苗潤(rùn),劉兵亮,任思雨,王立強(qiáng),呂維潔,謝樂(lè)春
顆粒增強(qiáng)鈦基復(fù)合材料制備方法與組織性能研究進(jìn)展
苗潤(rùn)1a,1b,劉兵亮1a,1b,任思雨1a,1b,王立強(qiáng)2,呂維潔2,謝樂(lè)春1a,1b
(1. 武漢理工大學(xué) a. 現(xiàn)代汽車零部件技術(shù)湖北省重點(diǎn)實(shí)驗(yàn)室;b. 汽車零部件技術(shù)湖北省協(xié)同創(chuàng)新中心,武漢 430070;2. 上海交通大學(xué) 金屬基復(fù)合材料國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200240)
顆粒增強(qiáng)體的加入不僅使鈦基復(fù)合材料(TMCs)具有復(fù)雜相組成,還改變了材料在制備與加工過(guò)程中的特性。針對(duì)顆粒增強(qiáng)TMCs,對(duì)其組織結(jié)構(gòu)和制備方法進(jìn)行簡(jiǎn)要介紹,總結(jié)了組織與性能的影響因素,包含增強(qiáng)體對(duì)疲勞性能的影響,疲勞斷面表征分析,加工工藝、制備工藝尤其是新興的激光增材制造對(duì)顆粒增強(qiáng)TMCs組織性能的影響。顆粒增強(qiáng)體的強(qiáng)化機(jī)制有應(yīng)力承載作用、固溶強(qiáng)化、細(xì)晶強(qiáng)化、彌散強(qiáng)化等。顆粒增強(qiáng)TMCs的疲勞強(qiáng)度高于普通鈦合金,斷裂機(jī)制通常為解理斷裂,高溫下轉(zhuǎn)變?yōu)闇?zhǔn)解理斷裂。制備工藝與加工工藝對(duì)顆粒增強(qiáng)TMCs的組織性能影響顯著,合理設(shè)置激光增材制造工藝參數(shù)能夠制備力學(xué)性能優(yōu)異、耐磨與抗腐蝕性能良好的顆粒增強(qiáng)TMCs。
鈦基復(fù)合材料;顆粒增強(qiáng)體;疲勞性能;增材制造
TMCs根據(jù)增強(qiáng)體形貌的不同大致可分為纖維增強(qiáng)TMCs和顆粒增強(qiáng)TMCs。纖維增強(qiáng)TMCs以各種長(zhǎng)短纖維為增強(qiáng)相,沿長(zhǎng)纖維延伸方向的力學(xué)性能較好,但具有各向異性的特征;短纖維隨機(jī)排布,因而總體上呈各向同性,但定向性能不及長(zhǎng)纖維。相比之下,顆粒增強(qiáng)TMCs以陶瓷顆粒、金屬氧化物以及稀土氧化物等作為增強(qiáng)體,增強(qiáng)體分布均勻,使顆粒增強(qiáng)TMCs具有各向同性、成本相對(duì)較低等優(yōu)點(diǎn),得到廣大研究者的青睞。文中將針對(duì)顆粒增強(qiáng)TMCs的制備方法和組織性能展開總結(jié)分析,并介紹近年來(lái)顆粒增強(qiáng)TMCs的研究進(jìn)展。
顆粒增強(qiáng)TMCs由基體、增強(qiáng)體、增強(qiáng)體與基體的連接界面組成。材料的整體性能取決于基體合金的類型、增強(qiáng)體的體積、尺寸、分布,以及增強(qiáng)相與基體間界面狀態(tài)等因素[1]。
基體起著承載并傳遞應(yīng)力、連接增強(qiáng)體的作用,體積分?jǐn)?shù)占80%~90%,對(duì)TMCs的整體性能影響顯著。基體組織一般為純鈦或鈦合金,鈦合金根據(jù)退火后的相組成又可分為型、近型、+型、型、近亞穩(wěn)型與亞穩(wěn)型。型鈦合金的高溫性能好,型鈦合金具有良好的室溫強(qiáng)度和成形性,+型鈦合金的綜合性能優(yōu)異。一般來(lái)說(shuō),可根據(jù)具體的服役條件與性能要求,選用合適的基體材料。
增強(qiáng)體作為TMCs的重要組成部分,應(yīng)具有高強(qiáng)度、高模量,以及較好的承載作用;為了防止制備與服役過(guò)程中增強(qiáng)體與基體變形差異過(guò)大,增強(qiáng)體還應(yīng)具有與基體相近的線性熱膨脹系數(shù)、良好的相容性與熱力學(xué)穩(wěn)定性,能夠保證良好的界面結(jié)合強(qiáng)度并防止有害界面產(chǎn)物的生成。常見的增強(qiáng)體有陶瓷顆粒(TiB與TiC等)、金屬氧化物(Al2O3等)、稀土氧化物(Y2O3和La2O3等)以及各種碳化物和硼化物等。其中,TiB與TiC具有高硬度與高模量,與基體相容性好,密度、泊松比與熱膨脹系數(shù)與純鈦或鈦合金基體相近,且化學(xué)穩(wěn)定性好,是理想的增強(qiáng)體材料,圖1[2]為名義成分Ti-6Al-4Sn-10Zr-1Mo-1Nb-1W-0.3Si的基體合金與增強(qiáng)體TiBw的鑄態(tài)顯微組織;稀土元素能與基體中的氧元素發(fā)生反應(yīng),生成稀土氧化物,稀土氧化物在基體中彌散分布,可改善TMCs的力學(xué)性能。除此之外,輕質(zhì)、高模量、高強(qiáng)度與高韌性的碳納米管(CNT)也被認(rèn)為是非常具有潛力的增強(qiáng)體。劉經(jīng)奇[3]的研究結(jié)果表明,Ti/0.6%CNT(質(zhì)量分?jǐn)?shù))的硬度相比純鈦提升了41.6%,圖2是不同CNT含量下CNT/Ti的顯微硬度測(cè)試結(jié)果。

圖1 基體鈦合金及TiBw增強(qiáng)鈦基復(fù)合材料的鑄態(tài)顯微組織[2]

圖2 不同CNT含量的Ti/CNT復(fù)合材料硬度[3]
界面是基體與增強(qiáng)體之間的結(jié)合處,包括基體與增強(qiáng)體部分原始接觸面、相互擴(kuò)散層、涂層以及反應(yīng)產(chǎn)物等,不僅包括基體、增強(qiáng)體的元素,還包括雜質(zhì)元素等,相結(jié)構(gòu)與化學(xué)成分都比基體和增強(qiáng)體復(fù)雜,對(duì)TMCs中的應(yīng)力與應(yīng)變分布、載荷傳遞、斷裂過(guò)程和熱膨脹起著十分重要的作用[1]。通常,過(guò)弱的界面結(jié)合無(wú)法有效傳遞應(yīng)力,過(guò)強(qiáng)的界面結(jié)合則容易導(dǎo)致脆裂,故在顆粒增強(qiáng)TMCs的制備過(guò)程中,希望發(fā)生適當(dāng)?shù)慕缑娣磻?yīng),同時(shí)避免有害的界面產(chǎn)物生成。圖3[4]總結(jié)了基體、增強(qiáng)體與界面的基本要素。

