX2. "Results Compared with IOSE80 cells, SKOV3 cells showed significant increases in the mRNA and protein expression levels of JMJD2B and COX2 (t=13.74-19.34,Plt;0.05). After SKOV3 cells were transfected with JMJD2B siRNA, there were significant reductions in the mRNA expression levels of JMJD2B and COX2 (t=4.97-7.56,Plt;0.05) and colony-forming ability, while the high expression of COX2 partially restored the colony-forming ability (F=58.23,Plt;0.05). The results of dual luciferase assay showed that the inhibition of JMJD2B expression significantly reduced the promoter activity of COX2 (t=35.48,Plt;0.01). The mRNA expression levels of JMJD2B and COX2 in human ovarian cancer tissue were significantly higher than those in adjacent tissue (t=85.42,85.11;Plt;0.05), with positive correlation between them (R2=0.983,95%CI=0.984 to 0.995,Plt;0.01). "Conclusion The reduction of JMJD2B can inhibit the proliferation of human ovarian cancer cells by inhibiting the expression of COX2.
[KEY WORDS]ovarian neoplasms; JMJD2B; cyclooxygenase 2; cell proliferation
JMJD2B是新近研究發現的一種組蛋白去甲基化酶,可調節染色質結構或基因表達[1]。多項研究發現,JMJD2B在多種腫瘤如乳癌、胃癌、結腸癌的發生發展過程中發揮重要作用[2-5]。前期研究發現,JMJID2B在卵巢癌組織中高表達,提示JMJD2B與卵巢癌的發生發展密切相關。然而,JMJD2B介導卵巢癌細胞惡性轉化的相關分子機制研究甚少。環氧化酶2(COX2)是一種促進細胞增殖和侵襲轉移及抑制細胞凋亡的炎性細胞因子[6-9]。已有研究結果發現,COX2的表達受表觀遺傳學修飾的調控,例如組蛋白修飾、DNA甲基化等[10-13]。還有研究發現,COX2的DNA甲基化與胃癌、非小細胞肺癌、膀胱異型細胞癌等惡性腫瘤的發生發展以及預后密切相關,特別是COX2的高度甲基化預示腫瘤的不良預后[10,14-17]。本研究觀察抑制人卵巢癌細胞JMJD2B表達后COX2水平的變化,以及靶向抑制JMJD2B 表達對卵巢癌細胞增殖的影響,探討JMJD2B促進卵巢癌細胞惡性轉化的作用及其相關機制。現將結果報告如下。
1 材料與方法
1.1 實驗材料
人卵巢癌細胞株SKOV3(購自濟南市人民醫院),人正常卵巢上皮細胞株IOSE80(購于中國上海慧穎生物科技有限公司);胎牛血清、DMEM和DMEM/F12培養基(Gibco公司,美國);JMJD2B siRNA和control siRNA(Invitrogen公司,美國),JMJD2B siRNA序列為5′-UCUCCAUCACCUG-CCUCAAGCACAA-3′,control siRNA為5′-CCU-ACAUCCCGAUCGAUGAUGUUGA-3′;轉染試劑脂質體Lipofectamine 2000(Invitrogen公司,美國);反轉錄試劑盒(Thermo Scientific公司,美國),實時熒光定量PCR試劑盒(Takara公司,日本);BCA蛋白定量試劑盒(碧云天生物技術公司,中國);JMJD2B抗體(Bethyl Laboratories公司,美國),COX2抗體(Cayman chemical公司,美國),β-actin抗體(Santa Cruz Biotechnology公司,美國);辣根過氧化物酶標記的抗兔、抗鼠二抗(Jackson ImmunoResearch公司,美國);ECL化學發光檢測試劑盒(Millipore公司,美國),COX2高表達質粒和COX2啟動子質粒(上海浩然生物技術有限公司)。卵巢癌病人手術切除的癌組織及癌旁正常組織標本各20例(濟南市人民醫院)。
