999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一種利用單通道母體腹部心電信號提取胎兒心電信號的新技術(shù)

2021-09-14 11:50:51王文波錢龍

王文波 錢龍

摘? ?要:針對母體腹部混合心電信號中胎兒心電信號微弱、包含諸多噪聲,難以清晰提取的問題,本文提出了一種基于奇異值分解(SVD)、平滑窗(SW)技術(shù)和最小二乘支持向量機(LSSVM)的胎兒心電提取新方法. 首先,利用SVD從單通道母體腹部心電信號中重構(gòu)分解矩陣,估計出母體心電參考信號,并利用SW方法對估計出的母體心電參考信號進行平滑處理;然后,利用LSSVM建立非線性估計模型,通過該模型和平滑后的母體心電參考信號估計出腹部信號中的母體心電成分,并采用布谷鳥搜索算法(CS)優(yōu)化LSSVM的超參數(shù);最后,將腹部混合信號與CS-LSSVM模型估計出的母體心電成分相減,即可獲得初步胎兒心電信號,為了進一步消除干擾,對初步獲取的胎兒心電信號再進行SW-SVD操作,從而獲得較為清晰的胎兒心電信號. 采用Daisy數(shù)據(jù)集進行實驗,結(jié)果表明,本文所提出的方法在可視化對比分析和四個統(tǒng)計評價指標(biāo)上均優(yōu)于其他三種經(jīng)典方法,可從腹部混合信號中提取出更清晰的胎兒心電信號.

關(guān)鍵詞:胎兒心電信號;奇異值分解;平滑窗;最小二乘支持向量機;布谷鳥搜索算法

中圖分類號:R331? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標(biāo)志碼:A

A New Technology for Extracting Fetal ECG Signals

from Single-channel Maternal Abdominal ECG Signals

WANG Wenbo QIAN long

(College of Science,Wuhan University of Science and Technology,Wuhan 430065,China)

Abstract:Aiming at the problems that the fetal electrocareliogram(ECG) signal in the mixed ECG signal of the mother's abdomen is weak,contains a lot of noise,and is difficult to be extracted clearly,this paper proposes a method based on singular value decomposition (SVD),smooth window (SW) technology and least square support vector machine (LSSVM) new method of fetal ECG extraction. Firstly,SVD is used to reconstruct the decomposition matrix from the single-channel maternal abdominal ECG signal in order to estimate the maternal ECG reference signal,and the SW method is used to smooth the estimated maternal ECG reference signal;then,LSSVM is used to establish a non-linear estimation model,the maternal ECG component in the abdominal signal is estimated through the model and the smoothed maternal ECG reference signal,and the cuckoo search algorithm(CS) is used to optimize the hyperparameters of LSSVM. Finally,the mixed abdominal signal is subtracted from the maternal ECG component estimated by the CS-LSSVM model so as to obtain the preliminary fetal ECG signal. To further eliminate the interference,the SW-SVD operation is performed on the initially obtained fetal ECG signal,thereby obtaining a clearer fetal ECG signal. Experiments with Daisy data set show that the method proposed in this paper is superior to the other three classic methods in visual comparative analysis and four statistical evaluation indicators,and can extract clearer fetal ECG signals from the mixed abdominal signals.

Key words:fetal ECG signal;singular value decomposition;smooth window;least squares support vector machine;cuckoo search algorithm

據(jù)統(tǒng)計,全世界每年發(fā)生260多萬例死產(chǎn),其中45%以上病例發(fā)生于孕婦分娩期間,因此產(chǎn)前胎兒健康檢測具有重要的生理學(xué)意義[1]. 通過在孕婦分娩前對胎兒心電信號進行檢測,并分析其波形,可以高效評估胎兒在子宮內(nèi)的生長發(fā)育情況,從而降低圍產(chǎn)兒的死亡率和發(fā)病率[2-3]. 目前,多采用無創(chuàng)的非入侵式檢測方法對胎兒健康進行檢查[4-5].

非入侵式檢測方法是使用多導(dǎo)聯(lián)置電極技術(shù)分別記錄孕婦胸部和腹壁混合信號,然后將胎兒心電信號從孕婦腹壁混合信號中分離出來. 然而由腹壁電極所采集的信號普遍包含較多的噪聲:導(dǎo)聯(lián)電極干擾、母體心電活動干擾、基線漂移[6]等,因此,如何有效抑制各種噪聲從而分離出純凈的胎兒心電信號成為一個國內(nèi)外學(xué)者研究的熱點問題.