圖3 基體、增強(qiáng)體與界面的基本要素[4]
目前顆粒增強(qiáng)體的添加方法包括外加法和原位合成法[5—6]。外加法是將預(yù)先制備好的增強(qiáng)相粉末添加到基體中,增強(qiáng)相的大小取決于原始粉末大小,一般增強(qiáng)相尺寸無(wú)法達(dá)到納米量級(jí)。原位合成法是利用材料間的化學(xué)反應(yīng)在基體材料中原位合成增強(qiáng)相,通過(guò)原位合成法制備的顆粒增強(qiáng)體具有與基體結(jié)合良好、在基體內(nèi)分布均勻且穩(wěn)定等優(yōu)點(diǎn)[7—10],劉統(tǒng)軍等[8]采用原位法制備顆粒增強(qiáng)TMCs,TiB或TiC均與基體結(jié)合良好,由于增強(qiáng)體的承載作用使材料的極限抗拉強(qiáng)度得到提升。
原位合成法工藝相對(duì)簡(jiǎn)單、經(jīng)濟(jì),所制備材料性能優(yōu)異,已成為顆粒增強(qiáng)TMCs的主要制備方法,根據(jù)反應(yīng)狀態(tài)可以分為氣-固、液-固和固-固反應(yīng)法[11],較為常見的有放電等離子燒結(jié)、機(jī)械合金化、自蔓延高溫合成等。
放電等離子燒結(jié)(SPS)工藝是指將鈦合金粉體和增強(qiáng)體粉體放入模具中,經(jīng)通電和加壓,實(shí)現(xiàn)粉體快速致密和原位反應(yīng)生成TMCs[12—13]。Cao等[14]通過(guò)SPS技術(shù)原位制備了不同TiB含量的TiB/Ti-6Al-4V復(fù)合材料,其中TiB晶須均勻分布在鈦合金基體中,顯微組織細(xì)小,激活能較低,可改善復(fù)合材料的加工性能,且隨著TiB含量的增加激活能隨之增加。從成形過(guò)程中可知,SPS的優(yōu)勢(shì)表現(xiàn)在加熱迅速均勻,生產(chǎn)效率高,產(chǎn)品組織細(xì)小均勻,缺點(diǎn)是成形工藝相對(duì)復(fù)雜,形狀受模具限制。
機(jī)械合金化法是通過(guò)高能球磨機(jī)讓粉末經(jīng)受反復(fù)變形、冷焊和破碎,從而使原料發(fā)生固態(tài)反應(yīng),然后再通過(guò)成形和燒結(jié)等工序最終制備出TMCs的方法[6]。Li等[15]通過(guò)機(jī)械合金化和放電等離子燒結(jié)法制備了TiB2/Ti-4.5Fe-6.8Mo-1.5Al,隨著球磨時(shí)間延長(zhǎng),粉末顆粒尺寸減小,數(shù)量增加,燒結(jié)樣品的顯微組織更加細(xì)小、均勻。機(jī)械合金工藝優(yōu)點(diǎn)是增強(qiáng)體均勻細(xì)小,更容易制備出難以成形的復(fù)合材料,但該工藝存在成形時(shí)間長(zhǎng)、環(huán)境要求高帶來(lái)的設(shè)備昂貴等問(wèn)題。
自蔓延高溫合成法(SHS)利用原材料發(fā)生化學(xué)反應(yīng)產(chǎn)生的熱量來(lái)進(jìn)一步推動(dòng)化學(xué)反應(yīng),一旦反應(yīng)發(fā)生就會(huì)持續(xù)到反應(yīng)完全,隨后進(jìn)行后續(xù)的熱變形來(lái)得到性能優(yōu)異的顆粒增強(qiáng)TMCs。Lagos等[16]通過(guò)SHS獲得了TiC/Ti,為了控制增強(qiáng)體的尺寸和改善增強(qiáng)體與基體的相容性,在反應(yīng)中引入了比等原子TiC更多的Ti,采用SPS進(jìn)行固結(jié)成形。
激光增材制造屬于外加法的一種,是較新的材料制備技術(shù),相比于傳統(tǒng)制造方法,激光增材制造能夠快速生產(chǎn)制造復(fù)雜形狀零件,并具有設(shè)計(jì)靈活性高、定制化程度高、無(wú)需模具、能耗低等優(yōu)點(diǎn)[17]。比較有代表性的激光增材制造技術(shù)包含選區(qū)激光熔化(SLM)和直接激光沉積(DLD)。
SLM采用鋪粉技術(shù),加工零件某一層時(shí),鋪粉裝置會(huì)在基板上均勻鋪上一層粉末,將零件三維數(shù)模進(jìn)行分層切片處理后,得到每一層的加工軌跡,激光束會(huì)根據(jù)加工軌跡選擇性的熔化粉末形成微熔池,快速冷卻后形成當(dāng)前層的實(shí)體輪廓,工藝過(guò)程示意如圖4[18]所示。Cai等[19]利用SLM技術(shù)制備了原位合成的TiB/Ti-6Al-4V陶瓷基納米復(fù)合材料,納米硬度高達(dá)6.0 GPa,遠(yuǎn)高于傳統(tǒng)的燒結(jié)體。Li等[20]將SLM工藝和熱處理結(jié)合起來(lái),制備了TiB/Ti-6Al-4V,相比于傳統(tǒng)方法,表現(xiàn)出更好的強(qiáng)度塑性匹配。

圖4 SLM技術(shù)示意[18]
DLD采用送粉技術(shù),激光和粉末同時(shí)到達(dá)基板,在基板上熔化沉積形成構(gòu)件輪廓,隨著送粉量的增加,熔化層逐漸堆積形成構(gòu)件,加工示意圖如圖5所示。Rashid等[21]通過(guò)沉積含微量硼的Ti-6Al-4V粉末,發(fā)現(xiàn)硬度明顯提高,沉積過(guò)程中經(jīng)歷的高冷卻速度使顯微組織中均勻分布有極細(xì)小的TiB;另外,相較于SLM,DLD的送粉方式使該工藝可以便捷地調(diào)整沉積粉末的種類和配比。在王建東[13]的研究中,通過(guò)控制粉盤的轉(zhuǎn)速,在沉積過(guò)程中動(dòng)態(tài)調(diào)整基材和增強(qiáng)粉末配比,實(shí)現(xiàn)了梯度TiC/Ti-6Al-4V復(fù)合材料的制備。