1.2 實驗方法
1.2.1 細胞培養 SKOV3細胞和IOSE80細胞分別在含有體積分數0.10胎牛血清的DMEM培養基和DMEM/F12培養基中,于37 ℃、體積分數0.05 CO2 條件下傳代培養。
1.2.2 轉染 將對數生長期SKOV3細胞以每孔2×105個接種至6孔板中培養,待細胞達60%~80%融合時進行轉染。參照轉染試劑說明,分別將JMJD2B siRNA、control siRNA或COX2高表達質粒轉染入細胞內,培養48 h后收集細胞。
1.2.3 RNA的提取、反轉錄及實時熒光定量PCR檢測 應用RNA提取試劑盒提取細胞或者組織總RNA,逆轉錄生成cDNA,將所得cDNA保存于-20 ℃冰箱備用。以cDNA為模板,在TaqDNA聚合酶作用下行PCR擴增反應。所用引物及其序列見表1。PCR反應體系10 μL,內含2×SYBR Green Mixture 5.0 μL,2.5 μmol/L正反向引物各1.0 μL,cDNA 1.0 μL,加ddH2O補足體積至10.0 μL。PCR條件:95 ℃、15 s,60 ℃、30 s,74 ℃、30 s,在Bio-Rad CFX96熒光定量PCR儀上擴增40個循環后收集熒光數據。
1.2.4 蛋白印跡法檢測 應用RIPA裂解細胞,在冰上靜置30 min,以12 000 r/min離心10 min,取蛋白上清檢測質量濃度后,取40 μg上樣,在體積分數0.10的SDS-PAGE中電泳分離(電壓50 V,時間250 min),電轉至PVDF膜(電流250 mA,時間190 min),以50 g/L的脫脂奶粉室溫封閉60 min,加一抗(JMJD2B,1∶1 000稀釋;COX2,1∶100稀釋;β-actin,1∶1 000稀釋)4 ℃過夜孵育,PBST漂洗3次,每次5 min,再加入HRP標記的二抗室溫孵育60 min,PBST漂洗3次,每次5 min,加入ECL化學發光工作液室溫孵育2~3 min,暗室中曝光、顯影、定影,掃描拍照后保存數據。
1.2.5 細胞克隆形成實驗 SKOV3細胞接種至細胞板,將JMJD2B siRNA轉染至細胞,24 h后行COX2啟動子載體轉染,同時轉染pRL-TK作為內參。轉染48 h后,棄去培養液,PBS洗滌3次,Passive Lysis Buffer裂解細胞。最后用熒光素酶報告基因分析儀檢測熒光素酶的活力。
1.3 統計學方法
采用SPSS 17.0軟件進行統計學分析,計量資料數據以x2±s表示,兩組數據間比較采用t檢驗,多組比較采用ANOVA分析。以Plt;0.05表示差異有統計學意義。
2 結 果
2.1 IOSE80細胞和SKOV3細胞中JMJD2B和COX2表達比較
SKOV3細胞中JMJD2B、COX2的mRNA和蛋白表達均明顯高于IOSE80細胞,差異有統計學意義(t=13.74~19.34,Plt;0.05)。見圖1。
2.2 轉染JMJD2B siRNA對COX2表達的影響
實時熒光定量PCR檢測和蛋白印跡法的檢測結果顯示,SKOV3細胞轉染JMJD2B siRNA后,JMJD2B和COX2的mRNA和蛋白表達均降低,差異有顯著性(t=4.97~7.56,P<0.05)。見圖2。
2.3 抑制JMJD2B的表達對COX2啟動子表達的影響
雙熒光素酶實驗結果顯示,抑制JMJD2B的表達可以明顯降低COX2的表達,差異有顯著性(t=35.48,Plt;0.01)。見圖3。
2.4 JMJD2B和COX2表達對SKOV3細胞克隆形成能力的影響
細胞克隆形成實驗結果顯示,SKOV3細胞轉染JMJD2B siRNA后細胞的克隆形成能力明顯減弱,而高表達COX2可以部分恢復細胞的克隆形成能力(F=58.23,Plt;0.01)。見圖4。
2.5 人卵巢癌組織及其癌旁組織中JMJD2B和COX2 mRNA表達關系
與癌旁組織相比,卵巢癌組織中JMJD2B和COX2的mRNA表達均顯著升高(t=85.42,Plt;0.05),且兩者表達水平呈正相關關系(R2=0.983,95%CI=0.984~0.995,Plt;0.01)。見圖5。
3 討 論
腫瘤的發生、發展是一個多因素參與、多步驟演進的復雜病理過程,涉及信號通路轉導異常和基因表達調控異常,其中表觀遺傳學調控機制在腫瘤發生發展中的作用越來越受到關注。表觀遺傳學調控主要包括組蛋白修飾、DNA甲基化、染色體重塑和非編碼RNAs等,其中組蛋白修飾是表觀遺傳學的重要調控機制[18-19]。組蛋白修飾主要有磷酸化/去磷酸化、甲基化/去甲基化、乙酰化/去乙酰化等多種共價修飾作用[20]。組蛋白修飾的異常調節,改變了基因表達的特性,為腫瘤的發生和發展提供了基礎[21-22]。組蛋白去甲基化酶JMJD2B是新近研究發現的JMJD2家族中的一員,主要靶向組蛋白H3第9位賴氨酸的三甲基(H3K9me3)使其發生去甲基化,在干細胞分化、炎癥和多種惡性腫瘤的發生發展中發揮重要的表觀遺傳學作用[2,23]。近期研究發現,JMJD2B主要定位于卵巢癌細胞株的細胞核內,這可能與其調控細胞內的信號通路基因的表達有關[15],但JMJD2B在促進卵巢癌發生、發展中的作用及分子機制則尚未完全闡明。近期研究發現,COX2的表達受到表觀遺傳學修飾的調控,如DNA甲基化、組蛋白的修飾等[12-13,24]。COX2的DNA甲基化水平與胃癌的發生發展及預后密切相關,尤其是COX2的高度甲基化預示著胃癌的不良預后[25]。有研究顯示,JMJD2B通過不同調控機制參與多種腫瘤的發生和發展[1,4]。