為了消除各種背景干擾和母體心電成分,國內(nèi)外學(xué)者已經(jīng)提出了一系列從腹壁混合信號中獲取胎兒心電信號的方法:盲源提取技術(shù)[7-8]是假設(shè)各個源信號未知的情況下,只提取出胎兒心電信號,但該技術(shù)對時間延遲周期的依賴性較大,其性能具有局限性;獨立成分分析(Independent Component Analysis,ICA)技術(shù)[9]在假定各信號成分統(tǒng)計獨立的基礎(chǔ)上建立ICA模型,該算法一般采用梯度法對分離矩陣自適應(yīng)尋優(yōu),且需要嚴(yán)格設(shè)定初始分離矩陣和步長,使得該技術(shù)容易陷入局部最優(yōu),導(dǎo)致分離的胎兒心電信號精度不高[10];自適應(yīng)濾波法[11]計算量小且易于收斂,但該算法不能有效提取出母體心電和胎兒心電重合部分的胎兒心電信號;小波分解技術(shù)[12]涉及到小波基和其他參數(shù)的選擇,對于不同的數(shù)據(jù),參數(shù)選擇較為困難,因此該方法適用性較低,不能用于實時提取;匹配濾波法[13]需要保持信號之間同一波形形態(tài),對濾波器的選擇較為困難;支持向量機技術(shù)[14]和人工神經(jīng)網(wǎng)絡(luò)[15-16]技術(shù)在胎兒心電提取方法中得到了較多的應(yīng)用,這些方法將傳統(tǒng)統(tǒng)計學(xué)作為基礎(chǔ),以經(jīng)驗風(fēng)險最小化原則進行學(xué)習(xí),存在著泛化能力弱、結(jié)構(gòu)設(shè)計較難、易陷入局部最優(yōu)等問題. 以上這些方法都是建立在復(fù)雜導(dǎo)聯(lián)多通道信號采集的基礎(chǔ)上,然而多通道記錄數(shù)據(jù)會要求在孕婦體表放置更多的電極,這可能會引起孕婦的身體不適從,并間接影響心電信號的提取效果. 因此這些方法的臨床使用價值非常有限.

隨著胎兒心電提取方法的不斷深入研究,采用單通道腹壁混合心電信號進行胎兒心電提取的方法成為主流. 這些方法以自適應(yīng)噪聲消除技術(shù)[17]、奇異值分解技術(shù)[18]、模板去除技術(shù)[19]和卡爾曼濾波技術(shù)[20]等為基礎(chǔ),從單通道腹壁混合心電信號中分離出胎兒心電信號. 但現(xiàn)有的單通道胎兒心電提取方法仍存在一定的不足:模板去除技術(shù)很難從腹壁混合心電信號中消除噪聲和母體心電成分[21],導(dǎo)致提取效果較差;奇異值分解技術(shù)分解出來的矩陣往往解釋性較弱且分解矩陣隨時間越來越大,對存貯空間有較大的需求[22];卡爾曼濾波技術(shù)的計算復(fù)雜度較高,并且在胎兒心電與母體心電重疊的部分,該技術(shù)將失去其提取作用[23];自適應(yīng)噪聲消除技術(shù)通常需要訓(xùn)練特定的濾波器參數(shù)[24],該方法的臨床實用性較低.

為了解決上述問題并提取更為清晰的胎兒心電信號,本文提出了一種利用單通道腹壁混合信號進行胎兒心電信號分離的新方法,該方法只需記錄一次孕婦腹壁混合信號,極大降低了信號的電極干擾且可以進行長期監(jiān)測. 該方法的具體思路為:首先,將平滑窗(Smooth Window,SW)技術(shù)與SVD技術(shù)相結(jié)合(SW-SVD),用來估計孕婦腹壁混合信號中的母體心電成分,采用估計的母體心電信號代替母體胸部信號;然后,將SW-SVD方法估計的母體心電信號作為輸入信號,利用最小二乘支持向量機(Least squares support vector machine,LSSVM)構(gòu)造輸入信號和腹壁混合信號中母體心電成分的最佳映射模型,并采用布谷鳥優(yōu)化算法(cuckoo search,CS)優(yōu)化LSSVM的關(guān)鍵超參數(shù);最后,將CS-LSSVM映射模型得到最佳母體心電信號與腹壁混合信號相減,即可分離出初步的胎兒心電信號,對初步獲取的胎兒心電信號再次使用SW-SVD技術(shù)進一步消除母體心電的干擾,最終得到更為純凈的胎兒心電信號. 實驗結(jié)果表明,與傳統(tǒng)的歸一化最小均方誤差(Normalized least mean squares,NLMS)、長短時記憶(Long short term memory,LSTM)網(wǎng)絡(luò)以及LSSVM方法相比,文中所提出的方法具有更強的抗噪聲能力和泛化能力,可以得到更為清晰的胎兒心電信號.