圖5 DLD技術(shù)示意[18]
顆粒增強(qiáng)TMCs的性能取決于基體、增強(qiáng)體以及界面狀態(tài)等因素,具有強(qiáng)化機(jī)制復(fù)雜、影響因素多等特點(diǎn)。顆粒增強(qiáng)TMCs無(wú)論在室溫還是高溫強(qiáng)度,相較純鈦與鈦合金都有較大的提升,然而因高強(qiáng)度增強(qiáng)相的存在,使材料變形抗力大,很難加工出復(fù)雜輪廓外形的工件,材料室溫塑性差。目前,國(guó)內(nèi)外眾多研究集中于采用不同加工工藝和制造工藝以及調(diào)整工藝參數(shù)來(lái)提高顆粒增強(qiáng)TMCs的強(qiáng)度、塑性與疲勞壽命等性能,同時(shí)研究增強(qiáng)體的強(qiáng)化機(jī)理,為顆粒增強(qiáng)TMCs的發(fā)展提供理論指導(dǎo)。
增強(qiáng)體的種類、尺寸、含量以及分布等因素,都會(huì)影響顆粒增強(qiáng)TMCs的結(jié)構(gòu)與性能。不同種類與性質(zhì)增強(qiáng)體的強(qiáng)化作用各不相同,TiC使TMCs具有較高的強(qiáng)度與塑性,而TiB和TiB2增強(qiáng)TMCs具有較好的彈性模量以及高溫蠕變性能[22]。增強(qiáng)體的尺寸與分布需要在制備過(guò)程中嚴(yán)加控制,或通過(guò)后處理進(jìn)行調(diào)控,以避免增強(qiáng)體尺寸過(guò)大導(dǎo)致材料脆性增加以及增強(qiáng)體團(tuán)簇造成性能惡化。Melendez等[23]研究發(fā)現(xiàn)增強(qiáng)體分布均勻且細(xì)小的TiC/Ti具有最佳的抗彎強(qiáng)度,達(dá)到1473 MPa。但均勻分布并非唯一選擇,近年來(lái)一些文獻(xiàn)也證明增強(qiáng)體的連續(xù)網(wǎng)狀分布也對(duì)強(qiáng)度與塑性有著積極影響。例如雙尺度網(wǎng)絡(luò)結(jié)構(gòu)[24—25]引入不同尺度的增強(qiáng)體,其中微米級(jí)的增強(qiáng)體如TiB與TiC分布在晶界處,構(gòu)成第一尺度網(wǎng)絡(luò)結(jié)構(gòu),阻礙位錯(cuò)與晶界運(yùn)動(dòng),發(fā)揮強(qiáng)化作用的同時(shí),由于體積分?jǐn)?shù)的減少又不至于使塑性大幅惡化;納米級(jí)增強(qiáng)體如Ti5Si3分布在相界面,構(gòu)成第二尺度網(wǎng)絡(luò)結(jié)構(gòu),抑制相生長(zhǎng)并增加基體的變形區(qū),使塑性提高。Zhang[26]等通過(guò)預(yù)燒結(jié)與熱擠壓工藝制備了具有不連續(xù)柱狀結(jié)構(gòu)的TiBw/Ti-6Al-4V,極限拉伸強(qiáng)度為1450 MPa,室溫伸長(zhǎng)率為8.2%。圖6與圖7分別為雙尺度網(wǎng)絡(luò)結(jié)構(gòu)和不連續(xù)柱狀結(jié)構(gòu)的示意圖。
圖6 雙尺度網(wǎng)絡(luò)微觀結(jié)構(gòu)示意[24]
Fig.6 Schematic illustration of two-scale network microstructure
圖7 擠壓態(tài)TiBw/Ti-6Al-4V中的不連續(xù)柱狀增強(qiáng)結(jié)構(gòu)[26]
Fig.7 The discontinuous columnar reinforced structure in the as-extruded TiBw/Ti-6Al-4V
一般來(lái)說(shuō),增強(qiáng)體含量過(guò)少,強(qiáng)化作用不明顯,而制備過(guò)程中增強(qiáng)體含量過(guò)多則會(huì)導(dǎo)致增強(qiáng)體尺寸增大或發(fā)生團(tuán)聚現(xiàn)象,引起應(yīng)力或應(yīng)變集中并割裂基體的連續(xù)性,不僅使塑性大幅下降,還會(huì)對(duì)強(qiáng)度有不利影響。眾多研究表明,通常存在最佳增強(qiáng)體含量,在保證一定塑性的同時(shí)獲得最佳強(qiáng)度。楊松峰[27]采用放電等離子燒結(jié)制備了(TiB+TiC)/Ti-6Al-4V,經(jīng)過(guò)力學(xué)測(cè)試發(fā)現(xiàn)屈服強(qiáng)度和抗壓強(qiáng)度均在B4C的質(zhì)量分?jǐn)?shù)為2%時(shí)最高;Li等[28]采用真空電弧熔煉技術(shù)成功制備了TiB,TiC和La2O3混雜增強(qiáng)Ti-5.8Al-4.0Sn- 3.5Zr-0.7Nb-0.5Mo-0.35Si-0.06C,當(dāng)增強(qiáng)體體積分?jǐn)?shù)低于2.5%時(shí),力學(xué)性能得到明顯改善。Liu等[29]研究了不同碳納米管含量對(duì)一種Ti-Mo-Nb-Al-Si系鈦合金的顯微組織、相組成、硬度和氧化行為的影響,結(jié)果表明,隨著碳納米管含量的增加,孔隙率逐漸增大,硬度先升高后降低。
增強(qiáng)相對(duì)基體組織具有細(xì)化作用,這種細(xì)化作用發(fā)生在TMCs的制備與加工中。首先,高強(qiáng)硬質(zhì)增強(qiáng)體與基體組織的不協(xié)調(diào)應(yīng)變會(huì)使位錯(cuò)在增強(qiáng)體附近堆積并儲(chǔ)存大量能量,為動(dòng)態(tài)再結(jié)晶提供了理想的形核位置[30—31];其次,細(xì)小的增強(qiáng)體顆粒如La2O3對(duì)晶界運(yùn)動(dòng)與位錯(cuò)具有釘扎作用。增強(qiáng)體增加再結(jié)晶的形核率的同時(shí),又能顯著抑制晶粒的長(zhǎng)大,這種粒子激發(fā)形核促進(jìn)動(dòng)態(tài)再結(jié)晶與釘扎效應(yīng),能夠在制備或加工過(guò)程中協(xié)同細(xì)化組織[10,28,32]。圖8可以看到位錯(cuò)在TiB晶須附近的堆疊以及La2O3對(duì)位錯(cuò)的釘扎作用。

圖8 擠壓態(tài)復(fù)合材料的TEM明場(chǎng)像[30]
總結(jié)上述研究成果,增強(qiáng)體的強(qiáng)化機(jī)理主要體現(xiàn)在以下方面:① 自身的承載作用,高強(qiáng)硬質(zhì)增強(qiáng)體能夠有效承載TMCs變形過(guò)程中的內(nèi)應(yīng)力,同時(shí)使裂紋擴(kuò)展路徑發(fā)生偏轉(zhuǎn),增加裂紋擴(kuò)展能量;② 增強(qiáng)相元素的固溶強(qiáng)化,造成晶格畸變,提高TMCs的強(qiáng)度[33—34];③ 細(xì)化基體組織產(chǎn)生細(xì)晶強(qiáng)化[35];④ 增強(qiáng)體彌散強(qiáng)化等?;谠鰪?qiáng)體的強(qiáng)化機(jī)理,可對(duì)顆粒增強(qiáng)TMCs性能進(jìn)行優(yōu)化設(shè)計(jì),對(duì)不同種類與形貌的相組成進(jìn)行裁剪與匹配[36—37],依靠不同尺度、體積分?jǐn)?shù)的增強(qiáng)體之間取長(zhǎng)補(bǔ)短[38],從而實(shí)現(xiàn)顆粒增強(qiáng)TMCs的結(jié)構(gòu)功能一體化特性和優(yōu)異的綜合性能。
3.2.1 疲勞性能的影響因素
顆粒增強(qiáng)TMCs的抗拉強(qiáng)度和斷裂韌性很大程度上繼承自基體,但疲勞性能優(yōu)于基體材料,并且與增強(qiáng)體、溫度、材料本身所處的應(yīng)力環(huán)境密不可分[39]。在疲勞試驗(yàn)中,增強(qiáng)體能夠有效地承載應(yīng)力,減輕基體所承受的載荷,并提高裂紋擴(kuò)展閾值[40],阻礙位錯(cuò)移動(dòng)[41],加上對(duì)基體組織的細(xì)化作用,有效提高了顆粒增強(qiáng)TMCs的疲勞性能。關(guān)于增強(qiáng)相顆粒對(duì)疲勞壽命影響的研究大部分集中在TiC和TiB。曾立英等[42]對(duì)一些鈦合金和TiC/Ti-6Al-4V進(jìn)行疲勞比對(duì)試驗(yàn),循環(huán)應(yīng)力比分別為?1和0.6。圖9中--曲線表明該TMCs的疲勞壽命呈現(xiàn)穩(wěn)定下降,表1是不同應(yīng)力循環(huán)比下該材料與一些高溫鈦合金的疲勞強(qiáng)度,得益于TiC的承載作用與細(xì)晶強(qiáng)化作用,TiC/Ti-6Al-4V高周疲勞強(qiáng)度優(yōu)于基體本身,與細(xì)晶強(qiáng)化后的Ti-6Al- 4V高周疲勞強(qiáng)度相當(dāng)。顆粒增強(qiáng)TMCs在高溫拉-壓疲勞試驗(yàn)中表現(xiàn)出更加優(yōu)異的疲勞性能,這得益于高溫條件下顆粒增強(qiáng)TMCs的韌性斷裂與更優(yōu)良的抗蠕變性[42]。應(yīng)力環(huán)境對(duì)疲勞壽命的影響同樣顯著,增大拉伸應(yīng)力,疲勞壽命會(huì)顯著下降,因此在嚴(yán)苛的高應(yīng)力服役條件下提高顆粒增強(qiáng)TMCs的疲勞壽命具有重要的意義。

圖9 退火態(tài)復(fù)合材料的P-S-N曲線[42]
表1 復(fù)合材料與一些高溫鈦合金的疲勞強(qiáng)度[42]

Tab.1 Fatigue strength of composites and some high temperature titanium alloys
3.2.2 斷口表征
顆粒增強(qiáng)TMCs疲勞失效主要分為3個(gè)階段:裂紋源萌生、裂紋擴(kuò)展和瞬斷階段。通常情況下,復(fù)合材料總壽命的80%~90%處在裂紋源萌生階段,而對(duì)疲勞壽命起決定性作用的是疲勞擴(kuò)展階段,其與裂紋擴(kuò)展速率息息相關(guān)[43]。顆粒增強(qiáng)體的加入會(huì)導(dǎo)致材料塑性的下降,因此顆粒增強(qiáng)TMCs的斷裂方式通常屬于解理或準(zhǔn)解理斷裂。圖10分別為10%TiC/Ti-6Al- 2.75Sn-3.5Zr-0.45Mo-0.75Nb-0.35Si(體積分?jǐn)?shù))的斷口形貌,發(fā)現(xiàn)斷裂方式屬于準(zhǔn)解理斷裂,不僅具有解理斷裂的特性,還發(fā)生了塑性變形,淺韌窩與大量撕裂棱存在于斷口表面。增強(qiáng)體顆粒在疲勞應(yīng)力作用下被拉扯和撕裂會(huì)導(dǎo)致疲勞失效[44—45],這也表明在疲勞拉伸過(guò)程中增強(qiáng)體顆粒起到了一定的承載作用。圖11[46]是鍛態(tài)TiB+TiC混合增強(qiáng)Ti-6Al-2.5Sn-4Zr-0.7Mo- 0.3Si-Y的室溫拉伸斷口形貌及斷口側(cè)面顯微組織,裂紋源可能在TiB顆粒附近,而裂紋往往貫穿TiC顆粒的偏聚區(qū)域。當(dāng)TiB與TiC顆?;旌蠒r(shí),兩種顆粒將共同承載軸向載荷,TiC顆粒沒(méi)有發(fā)生斷裂[47]。在整個(gè)疲勞失效過(guò)程中,顆粒增強(qiáng)體不僅能夠起到承載作用,還能夠阻礙裂紋擴(kuò)展與位錯(cuò)移動(dòng),顯著提高顆粒增強(qiáng)TMCs的疲勞性能。