本實驗探討JMJD2B是否通過調控COX2表達介導人卵巢癌細胞的惡性轉化。研究結果顯示,JMJD2B和COX2在人卵巢癌細胞SKOV3中表達均明顯高于人正常卵巢上皮細胞IOSE80,JMJD2B和COX2在卵巢癌組織中的表達均顯著升高并呈正相關;以RNA干擾技術靶向抑制人卵巢癌細胞JMJD2B表達后,COX2的轉錄表達明顯下調。提示COX2信號通路在人卵巢癌細胞發生發展中的作用受組蛋白去甲基化酶JMJD2B調控。為進一步研究JMJD2B在促進人卵巢癌細胞惡性轉化中的分子機制,本文應用克隆形成實驗探討JMJD2B表達對人卵巢癌細胞增殖的影響。結果顯示,靶向抑制JMJD2B的表達,腫瘤細胞的增殖明顯受到抑制,表明JMJD2B通過調控COX2表達促進細胞的增殖,進而介導卵巢癌細胞的惡性轉化。但是,本研究存在著局限性,即僅采用細胞克隆形成實驗來評價抑制JMJD2B對卵巢癌細胞增殖能力的影響。今后需要進一步對卵巢癌細胞侵襲、遷移能力和細胞分裂周期等進行研究,以探討卵巢癌細胞惡性轉化機制。此外,本文研究還顯示,降低JMJD2B表達水平可抑制卵巢癌細胞克隆形成能力。
綜上所述,抑制JMJD2B表達可能通過阻斷COX2信號通路下調腫瘤相關基因表達,從而抑制人卵巢癌細胞的惡性轉化。進一步分析組蛋白去甲基化酶JMJD2B、COX2信號通路和腫瘤相關基因表達間的相互作用,將有助于深入了解信號轉導和組蛋白修飾在卵巢癌發生、發展中的相互作用,為進一步探討JMJD2B在卵巢腫瘤中的作用機制提供理論基礎。
[參考文獻]
[1]KIM J H, JUNG D Y, NAGAPPAN A, et al. Histone H3K9 demethylase JMJD2B induces hepatic steatosis through upre-gulation of PPARγ2[J]. Scientific Reports, 2018,8(1):13734.
[2]DUAN L, PEREZ R E, LAI X, et al. The histone demethylase JMJD2B is critical for p53-mediated autophagy and survi-val in Nutlin-treated cancer cells[J]. The Journal of Biological Chemistry, 2019,294(23):9186-9197.
[3]ZHANG J J, REN J C, HAO S J, et al. MiRNA-491-5p inhibits cell proliferation, invasion and migration via targeting JMJD2B and serves as a potential biomarker in gastric cancer[J]. American Journal of Translational Research, 2018,10(2):525-534.
[4]FU L N, WANG Y Q, TAN J, et al. Role of JMJD2B in colon cancer cell survival under glucose-deprived conditions and the underlying mechanisms[J]. Oncogene, 2018,37(3):389-402.
[5]ZENG H, CHEN Y L, YOU W T, et al. miR-491-5p functions as a tumor suppressor by targeting JMJD2B in ERα-positive breast cancer[J]. FEBS Letters, 2015,589(7):812-821.
[6]WU C H, CHUANG H Y, WANG C L, et al. Estradiol induces cell proliferation in MCF-7 mammospheres through HER2/COX-2[J]. Molecular Medicine Reports, 2019,19(3):2341-2349.