1? ?胎兒心電信號提取原理

2? ?SW-SVD技術(shù)

2.1? ?SVD原理

2.2? ?SVD提取母體心電參考信號

2.3? ?均值濾波

3? ?基于CS優(yōu)化的LSSVM

3.1? ?LSSVM原理

3.2? ?CS算法

3.3? ?CS優(yōu)化的LSSVM母體心電信號估計模型

4? ?實驗與結(jié)果

4.1? ?模型評價標(biāo)準(zhǔn)

4.2? ?實驗數(shù)據(jù)和實驗方法

本文實驗數(shù)據(jù)選取DaISy數(shù)據(jù)集進行研究,并與NLMS[43]、LSTM方法[44]和LSSVM方法進行對比實驗. DaISy數(shù)據(jù)庫(Database for the Identification of Systems)由Lieven De Lathauwer提供[45],心電數(shù)據(jù)采樣頻率為250 Hz,記錄時長為10 s,各通道心電數(shù)據(jù)長度為2 500,采用電極放置法從孕婦體表獲取的八導(dǎo)聯(lián)(ch1~ch8)心電信號,ch1~ch5導(dǎo)聯(lián)記錄孕婦腹部混合信號,ch6~ch8 導(dǎo)聯(lián)記錄孕婦胸部信號. 考慮模型運算復(fù)雜度、計算時長和提取性能,選擇前1 500點數(shù)據(jù)作為訓(xùn)練數(shù)據(jù)集,剩余1 000點數(shù)據(jù)作為測試數(shù)據(jù)集. NLMS方法中,迭代步長設(shè)為0.005,迭代次數(shù)設(shè)為 1 000. LSTM方法中隱藏層神經(jīng)元選為30個,迭代次數(shù)設(shè)為400,學(xué)習(xí)率取為r = 0.01. 傳統(tǒng)LSSVM方法中選擇徑向基函數(shù)作為核函數(shù),核函數(shù)參數(shù)σ和懲罰系數(shù)C的取值分別為σ2= 3,C = 50.

4.3? ?實驗結(jié)果比較

4.3.1? ?母體心電參考信號的可視化提取結(jié)果

選取Daisy數(shù)據(jù)集中的五個腹部心電信號進行單通道胎兒心電信號的提取,五個通道的信號波形如圖4所示. 為了去除基線漂移對信號的影響,本文對母體心電參考信號做了Savitzky-Golay(S-G)平滑濾波操作;然后利用第二節(jié)中所提出的SW-SVD技術(shù),提取母體心電參考信號,提取結(jié)果如圖7所示. 通過對比圖4和圖5的五通道信號可知,利用SW和SVD結(jié)合的技術(shù)可以從腹壁混合心電信號中提取出清晰的母體心電參考信號.

4.3.2? ?胎兒心電信號提取結(jié)果的可視化對比分析

本文將ch1和ch2兩個腹部通道信號作為可視化結(jié)果分析,并與目前傳統(tǒng)的NLMS、LSTM和LSSVM方法進行對比實驗,實驗可視化對比結(jié)果如圖6和圖7所示.

圖6和圖7顯示了四種胎兒心電信號提取方法在ch1和ch2兩個通道上的可視化結(jié)果,可以看出本文提出的方法明顯優(yōu)于其他三種方法,基本上可以提取出所有的胎兒QRS波,且有效避免了母體心電和其他噪聲的干擾.