圖10 斷口形貌[44]

圖11 室溫拉伸斷口形貌及斷口側(cè)面顯微組織[46]
通過(guò)改變加工工藝改善基體相組成與形貌是提高顆粒增強(qiáng)TMCs綜合性能的重要舉措。傳統(tǒng)的熱處理方法如退火、淬火、回火以及時(shí)效等,可通過(guò)合理的溫度設(shè)置與處理時(shí)間,來(lái)促進(jìn)晶格畸變回復(fù)或者相變,改變基體組織結(jié)構(gòu),提高TMCs的強(qiáng)度、硬度或塑性,獲得較好的強(qiáng)度塑性匹配。熱處理中典型的相變是馬氏體相變[48—49]。高溫條件下相會(huì)向相轉(zhuǎn)變,溫度越高、保溫時(shí)間越長(zhǎng),這種轉(zhuǎn)變?cè)綇氐?,隨后高溫相會(huì)在快速冷卻過(guò)程中由于合金元素來(lái)不及擴(kuò)散而形成馬氏體相。馬氏體相熱穩(wěn)定性差,在時(shí)效、回火過(guò)程中又將分解為尺寸細(xì)小的+相,彌散分布在基體中,產(chǎn)生彌散強(qiáng)化效果[50—51]。圖12[52]說(shuō)明了屈服強(qiáng)度與抗拉強(qiáng)度隨回火溫度的變化關(guān)系,隨著回火溫度的升高,馬氏體分解出的+相發(fā)生粗化,抵消了彌散強(qiáng)化效果,使強(qiáng)度下降。晶格畸變的回復(fù)主要依靠熱處理過(guò)程中的再結(jié)晶、應(yīng)力消除以及固溶元素的析出。熱處理過(guò)程中,增強(qiáng)體能夠阻礙位錯(cuò)運(yùn)動(dòng),并促進(jìn)基體組織的非均勻形核,從而顯著抑制基體組織的長(zhǎng)大。

圖12 Rp0.2(屈服強(qiáng)度)和Rm(抗拉強(qiáng)度)與回火溫度變化曲線[52]
鍛造、熱軋以及氫化等處理方法,能夠促進(jìn)基體組織的動(dòng)態(tài)再結(jié)晶和球化,改變?cè)鰪?qiáng)體的分布,進(jìn)而提高性能。經(jīng)鍛造、軋制或擠壓后的基體晶粒往往沿金屬流動(dòng)方向被拉長(zhǎng),TiB晶須的取向也會(huì)變?yōu)榧庸し较?,并發(fā)生破碎。熱加工會(huì)使基體組織發(fā)生動(dòng)態(tài)再結(jié)晶,增強(qiáng)體又通過(guò)粒子激發(fā)形核機(jī)制,加速了這種再結(jié)晶過(guò)程[53],加上對(duì)位錯(cuò)的釘扎效應(yīng)使位錯(cuò)在增強(qiáng)體附近堆積纏結(jié),形成位錯(cuò)胞并進(jìn)一步生長(zhǎng)成亞晶界,造成晶粒破碎,使基體組織球化[54]。氫氣能夠凈化金屬熔體,降低C,O,S等雜質(zhì)元素的含量,改善界面處的元素偏聚從而提高界面結(jié)合強(qiáng)度[55],并對(duì)材料的組織演變產(chǎn)生重要影響;此外,氫致塑效應(yīng)能夠降低轉(zhuǎn)變溫度,提高相含量,使顆粒增強(qiáng)TMCs的塑性得到提高[56]。
激光增材制造顆粒增強(qiáng)TMCs的增強(qiáng)體選擇集中在TiB和TiC等陶瓷顆粒。通過(guò)激光增材工藝制備的顆粒增強(qiáng)TMCs的組織得到了不同程度細(xì)化,這是多因素綜合影響的結(jié)果。首先陶瓷增強(qiáng)體的引入可以顯著細(xì)化基體組織[57—60],其次激光增材制造的高能量密度和冷卻速率[61]限制了增強(qiáng)體和基體組織的長(zhǎng)大,靠近固/液界面有更多的形核,形成更小的等軸晶[62],通過(guò)增材制造可以得到幾微米乃至納米級(jí)別的增強(qiáng)體晶體。利用增強(qiáng)體自身對(duì)TMCs組織的細(xì)化,加上其他一些強(qiáng)化機(jī)制如固溶強(qiáng)化、彌散強(qiáng)化等,激光增材技術(shù)可以制備出力學(xué)性能、耐磨性和抗氧化性等性能優(yōu)異的顆粒增強(qiáng)TMCs。
難以避免的是相較于純鈦和鈦合金,激光增材制造的顆粒增強(qiáng)TMCs塑性會(huì)有不同程度的降低。圖13[63]展示了純鈦與TiB-TMC的斷面,純鈦以韌性斷裂為主,斷口表面光滑,而TiB-TMC斷口的脆性斷裂特征以韌窩和撕裂脊線為主。此外,激光增材制造的顆粒增強(qiáng)TMCs在經(jīng)過(guò)快速熔化冷卻和循環(huán)加熱后,會(huì)積累許多殘余應(yīng)力,通過(guò)后續(xù)熱處理可以使組織發(fā)生轉(zhuǎn)變并釋放殘余應(yīng)力,實(shí)現(xiàn)組織與性能調(diào)控。例如在Wang等[64]的研究中,激光沉積制備的TiCp/ Ti-6Al-4V,經(jīng)過(guò)950 ℃熱處理10 h后,由于籃網(wǎng)狀組織的存在和條狀共晶的溶解,材料的極限拉伸強(qiáng)度下降不明顯,從1225.5 MPa下降到1202.2 MPa,而伸長(zhǎng)率從1.31%提高到3.95%;該材料經(jīng)1150 ℃熱處理后的材料斷口形貌如圖14所示,大量大尺寸的共晶相使材料的塑性反而變差,說(shuō)明熱處理溫度對(duì)材料性能的影響十分顯著。

圖13 純鈦與TiB-TMC的斷口特征[63]
除了通過(guò)熱處理來(lái)改善塑性外,也有研究者希望通過(guò)調(diào)整工藝參數(shù)來(lái)獲取塑性較好的顆粒增強(qiáng)TMCs。激光功率和掃描速度等工藝參數(shù)是主要影響因素,可以聯(lián)合表示為激光能量密度,其對(duì)粉末的熔化程度有重要影響。激光能量密度過(guò)低會(huì)使粉末熔化不足,缺陷數(shù)量上升,原位生成的增強(qiáng)體數(shù)量下降;激光能量密度過(guò)高則會(huì)導(dǎo)致材料過(guò)熔,產(chǎn)生顯微組織粗化、缺陷增多等問(wèn)題,反而降低成形質(zhì)量。激光能量密度對(duì)顆粒增強(qiáng)TMCs性能的影響被廣泛探索。Liu等[14,65]的研究表明TiB相的大小和比例受激光能量密度的影響;在Ogunlana等[66]的研究中,隨著激光功率的增加,細(xì)小的球狀初生相和馬氏體相逐漸變粗大,當(dāng)激光功率為2000 W時(shí)沉積的復(fù)合材料硬度最高,平均值為445HV,當(dāng)激光功率為800 W時(shí),試樣的磨損量和磨損率最低,分別為35.2×10?3mm3和6.42×10?4mm3/(N·m)。適當(dāng)?shù)募す夤β蔬€能制備出三維準(zhǔn)連續(xù)網(wǎng)絡(luò)(3DQCN)顯微結(jié)構(gòu)TiB/Ti復(fù)合材料[67],其結(jié)構(gòu)如圖15所示,TiB富集區(qū)保證Ti基體的強(qiáng)化作用,TiB貧瘠區(qū)能夠改善預(yù)制件的韌性和延性,三維結(jié)構(gòu)有利于載荷的傳遞和分配,使材料的平均韌性從201 J/mm3提高到320 J/mm3。