[7]BEHLING F, RIES V, SKARDELLY M, et al. COX2 expression is associated with proliferation and tumor extension in vestibular schwannoma but is not influenced by acetylsalicylic acid intake[J]. Acta Neuropathologica Communications, 2019,7(1):105.
[8]ZHANG W L, XIAO J, LU X M, et al. PVT1 (rs13281615) and miR-146a (rs2910164) polymorphisms affect the prognosis of colon cancer by regulating COX2 expression and cell apoptosis[J]. Journal of Cellular Physiology, 2019,234(10):17538-17548.
[9]XIAO J J, WANG F, LU H, et al. Targeting the COX2/MET/TOPK signaling axis induces apoptosis in gefitinib-resistant NSCLC cells[J]. Cell Death amp; Disease, 2019,10(10):777.
[10]JIN J, GUO T T, GUO Y D, et al. Methylation-associated silencing of miR-128 promotes the development of esophageal cancer by targeting COX-2 in areas with a high incidence of esophageal cancer[J]. International Journal of Oncology, 2019,54(2):644-654.
[11]CHUANG S, LU J H, LIN K L, et al. Epigenetic regulation of COX-2 expression by DNA hypomethylation via NF-κB activation in ketamine-induced ulcerative cystitis[J]. International Journal of Molecular Medicine, 2019. doi:10.3892/ijmm.2019.4252.
[12]LI A, CHEN P, LENG Y, et al. Histone deacetylase 6 regulates the immunosuppressive properties of cancer-associated fibroblasts in breast cancer through the STAT3-COX2-depen-dent pathway[J]. Oncogene, 2018,37(45):5952-5966.
[13]LAI C Y, HSIEH M C, HO Y C, et al. GluN2B/CaMKII mediates CFA-induced hyperalgesia via HDAC4-modified spinal COX2 transcription[J]. Neuropharmacology, 2018,135:536-546.
[14]PAN C L, ZHANG Y, MENG Q H, et al. Down regulation of the expression of ELMO3 by COX2 inhibitor suppresses tumor growth and metastasis in non-small-cell lung cancer[J]. Frontiers in Oncology, 2019,9:363.
[15]ZHOU F F, HUANG R, JIANG J, et al. Correlated non-nuclear COX2 and low HER2 expression confers a good prognosis in colorectal cancer[J]. Saudi Journal of Gastroenterology, 2018,24(5):301.
[16]SCHEXNAYDER C, BROUSSARD K, ONUAGULUCHI D, et al. Metformin inhibits migration and invasion by suppressing ROS production and COX2 expression in MDA-MB-231 breast cancer cells[J]. International Journal of Molecular Sciences, 2018,19(11):3692.
[17]SANO Y, KOGASHIWA Y, ARAKI R, et al. Correlation of inflammatory markers, survival, and COX2 expression in oral cancer and implications for prognosis[J]. Otolaryngology-Head and Neck Surgery, 2018,158(4):667-676.
[18]RAHMAN M M, BRANE A C, TOLLEFSBOL T O. MicroRNAs and epigenetics strategies to reverse breast cancer[J]. Cells, 2019,8(10):1214.
[19]ELLIOTT H R, SHARP G C, RELTON C L, et al. Epigenetics and gestational diabetes: a review of epigenetic epide-miology studies and their use to explore epigenetic mediation and improve prediction[J]. Diabetologia, 2019,62(12):2171-2178.
[20]MUNJISHVILI V, BARABADZE E, MUZASHVILI T, et al. Epigenetic changes-histone 3 phosphorylation-epithelial ovarian tumors[J]. Georgian Medical News, 2019(294):128-131.
[21]SHOKRAII F, MOHARRAMI M, MOTAMED N, et al. Histone modification marks strongly regulate CDH1 promoter in prostospheres as A model of prostate cancer stem like cells[J]. Cell Journal, 2019,21(2):124-134.
[22]ORENAY-BOYACIOGLU S, KASAP E, GERCEKER E, et al. Expression profiles of histone modification genes in gastric cancer progression[J]. Molecular Biology Reports, 2018,45(6):2275-2282.
[23]FU L N, CHEN L S, YANG J, et al. HIF-1α-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism[J]. Carcinogenesis, 2012,33(9):1664-1673.
[24]HU G K, GONG A Y, WANG Y, et al. LincRNA-COX2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling[J]. Journal of Immunology, 2016,196(6):2799-2808.
[25]MELO C F V, GIGEK C O, SILVA J N, et al. Association of COX2 gene hypomethylation with intestinal type gastric cancer in samples of patients from northern Brazil[J]. Tumor Biology, 2014,35(2):1107-1111.
(本文編輯 黃建鄉)