4.3.3? ?胎兒心電信號提取結(jié)果的統(tǒng)計指標(biāo)分析

為了定量研究CS-LSSVM方法的提取效果,本文采用Se、PPV、ACC和F1四個指標(biāo)來分析[12,13]. 選擇DaISy數(shù)據(jù)集中 ch1~ch5 共5個通道孕婦腹壁心電數(shù)據(jù)進行統(tǒng)計分析,該數(shù)據(jù)集中每個通道記錄有22個胎兒心電QRS波,在測試集數(shù)據(jù)中每個通道有9個QRS波,本文統(tǒng)計5個通道共45個胎兒心電QRS波. 四種方法的統(tǒng)計分析結(jié)果如表1所示.

由表 1 可知,CS-LSSVM心電信號提取方法在五個導(dǎo)聯(lián)上的胎兒心電信號提取效果最好,該方法可以提取到42個胎兒心電QRS波,誤檢和漏檢的胎兒心電個數(shù)相對較少,只有4個QRS波被誤檢且漏檢個數(shù)為3個,模型準(zhǔn)確率ACC高達85.71%,靈敏度Se為93.33%,精確度PPV達到91.30%,且總體概率F1為 92.31%,四項統(tǒng)計指標(biāo)均為最高. NLMS方法能夠提取到40個胎兒心電QRS波,誤檢個數(shù)為12個,漏檢的胎兒心電為5個,模型準(zhǔn)確率ACC為70.18%,四項評價指標(biāo)都不及本文提出的方法. 這是由于NLMS方法對胎兒心電信號適應(yīng)性不強,尤其在母體心電與胎兒心電重疊部分,對胎兒心電的識別率較低. LSTM 方法可以提取到30個胎兒心電QRS波,在四項心電提取性能指標(biāo)分析中,其ACC只有51.72%,四項評價指標(biāo)均為最低,這是由于LSTM存在泛化能力弱,易陷入局部極值,導(dǎo)致該模型漏檢和誤檢較多. LSSVM方法可以提取到40個胎兒心電QRS波,誤檢11個,漏檢5個,并且ACC為71.43%,Se為88.89%,PPV為78.43%,F(xiàn)1為83.33%. 由于LSSVM方法的超參數(shù)很難人工取到最優(yōu)值,導(dǎo)致該方法提取性能低于CS-LSSVM. 通過上述的對比可見,CS-LSSVM心電提取方法在四項指標(biāo)上均優(yōu)于其他三種心電提取方法. 可見利用CS算法先對LSSVM模型的關(guān)鍵超參數(shù)進行尋優(yōu)處理,然后構(gòu)建CS-LSSVM母體心電信號估計模型,并經(jīng)過SW-SVD操作可以有效提高胎兒心電信號提取性能.

5? ?結(jié)? ?論

在本文的研究中,提出了一種利用單通道母體腹部混合心電信號提取胎兒心電信號的新方法. 該方法以LSSVM模型為基礎(chǔ)構(gòu)建CS-LSSVM母體心電信號提取模型,采用CS算法對LSSVM模型的超參數(shù)進行尋優(yōu)處理,有效提高了模型的預(yù)測性能,減小了人為確定超參數(shù)的影響. 并且結(jié)合平滑窗口和奇異值分解技術(shù),建立母體心電參考信號,有效避免了至少記錄一個母體胸部心電信號的局限性. 文中選取DaISy數(shù)據(jù)集進行對比實驗,實驗表明,相比于傳統(tǒng)的NLMS、LSTM 和 LSSVM方法,本文提出的CS-LSSVM心電提取方法表現(xiàn)出更優(yōu)的性能,能夠提取出42個清晰的胎兒心電信號QRS波,誤檢和漏檢的胎兒心電較少,為產(chǎn)前胎兒健康檢測提供了新思路,具有較好的臨床應(yīng)用價值.

參考文獻

[1]? ? ZHANG Y,YU S. Single-lead noninvasive fetal ECG extraction by means of combining clustering and principal components analysis[J]. Medical & Biological Engineering & Computing,2020,58(2):419—432.

[2]? ? 韋雯雯,李曉蘭,于震,等. 多普勒超聲技術(shù)在妊娠期高血壓孕婦妊娠結(jié)局中的應(yīng)用[J].安徽醫(yī)科大學(xué)學(xué)報,2020,55(9):1466—1468.WEI W W,LI X L,YU Z,et al. The application of Doppler ultrasound in evaluating the pregnancy outcome of pregnant women with HDP[J]. Journal of Anhui Medical University,2020,55(9):1466—1468. (In Chinses)

[3]? ? BARNETT S B,MAULIK D. Guidelines and recommendations for safe use of Doppler ultrasound in perinatal applications[J]. Journal of Maternal-Fetal Medicine,2001,10(2):75—84.