圖14 TiC體積分?jǐn)?shù)為5%的沉積和熱處理復(fù)合材料的拉伸斷口[64]

圖15 3DQCN微結(jié)構(gòu)的SEM圖像分析[67]
增強(qiáng)體種類及含量對(duì)激光增材制造顆粒增強(qiáng)TMCs的性能影響也有較多研究,引入不同增強(qiáng)體的TMCs會(huì)得到不同的顯微組織特征,且隨著含量的不同,增強(qiáng)體本身的形態(tài)及其對(duì)鈦基體組織的細(xì)化作用有較大改變,從而影響到成形后TMCs的性能。TiB和TiB2等含B元素增強(qiáng)體除了能夠細(xì)化相變晶粒并弱化織構(gòu)[62,68],還使TMCs具有與商業(yè)開發(fā)的高溫鈦合金相當(dāng)?shù)难趸匦砸约皟?yōu)異的耐磨性。圖16[69]給出了激光增材制造制備的B4C+BN/Ti和其他鈦合金氧化質(zhì)量增加情況,在700 ℃時(shí)的質(zhì)量增加方面與IMI- 834和Ti3Al相當(dāng);圖17為不同質(zhì)量分?jǐn)?shù)TiB2的Ti-6Al-4V復(fù)合材料在1450 N載荷下的磨損率和摩擦因數(shù),TiB2的逐漸加入使晶粒細(xì)化,材料的硬度和耐磨性逐漸提高。TiN顆??勺鳛槲㈥帢O均勻地分布于鈦基體中,加速了鈦基體的陽(yáng)極溶解過(guò)程,使材料優(yōu)先進(jìn)入鈍化狀態(tài),從而提高其在Hank溶液(人工模擬體液)中的耐腐蝕性能[70]。
Xue等[59—60]發(fā)現(xiàn)隨著硼含量的增加,初始晶粒明顯細(xì)化,相長(zhǎng)徑比明顯減小,強(qiáng)度各向異性逐漸減小,伸長(zhǎng)率、各向異性先增大后急劇減?。籞hang等[62]也發(fā)現(xiàn)了類似的結(jié)論,同時(shí)還提到了隨著硼含量的增加,會(huì)形成更多的TiB顆粒,使材料脆化,塑性降低,當(dāng)硼的質(zhì)量分?jǐn)?shù)為0.05%時(shí),可獲得較平衡的拉伸強(qiáng)度與塑性,結(jié)果如圖18所示。對(duì)于添加其他增強(qiáng)體比如TiC[63,71—72]、TiB2[58]、B4C[73—74],TMCs同樣表現(xiàn)出強(qiáng)度、耐磨損性提高而塑性下降的趨勢(shì)。如果增強(qiáng)相含量過(guò)高,材料的斷裂特征會(huì)完全轉(zhuǎn)變?yōu)榇嘈詳嗔眩尚螘r(shí)產(chǎn)生裂紋甚至難以成形。增強(qiáng)相含量還會(huì)直接影響到其本身形貌,隨增強(qiáng)相含量提高,TiB形態(tài)由片層狀或纖維狀向棱柱狀轉(zhuǎn)化[73,75],TiC體積分?jǐn)?shù)增加到5%~10%時(shí),枝晶相會(huì)開始出現(xiàn),并隨著TiC體積分?jǐn)?shù)的增加,枝晶相的數(shù)量和尺寸增加。

圖16 CPTi-B4C-BN與其他材料氧化質(zhì)量增加[69]

圖17 試樣在50 N載荷下的磨損率和摩擦因數(shù)[68]

圖18 不同硼含量的Ti-6Al-4V復(fù)合材料橫向和縱向的力學(xué)性能[62]
1)增強(qiáng)體的加入提高了顆粒增強(qiáng)TMCs的強(qiáng)度,強(qiáng)化機(jī)制有固溶強(qiáng)化、細(xì)晶強(qiáng)化、應(yīng)力承載以及彌散強(qiáng)化等。熱處理、熱加工等可以改善顆粒增強(qiáng)TMCs的強(qiáng)度與塑性,獲得較好的強(qiáng)塑性匹配。未來(lái)需要進(jìn)一步探索增強(qiáng)體與基體相互作用機(jī)制,完善TMCs的增強(qiáng)體/基體界面相互作用理論模型;探索新型基體合金與增強(qiáng)體,以及電磁處理等新型處理工藝。
2)因?yàn)榧?xì)晶強(qiáng)化、固溶強(qiáng)化與增強(qiáng)體的承載作用等因素,顆粒增強(qiáng)TMCs相比普通鈦合金,具有更高的疲勞強(qiáng)度,TiB顆粒較之TiC顆粒對(duì)疲勞性能的提升更明顯。顆粒增強(qiáng)TMCs的斷裂機(jī)制通常為解理斷裂,隨著溫度的升高逐漸轉(zhuǎn)變?yōu)闇?zhǔn)解理斷裂。雖然顆粒增強(qiáng)TMCs的服役強(qiáng)度遠(yuǎn)超鈦合金,但使用條件越惡劣,對(duì)材料的性能要求越高,如何提升顆粒增強(qiáng)TMCs的疲勞壽命,突破其使用極限是后續(xù)研究的重點(diǎn)。
3)激光增材制造為TMCs的合理定制提供了條件,合理設(shè)置激光增材制造工藝參數(shù),可以制備出力學(xué)性能優(yōu)異、耐磨性和抗氧化性較好的顆粒增強(qiáng)TMCs。但激光增材制造TMCs內(nèi)部應(yīng)力大,存在微裂紋、孔洞和未熔顆粒等缺陷,需要通過(guò)后處理改善性能。未來(lái)可以通過(guò)將材料性能、增強(qiáng)體和工藝參數(shù)設(shè)定結(jié)合起來(lái)設(shè)定完整工藝來(lái)實(shí)現(xiàn)TMCs的增材制造與組織性能定制。
[1] 宋衛(wèi)東, 王成, 毛小南. 顆粒增強(qiáng)鈦基復(fù)合材料—加工制備、性能與表征[M]. 北京: 科學(xué)出版社, 2017: 4—39.SONG Wei-dong, WANG Cheng, MAO Xiao-nan. Particle Reinforced Titanium Matrix Composites-Fabrication, Properties and Characterization[M]. Beijing: The Science Pubishing Company, 2017: 4—39.
[2] 孫世臣, 田玉晶, 胡辰, 等. TiBw對(duì)高溫鈦基復(fù)合材料基體的強(qiáng)化作用研究[J]. 鈦工業(yè)進(jìn)展, 2020, 37(3): 15—19. SUN Shi-chen, TIAN Yu-jing, HU Chen, et al. Study on Strengthening Effect of TiBwon Matrix in High Temperature Titanium Matrix Composites[J]. Titanium Industry Progress, 2020, 37(3): 15—19.
[3] 劉經(jīng)奇. 納米碳增強(qiáng)鈦基復(fù)合材料的制備與性能研究[D].重慶: 重慶大學(xué), 2019: 1—27. LIU Jing-qi. Preparation and Mechanical Properties of Nano Carbon Materials Reinforced Titanium Matrix Composites[D]. Chongqing: Chongqing University, 2019: 1—27.
[4] SAITO T. The Automotive Application of Discontinuously Reinforced TiB-Ti Composites[J]. The Journal of The Minerals, Metals & Materials Society, 2004, 56(5): 33—36.
[5] 呂維潔. 原位自生鈦基復(fù)合材料研究綜述[J].中國(guó)材料進(jìn)展, 2010, 29(4): 41—48. LYU Wei-jie. An Overview of the Researchof In-Situ Titanium Matrix Composites[J]. Materials China, 2010, 29(4): 41—48.
[6] 高書刊, 余國(guó)慶, 王國(guó)迪, 等. 非連續(xù)增強(qiáng)鈦基復(fù)合材料的制備工藝及應(yīng)用[J]. 熱加工工藝, 2021, 50(2): 13—17. GAO Shu-kan, YU Guo-qing, WANG Guo-di, et al. Preparation Process and Application of Discontinuous Reinforced Titanium Matrix Composites[J]. Hot Working Technology, 2021, 50(2): 13—17.
[7] 馮家浩, 韓遠(yuǎn)飛, 黃光法, 等. TiB+TiC+La2O3三元顆粒增強(qiáng)IMI834鈦基復(fù)合材料的裂紋擴(kuò)展行為[J]. 機(jī)械工程材料, 2018, 42(2): 8—12. FENG Jia-hao, HAN Yuan-fei, HUANG Guang-fa, et al. Crack Propagation Behavior ofTiB+TiC+La2O3Ternary Particulate Reinforced IMI834 Titanium Matrix Composites[J]. Materials for Mechanical Engineering, 2018, 42(2): 8—12.
[8] 劉統(tǒng)軍. (TiB+La2O3)增強(qiáng)耐熱鈦基復(fù)合材料的組織和性能研究[D]. 上海: 上海交通大學(xué), 2015: 12—34. LIU Tong-jun. Research on Microstructure and Mechanical Properties of High Temperature (TiB+La2O3)/Ti Composites[D]. Shanghai: Shanghai Jiao Tong University, 2015: 12—34.
[9] 徐歡. 增強(qiáng)體對(duì)原位自生(TiC+TiB)/Ti復(fù)合材料微觀組織和力學(xué)性能的影響[D]. 上海: 上海交通大學(xué), 2019: 24—64. XU Huan. The Effect of Reinforcements on the Microstructure and Mechanical Properties of (TiC+TiB)/Ti Composites[D]. Shanghai: Shanghai Jiao Tong University, 2019: 24—64.
[10] SUN S, ZHAO E, HU C, et al. Deformation Behavior and Softening Mechanism of TiB Reinforced Near-Titanium Matrix Composite during Hot Compression[J]. Journal of Materials Research and Technology, 2020, 9(6): 13250—13263.
[11] 譚啟明, 隋楠. 顆粒增強(qiáng)鈦基復(fù)合材料的研究與進(jìn)展[J]. 新材料產(chǎn)業(yè), 2019(1): 59—64. TAN Qi-ming, SUI Nan. Research and Development of Particle Reinforced Titanium Matrix Composites[J]. New Material Industry, 2019(1): 59—64.
[12] 馮養(yǎng)巨. TiBw柱狀網(wǎng)絡(luò)增強(qiáng)鈦基復(fù)合材料制備及強(qiáng)化機(jī)理研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2018: 9—10. FENG Yang-ju. Research on the Fabrication and Strengthening Mechanism of TiBwReinforced Columnar Structure TMCs[D]. Harbin: Harbin Institute of Technology, 2018: 9—10.
[13] 王建東. 激光熔化沉積TiC/Ti6Al4V復(fù)合材料的組織性能調(diào)控[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2018: 4. WANG Jian-dong. Control of Microstructure and Properties of TiC/Ti-6Al-4V Composites Manufactured by Laser Melting Deposition[D]. Harbin: Harbin Institute of Technology, 2018: 4.
[14] CAO Y K, LIU Y, LI Y P, et al. Hot Deformation Behavior of Nano-Sized TiB Reinforced Ti-6Al-4V Metal Matrix Composites[J]. Mechanics of Materials, 2020, 141: 103260.
[15] LI Y Y, ZHU F W, QIAO Z L. Study on Mechanical Alloying of TiB2Particulate Reinforced Titanium Matrix Composites[J]. Applied Mechanics and Materials, 2018, 1: 41—46.
[16] LAGOS M, AGOTE I, ATXAGA G, et al. Fabrication and Characterisation of Titanium Matrix Composites Obtained Using a Combination of Self Propagating High Temperature Synthesis and Spark Plasma Sintering[J]. Materials Science and Engineering: A, 2016, 655: 44—49.
[17] HU Y B, CONG W L. A Review on Laser Deposition-Additive Manufacturing of Ceramics and Ceramic Reinforced Metal Matrix Composites[J]. Ceramics International, 2018, 44(17): 20599—20612.
[18] THOMPSON S M, BIAN L, SHAMSAEI N, et al. An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics[J]. Additive Manufacturing, 2015, 8: 36—62.
[19] CAI C, RADOSLAW C, ZHANG J L, et al. In-Situ Preparation and Formation of TiB/Ti-6Al-4V Nanocomposite via Laser Additive Manufacturing: Microstructure Evolution and Tribological Behavior[J]. Powder Technology, 2019, 342: 73—84.
[20] LI H, JIA D, YANG Z, et al. Achieving Near Equiaxed-Ti Grains and Significantly Improved Plasticity via Heat Treatment of TiB Reinforced Titanium Matrix Composite Manufactured by Selective Laser Melting[J]. Journal of Alloys and Compounds, 2020, 836: 155344.
[21] RASHID R, PALANISAMY S, ATTAR H, et al. Metallurgical Features of Direct Laser-Deposited Ti-6Al-4V with Trace Boron[J]. Journal of Manufacturing Processes, 2018, 35: 651—656.
[22] 毛小南, 周廉, 曾泉浦, 等. TiCp顆粒增強(qiáng)鈦基復(fù)合材料的強(qiáng)化機(jī)理研究[J]. 稀有金屬材料與工程, 2000(6): 378—381. MAO Xiao-nan, ZHOU Lian, ZENG Quan-pu, et al. Study on Strengthening Mechanism of TiCpParticle Reinforced Titanium Matrix Composites[J]. Rare Metal Materials and Engineering, 2000(6): 378—381.
[23] MELENDEZ I M, NEUBAUER E, ANGERER P, et al. Influence of Nano-Reinforcements on the Mechanical Properties and Microstructure of Titanium Matrix Composites[J]. Composites Science and Technology, 2011, 71(8): 1154—1162.
[24] HUANG L, AN Q, GENG L, et al. Multiscale Architecture and Superior High-Temperature Performance of Discontinuously Reinforced Titanium Matrix Composites[J]. Advanced Materials, 2020: 2000688.
[25] JIAO Y, HUANG L J, GENG L, et al. Strengthening and Plasticity Improvement Mechanisms of Titanium Matrix Composites with Two-Scale Network Microstructure[J]. Powder Technology, 2019, 356: 980—989.
[26] ZHANG W, WANG M, CHEN W, et al. Evolution of Inhomogeneous Reinforced Structure in TiBw/Ti-6Al-4V Composite Prepared by Pre-Sintering and CannedExtrusion[J]. Materials & Design, 2015, 88: 471—477.