[4]? ? VULLINGS R,PETERS C H,SLUIJTER R J,et al. Dynamic segmentation and linear prediction for maternal ECG removal in antenatal abdominal recordings[J]. Physiological Measurement,2009,30(3):291—307.

[5]? ? 蒲秀娟,曾孝平,陳悅君,等. 基于徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的胎兒心電提取[J]. 重慶大學(xué)學(xué)報,2009,32(1):111—115.PU X J,ZENG X P,CHEN Y J,et al. Fetal electrocardiogram extraction based on radial basis function neural networks[J]. Journal of Chongqing University,2009,32(01):111—115. (In Chinses)

[6]? ? 賈文娟 楊春蘭,鐘果程,等. 基于自適應(yīng)線性神經(jīng)網(wǎng)絡(luò)的胎兒心電信號提取[J]. 北京生物醫(yī)學(xué)工程,2010,29(6):575—580.JIA W J,YANG C L,ZHONG G C,et al. Fetal ECG signals extraction based on adaptive linear neural network[J]. Beijing Biomedical Engineering,2010,29(6):575—580. (In Chinses)

[7]? ? 化希耀,蘇博妮. 胎兒心電提取方法研究綜述[J]. 微型機與應(yīng)用,2015,34(3):21—23.HUA X Y,SU B N. A review of fetal electrocardiogram extraction method[J]. Microcomputer and Application,2015,34(3):21—23. (In Chinses)

[8]? ? 茍梅梅,黃華. 基于分塊擴展Infomax算法的胎兒心電分離[J].中國組織工程研究,2012,16(26):4877—4880.GOU M M,HUANG H. Block-extend Infomax algorithms in fetal electrocardiogram extraction[J]. Chinese Journal of? Tissue Engineering Research,2012,16(26):4877—4880. (In Chinses)

[9]? ? 李朝蘭,方濱,李慧杰,等. 應(yīng)用自相關(guān)和獨立分量分析的胎兒心電信號提取[J]. 中國醫(yī)學(xué)物理學(xué)雜志,2016,33(8):838—843.LI C L,F(xiàn)ANG B,LI H J,et al. Fetal electrocardiogram signal extraction based on autocorrelation and independent component analysis[J]. Chinese Journal of Medical Physics,2016,33(8):838—843. (In Chinses)

[10]? 袁麗,吳水才,袁延超. 胎兒心電提取算法研究綜述[J]. 中國醫(yī)療設(shè)備,2017,32(6):114—117.YUAN L,WU S C,YUAN Y C. Review of fetal electrocardiogram extraction method research[J]. China Medical Devices,2017,32(6):114—117.(In Chinese)

[11]? 袁麗,吳水才,袁延超,等. 一種變步長LMS算法提取胎兒心電[J]. 2中國醫(yī)療設(shè)備,2018,33(3):14—21.?YUAN L,WU S C,YUAN Y C. A kind of variable step size LMS algorithm for extracting fetal ECG[J]. China Medical Devices,2018,33(3):14—21. (In Chinses)

[12]? SUTHA P,JAYANTHI V. Fetal electrocardiogram extraction and analysis using adaptive noise cancellation and wavelet transformation techniques[J]. Journal of Medical Systems,2018,42(1):21.

[13]? DESSI A,PANI D,RAFFO L. An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings[J]. Physiological Measurement,2014,35(8):1621—1636.

[14]? 柴建樸.基于支持向量機的睡眠分期算法研究及應(yīng)用實現(xiàn)[D].成都:電子科技大學(xué),2018.CHAI J P. A research of sleep staging algorithm based on support vector machine and the implementation of application[D]. Chengdu:University of Electronic Science and Technology,2018.(In Chinses)

[15]? VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks,1999,10(5):988—999.

[16]? 袁延超,吳水才,袁麗,等. 基于BP神經(jīng)網(wǎng)絡(luò)的胎兒心電提取算法研究[J]. 生物醫(yī)學(xué)工程與臨床,2018,22(3):257—243.YUAN Y C,WU S C,YUAN L,et al. Research of fetal electrocardiogram extraction algorithm based on BP neural network[J]. Biomedical Engineering and Clinical Medicine,2018,22(3):257—243. (In Chinses)

[17]? SWARNALATHA R,PRASAD D V. A novel technique for extraction of FECG using multi stage adaptive filtering[J]. Journal of Applied Sciences,2010,10(4):319—324.