[27] 楊松峰. SPS原位制備(TiB+TiC)復(fù)相增強(qiáng)Ti-6Al-4V復(fù)合材料組織與性能[D]. 武漢: 華中科技大學(xué), 2019: 19—54. YANG Song-feng. Microstructure and Properties of In Situ Prepared (TiB+TiC)/Ti-6Al-4V by SPS[D]. Wuhan: Huazhong University of Science and Technology, 2019: 19—54.
[28] LI S, HAN Y, SHI Z, et al. Synergistic Strengthening Behavior and Microstructural Optimization of Hybrid Reinforced Titanium Matrix Composites during Thermomechanical Processing[J]. Materials Characterization, 2020, 168: 110527.
[29] LIU Y, RU J, JIANG Z, et al. Microstructure and Oxidation Resistance of a Ti-Mo-Nb-Al-Si Titanium Matrix Composite Reinforced with In Situ TiC Prepared by Powder Metallurgy[J]. Applied Physics A, 2019, 125(11): 791—780.
[30] QIU P, HAN Y, HUANG G, et al. Texture Evolution and Dynamic Recrystallization Behavior of Hybrid-Reinforced Titanium Matrix Composites: Enhanced Strength and Ductility[J]. Metallurgical and Materials Transactions A, 2020, 51(5): 2276—2290.
[31] VILLECHAISE P, HAN Y, SUN X, et al. Deformation and Fracture Behavior of In-Situ Ti Composites Reinforced with TiB/Nano-Sized Particles[J]. Matec Web of Conferences, 2020, 321: 08004.
[32] LE J, HAN Y, XIANG J, et al. Understanding the Role of Multi-Scale Reinforcements on Severe Plastic Deformation of Titanium Matrix Composites[J]. Metallurgical and Materials Transactions A, 2020, 51(4): 1732—1743.
[33] LI C, LYU X, WU X, et al. Nano-Sized TiN-Reinforced Composites: Fabrication, Microstructure, and Mechanical Properties[J]. Journal of Materials Research, 2019, 34(15): 2582—2589.
[34] 王冀恒. 原位自生鈦基復(fù)合材料的鑄造、組織和性能研究[D]. 上海: 上海交通大學(xué), 2015: 34—40. WANG Ji-heng. Casting, Microstructure and Properties of In-Situ Titanium Matrix Composites[D]. Shanghai: Shanghai Jiao Tong University, 2015: 34—40.
[35] ROMERO F, AMIGó V, SALVADOR M D, et al. Interactions in Titanium Matrix Composites Reinforced by Titanium Compounds by Conventional PM Route[J]. Materials Science Forum, 2007, 534/535/536: 817—820.
[36] WANG S, HUANG L, GENG L, et al. Microstructure Evolution and Damage Mechanism of Layered Titanium Matrix Composites under Tensile Loading[J]. Materials Science and Engineering: A, 2020, 777: 139067.
[37] WANG S, HUANG L, ZHANG R, et al. Enhancing Ductility of Titanium Matrix Composites by Multimodal-Grains[J]. Scripta Materialia, 2019, 170: 161—165.
[38] QU J P, ZhANG C J, HAN J C, et al. Microstructural Evolution and Mechanical Properties of near-Ti Matrix Composites Eeinforced by Hybrid (TiB+Y2O3) with Bimodal Size[J]. Vacuum, 2017, 144: 203—206.
[39] BOEHLERT C J, COWEN C J, TAMIRISAKANDALA S, et al. In Situ Scanning Electron Microscopy Observations of Tensile Deformation in a Boron-Modified Ti-6Al-4V Alloy[J]. Scripta Materialia, 2006, 55(5): 465—468.
[40] LIU G, ZHU D, SHANG J K. Enhanced Fatigue Crack Growth Resistance at Elevated Temperature in TiC/Ti-6Al-4V Composite: Microcrack-Induced Crack Closure[J]. Metallurgical & Materials Transactions A, 1995, 26(1): 159—166.
[41] SAITO T, TAKAMIYA H, FURUTA T. Thermomechanical Properties of P/MTitanium Metal Matrix Composite[J]. Materials Science and Engineering A, 1998, 243: 273—278.
[42] 曾立英, 毛小南, 趙永慶, 等. 鈦基復(fù)合材料的高周疲勞性能研究[J]. 稀有金屬材料與工程, 2002(4): 266—269. ZENG Li-ying, MAO Xiao-nan, ZHAO Yong-qing, et al. High Cycle Fatigue Properties of Titanium Matrix Composites[J]. Rare Metal Materials and Engineering, 2002(4): 266—269.
[43] 毛小南, 于蘭蘭. 非連續(xù)增強(qiáng)鈦基復(fù)合材料研究新進(jìn)展[J]. 中國(guó)材料進(jìn)展, 2010, 29(5): 18—24. MAO Xiao-nan, YU Lan-lan. New Progress in Research on Discontinuous Reinforced Titanium Matrix Composites[J]. Progress of Materials in China, 2010, 29(5): 18—24.
[44] 尹來(lái)勝. TiC顆粒增強(qiáng)高溫鈦合金基復(fù)合材料組織與性能研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2010: 20—34. YIN Lai-sheng. Microstructure and Properties of TiC Particle Reinforced High Temperature Titanium Alloy Matrix Composites[D]. Harbin: Harbin Institute of Technology, 2010: 20—34.
[45] 曹磊. 熔鑄法制備TiC/Ti-6Al-4V復(fù)合材料組織與力學(xué)性能研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2010: 11—22. CAO Lei. Microstructure and Mechanical Properties of TiC/Ti-6Al-4V Composites Prepared by Melt Casting[D]. Harbin: Harbin Institute of Technology, 2010: 11—22.
[46] 劉浩. 自生(TiB+TiC)混雜增強(qiáng)高溫鈦基復(fù)合材料的制備及組織性能研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2013: 52—60. LIU Hao. Preparation, Microstructure and Properties of In-Situ (TiB+TiC) Hybrid Reinforced High Temperature Titanium Matrix Composites[D]. Harbin: Harbin Institute of Technology, 2013: 52—60.
[47] FENG H B, ZHOU Yu, JIA D C, et al. Growth Mechanism of In-Situ TiB Whiskers in Spark Plasma Sintered TiB/Ti Metal Matrix Composites[J]. Crystal Growth and Design, 2006(6): 1626—1630.
[48] ZHANG R, WANG D J, HWANG L J, et al. Effects of Heat Treatment on Microstructure and High Temperature Tensile Properties of TiBw/TA15 Composite Billet with Network Architecture[J]. Materials Science and Engineering A, 2017, 679: 314—322.
[49] WANG B, HUANG L J, GENG L. Effects of Heat Treatments on the Microstructure and Mechanical Properties of As-Extruded TiBw/Ti6Al4V Composites[J]. Materials Science and Engineering48 A, 2012, 558: 663—667.
[50] 程婧璠, 楊松峰, 陳霏, 等. 時(shí)效溫度對(duì)原位TiB+TiC復(fù)相增強(qiáng)鈦基復(fù)合材料組織和性能的影響[J]. 特種鑄造及有色合金, 2020, 40(8): 819—823. CHENG Jing-fan, YANG Song-feng, CHEN Fei, et al. Effect of Aging Temperature on Microstructure and Properties of In-Situ TiB+TiC Composite[J]. Special Casting and Nonferrous Alloy, 2020, 40(8): 819—823.
[51] RAHOMA H K S, WANG X P, KONG F T, et al. Effect of (+) Heat Treatment on Microstructure and Mechanical Properties of (TiB+TiC)/Ti-B20 Matrix Composite[J]. Materials & Design, 2015, 87: 488—494.
[52] 謝煌, 黃赟, 鮑雷, 等. 熱處理對(duì)鈦基復(fù)合材料組織和性能的影響[J]. 熱加工工藝, 2019, 48(2): 101—104. XIE Huang, HUANG Yun, BAO Lei, et al. Effect of Heat Treatment on Microstructure and Properties of Titanium Matrix Composites[J]. Hot Working Technology, 2019, 48(2): 101—104.
[53] ZHEREBTSOV S, OZEROV M, POVOLYAEVA E, et al. Effect of Hot Rolling on the Microstructure and Mechanical Properties of a Ti-15Mo/TiB Metal-Matrix Composite[J]. Metals, 2019, 10(1): 3390.
[54] YANG J, XIAO S, CHEN Y, et al. Microstructure Evolution during Forging Deformation of (TiB+TiC+Y2O3)/-Ti Composite: DRX and Globularization Behavior[J]. Journal of Alloys and Compounds, 2020, 827: 154170.
[55] 滕繼良. 液態(tài)氫化對(duì)(TiC+TiB)/Ti-6Al-4V復(fù)合材料增強(qiáng)體與基體界面的影響[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2019: 43—56. TENG Ji-liang. The Effect of Liquid Hydrogenation on the Interface between (TiC+TiB)/Ti-6Al-4V Composite Reinforcement and Matrix[D]. Harbin: Harbin Institute of Technology, 2019: 43—56.
[56] WANG L, ZHANG L, LUO L, et al. Effect of Melt Hydrogenation on Microstructure Evolution and Tensile Properties of (TiB+TiC)/Ti-6Al-4V Composites[J]. Journal of Materials Research and Technology, 2020, 9(3): 6343—6351.
[57] 孫景超, 張永忠, 宮新勇, 等. 激光熔化沉積Ti60合金,TiCp/Ti60復(fù)合材料的高溫拉伸持久壽命及斷裂過(guò)程[J]. 中國(guó)激光, 2012(1): 71—76. SUN Jing-chao, ZHANG Yong-zhong, GONG Xin-yong, et al. Laser Melting Deposition of Ti60 Alloy, High Temperature Tensile Durability and Fracture Process of TiCp/Ti60 Composites[J]. Chinese Laser, 2012(1): 71—76.