[18]? ZIANI S,JBARI A,BELLARBI L,et al. Blind maternal-fetal ECG separation based on the time-scale image TSI and SVD - ICA methods[J]. Procedia Computer Science,2018,134:322—327.

[19]? COSTA J D Jr,DE SEIXAS J M,MIRANDA DE S?魣 A M F L. A template subtraction method for reducing electrocardiographic artifacts in EMG signals of low intensity[J]. Biomedical Signal Processing and Control,2019,47:380—386.

[20]? PANIGRAHY D,SAHU P K. Extraction of fetal electrocardiogram (ECG) by extended state Kalman filtering and adaptive neuro-fuzzy inference system (ANFIS) based on single channel abdominal recording[J]. Sadhana,2015,40(4):1091—1104.

[21]? TSUI S Y,LIU C S,LIN C W. Modified maternal ECG cancellation for portable fetal heart rate monitor[J]. Biomedical Signal Processing and Control,2017,32:76—81.

[22]? ZHAN N N,YONG J. A novel technique for fetal ECG extraction using single-channel abdominal recording[J]. Sensors,2017,17(3):457.

[23]? PAQUET-DURAND O,YOUSEFI DARANI A,HITZMANN B.Online state prediction of S. cerevisiae cultivation purely based on ethanol gas sensors and an extended Kalman filter[J]. Chemie Ingenieur Technik,2020,92(9):1222.

[24]? 洪少春. 基于LMS改進算法的自適應(yīng)濾波器在胎兒心電監(jiān)測中的應(yīng)用[J]. 邵陽學(xué)院學(xué)報(自然科學(xué)版),2007,(3):24—28.HONG S C. The research about adaptive filter based on the improvement of the LMS algorithm and its effect on FECG[J]. Journal of Shaoyang University (Natural Science Edition),2007,4(3):24—28. (In Chinses)

[25]? 蒲秀娟,曾孝平,韓亮,等. 基于經(jīng)驗?zāi)J椒纸夂妥钚《酥С窒蛄繖C的胎兒心電信號提取[J]. 四川大學(xué)學(xué)報(工程科學(xué)版),2010,42(6):158—165.?PU X J,ZENG X P,HAN L,et al. Extraction of fetal electrocardiogram signal using empirical mode decomposition and least squares support vector machines[J]. Journal of Sichuan University (Engineering Science Edition),2010,42(6):158—165. (In Chinses)

[26]? ASSALEH K. Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inference systems[J]. IEEE Transactions on Biomedical Engineering,2007,54(1):59—68.

[27]? 曾兆山,沈海斌,陸昊俊. 基于SVD-LSSVM的單導(dǎo)聯(lián)胎兒心電提取算法[J]. 電子技術(shù),2016,45(4):4—8.ZENG Z S,SHEN H B,LU H J. Fetal ECG extraction using single lead based on SVD -LSSVM method[J]. Electronic Technology,2016,45(4):4—8. (In Chinses)

[28]? 陳甸甸,趙治棟. 基于奇異值和相異度的心電身份識別方法[J].計算機仿真,2016,33(2):427—432.CHEN D D,ZHAO Z D. Identification method of ECG signal based on SVD and dissimilarity analysis[J]. Computer? ? ?Simulation,2016,33(2):427—432. (In Chinses)

[29]? DAAMOUCHE A,HAMAMI L,ALAJLAN N,et al. A wavelet optimization approach for ECG signal classification[J]. Biomedical Signal Processing and Control,2012,7(4):342—349.

[30]? 趙學(xué)智,陳統(tǒng)堅,葉邦彥. 基于奇異值分解的銑削力信號處理與銑床狀態(tài)信息分離[J]. 機械工程學(xué)報,2007(6):169—174.ZHAO X Z,CHEN T J,YE B Y. Milling force signal processing and milling machine state information separation based on singular value decomposition[J]. Journal of Mechanical Engineering,2007(6):169—174. (In Chinses)

[31]? 周祥,詹寧波,高磊,等. 一種自適應(yīng)最小均方算法提取胎兒心電信號的方法研究[J]. 醫(yī)療衛(wèi)生裝備,2014,35(10):47—49.ZHOU X,ZHAN N B,GAO L,et al. Extracting fetal ECG by modified adaptive method [J]. Medical and Health Equipment,2014,35(10):47—49. (In Chinses)