[58] JIN J, ZHOU S, ZHAO Y, et al. Refined Microstructure and Enhanced Wear Resistance of Titanium Matrix Composites Produced by Selective Laser Melting[J]. Optics and Laser Technology, 2021, 134: 106644.
[59] XUE A T, WANG L L, LIN X, et al. Effect of Boron on the Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Laser Directed Energy Deposition after Heat Treatment[J]. Journal of Laser Applications, 2020, 32(1): 10.
[60] XUE A, LIN X, WANG L, et al. Influence of Trace Boron Addition on Microstructure, Tensile Properties and Their Anisotropy of Ti6Al4V Fabricated by Laser Directed Energy Deposition[J]. Materials & Design, 2019, 181: 107943.
[61] 李海亮, 賈德昌, 楊治華, 等. 選區(qū)激光熔化3D打印鈦合金及其復(fù)合材料研究進(jìn)展[J]. 材料科學(xué)與工藝, 2019, 27(2): 7—21. LI Hai-liang, JIA De-chang, YANG Zhi-hua, et al. Research Progress in Selective Laser Melting of 3D Printing Titanium Alloys and Their Composite Materials[J]. Materials Science and Technology, 2019, 27(2): 7—21.
[62] ZHANG K, TIAN X, BERMINGHAM M, et al. Effects of Boron Addition on Microstructures and Mechanical Properties of Ti-6Al-4V Manufactured by Direct Laser Deposition[J]. Materials & Design, 2019, 184: 108191.
[63] HU Y B, NING F D, WANG X L, et al. Laser Deposition-Additive Manufacturing of In Situ TiB Reinforced Titanium Matrix Composites: TiB Growth and Part Performance[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9/10/11/12): 3409—3418.
[64] WANG J D, LI L Q, TAN C W, et al. Microstructure and Tensile Properties of TiCp/Ti-6Al-4V Titanium Matrix Composites Manufactured by Laser Melting Deposition[J]. Journal of Materials Processing Technology, 2018, 252: 524—536.
[65] LIU L, MINASYAN T, IVANOV R, et al. Selective Laser Melting of TiB2-Ti Composite with High Content of Ceramic Phase[J]. Ceramics International, 2020, 46(13): 21128—21135.
[66] OGUNLANA M O, AKINLABI E T, ERINOSHO M F. Analysis of the Influence of Laser Power on the Microstructure and Properties of a Titanium Alloy-Reinforced Boron Carbide Matrix Composite (Ti6Al4V-B4C)[J]. Strojniski Vestnik-Journal of Mechanical Engineering, 2017, 63(6): 363—373.
[67] HU Y B, CONG W L, WANG X L, et al. Laser Deposition-Additive Manufacturing of TiB-Ti Composites with Novel Three-Dimensional Quasi-Continuous Network Microstructure: Effects on Strengthening and Toughening[J]. Composites Part B-Engineering, 2018, 133: 91—100.
[68] PATIL A S, HIWARKAR V D, VERMA P K, et al. Effect of TiB2Addition on the Microstructure and Wear Resistance of Ti-6Al-4V Alloy Fabricated through Direct Metal Laser Sintering (DMLS)[J]. Journal of Alloys and Compounds, 2019, 777: 165—173.
[69] TRAXEL K D, BANDYOPADHYAY A. Influence of In-Situ Ceramic Reinforcement towards Tailoring Titanium Matrix Composites Using Laser-Based Additive Manufacturing[J]. Additive Manufacturing, 2020, 31: 101004.
[70] 趙宇, 宋振明, 金劍波, 等. 激光選區(qū)熔化成形Ti-5%TiN復(fù)合材料在Hank溶液中的電化學(xué)腐蝕性能[J]. 中國(guó)激光, 2019, 46(9): 112—120. ZHAO Yu, SONG Zhen-ming, JIN Jian-bo, et al. Electrochemical Corrosion Properties of Ti-5%TiN Composites Formed by Laser Selective Melting in Hank Solution[J]. Chinese Laser, 2019, 46(9): 112—120.
[71] LIU S Y, SHIN Y C. The Influences of Melting Degree of TiC Rreinforcements on Microstructure and Mechanical Properties of Laser Direct Deposited Ti6Al4V-TiC Composites[J]. Materials & Design, 2017, 136: 185—195.
[72] NING F D, HU Y B, CONG W L. Microstructure and Mechanical Property of TiB Reinforced Ti Matrix Composites Fabricated by Ultrasonic Vibration-Assisted Laser Engineered Net Shaping[J]. Rapid Prototyping Journal, 2019, 25(3): 581—591.
[73] 于翔天, 王華明. 激光熔化沉積(TiB+TiC)/TA15原位鈦基復(fù)合材料的顯微組織與力學(xué)性能[J]. 復(fù)合材料學(xué)報(bào), 2008(4): 113—118. YU Xiang-tian, WANG Hua-ming. Microstructure and Mechanical Properties of Laser Melting Deposition (TiB+TiC)/TA15 In-Situ Titanium Matrix Composites[J]. Journal of Composite Materials, 2008(4): 113—118.
[74] 何波, 蘭姣姣, 楊光, 等. 激光原位合成TiB-TiC顆粒增強(qiáng)鈦基復(fù)合材料的組織與其耐磨性能[J]. 稀有金屬材料與工程, 2017, 46(12): 233—238. HE Bo, LAN Jiao-jiao, YANG Guang, et al. Microstructure and Wear Resistance of In Situ Laser Synthesized TiB-TiC Particle Reinforced Titanium Matrix Composites[J]. Rare Metal Materials and Engineering, 2017, 46(12): 233—238.
[75] 于翔天, 王華明. 激光熔化沉積(TiB+TiC)/TA15顯微組織[J]. 宇航材料工藝, 2007(6): 116—119. YU Xiang-tian, WANG Hua-ming. Laser Melting Deposition (TiB+TiC)/TA15 Microstructure[J]. Aerospace Materials Technology, 2007(6): 116—119.
Research Progress on Preparation Methods, Microstructure and Properties of Particle Reinforced Titanium Matrix Composites
MIAO Run1a,1b, LIU Bing-liang1a,1b, REN Si-yu1a,1b, WANG Li-qiang2, LYU Wei-jie2,XIE Le-chun1a,1b
(1. a. Hubei Key Laboratory of Advanced Technology for Automotive Components; b. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China; 2. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China)
Particle reinforced titanium matrix composites (TMCs) have complex phase composition due to the addition of reinforcements by which the characteristics of the material during preparation and processing are also changed. This paper is expected to provide theoretical guidance for the production and modification of particle reinforced TMCs, and provide new ideas for further development. In this work, the microstructure and preparation methods of particle reinforced TMCs are briefly introduced. Also the influencing factors of microstructure and properties are summarized, including the influence of reinforcement on fatigue properties, characterization analysis of fatigue section, processing technology and preparation technology, especially the influence of newly emerging laser additive manufacturing on microstructure and properties of particle reinforced TMCs. Conclusion is that the strengthening mechanism of particle reinforcement includes stress bearingeffect, solid solution strengthening, fine grain strengthening and dispersion strengthening.The fatigue strength of particle reinforced TMCs is higher than that of ordinary titanium alloy, and the fracture mechanism is usually cleavage fracture, which transforms into quasi cleavage fracture at high temperature. The microstructure and properties of particle reinforced TMCs are significantly affected by the preparation and processing technology. The particle reinforced TMCs with excellent mechanical properties, wear resistance and corrosion resistance can be prepared by reasonably setting the laser additive manufacturing process parameters.KEY WORDS: titanium matrix composites; particle reinforcements; fatigue properties; additive manufacturing
10.3969/j.issn.1674-6457.2021.03.003
TB331
A
1674-6457(2021)03-0025-15
2021-04-23
武漢市科技局應(yīng)用基礎(chǔ)前沿項(xiàng)目(2020010601012171);湖北省楚天學(xué)者項(xiàng)目(CTXZ2017-05);111引智計(jì)劃“新能源汽車科學(xué)與關(guān)鍵技術(shù)學(xué)科創(chuàng)新引智基地”項(xiàng)目(B17034);教育部創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT_17R83)
苗潤(rùn)(1997—),男,碩士生,主要研究方向?yàn)殡姏_擊處理對(duì)鈦基復(fù)合材料組織性能的影響。
謝樂(lè)春(1984—),男,博士,教授,主要研究方向?yàn)殁伜辖鸺捌鋸?fù)合材料增材制造、汽車零部件表面加工與強(qiáng)化、金屬材料先進(jìn)表征技術(shù)(同步輻射、EBSD)。