[32]? 祁樹剛,張啟超. 均值濾波和中值濾波對InSAR影像預(yù)處理的影響研究[J]. 測繪與空間地理信息,2020,43(S1):131—133,136.QI S G,ZHANG Q C. Study on the influence of mean filter and median filter on InSAR image preprocessing [J]. Surveying and Spatial Geographic Information,2020,43(S1):131—133,136. (In Chinses)

[33]? VO K,LE T,RAHMANI A M,et al. An efficient and robust deep learning method with 1-D octave convolution to extract fetal electrocardiogram[J]. Sensors,2020,20(13):3757.

[34]? 卜朝暉,周斌,尹曉晶,等. 基于擴展卡爾曼濾波和奇異值分解算法的單通道胎兒心電提取方法[J].中國生物醫(yī)學(xué)工程學(xué)報,2019,38(6):662—671.BU Z H,ZHOU B,YIN X J,et al. Fetal ECG extraction from single-channel abdominal ECG based on EKF combined with SVD[J]. Chinese Journal of Biomedical Engineering,2019,38(6):662—671. (In Chinses)

[35]? SHARMA T,SHARMA K K.QRS complex detection in ECG signals using the synchrosqueezed wavelet transform[J]. IETE Journal of Research,2016,62(6):885—892.

[36]? KANJILAL P P,PALIT S,SAHA G. Fetal ECG extraction from single-channel maternal ECG using singular value decomposition[J]. IEEE Transactions on Biomedical Engineering,1997,44(1):51—59.

[37]? SIVARAM M,LYDIA E L,PUSTOKHINA I V,et al. An optimal least square support vector machine based earnings prediction of blockchain financial products[J]. IEEE Access,2020,8:120321—120330.

[38]? 劉曉東,孫麗君,陳天飛. 布谷鳥算法的收斂性分析及性能比較[J/OL]. 計算機科學(xué)與探索:1-15[2020-09-23].http://kns.cnki.net/kcms/detail/11.5602.TP.20200721.1546.014.html.LIU X D,SUN L J,CHEN T F. Convergence Analysis an-d Performance Comparison of Cuckoo Search Algorithm[J/OL]. Computer Science and Exploration::1-15[2020-09-23].http://kns.cnki.net/kcms/detail/11.5602.TP.20200721.1546.014.html. (In Chinses)

[39]? SHETTY R P,SATHYABHAMA A,PAI P S. An efficient online sequential extreme learning machine model based on feature selection and parameter optimization using cuckoo search algorithm for multi-step wind speed forecasting[J]. Soft Computing,2021,25(2):1277—1295.

[40]? BOHAT V K,ARYA K V. An effective gbest-guided gravitational search algorithm for real-parameter optimization and its application in training of feedforward neural networks[J]. Knowledge-Based Systems,2018,143:192—207.

[41]? PANDA S,MISHRA D,BISWAL B B. An approach for design optimization of 3R manipulator using Adaptive Cuckoo Search algorithm[J]. Mechanics Based Design of Structures and Machines,2020,48(6):773—798.

[42]? ANSI/AAMI/ISO EC57 (1998/(R) 2008). Testing and Reporting Performance Results of Cardiac Rhythm and ST-Segment Measurement Algorithms;American National Standards Institute:New York,NY,USA,2008.

[43]? BERSHAD N J,JOSE C M,BERMUDEZ. A switched variable step size NLMS adaptive filter[J]. Digital Signal Processing,2020,101:102730.

[44]? CHEN,GONG Z,LI Q,et al. Hierarchical LSTM with char-subword-word tree-structure representation for Chinese named entity recognition[J]. Science China. Information Sciences,2020,63(10):1—15.

[45]? DE LATHAUWER? L. DaIsy:database for the identification of systems:Biomedical systems [EB/OL]. (2000-10-10)[2017-8-18]. http://homes.esat.kuleuven.be/~smc/daisy/.

主站蜘蛛池模板: 亚洲成人播放| 国产欧美高清| 久热这里只有精品6| 女人毛片a级大学毛片免费 | 一本大道香蕉久中文在线播放| 国产精品开放后亚洲| 国产激情影院| 精品国产乱码久久久久久一区二区| 国产成人乱码一区二区三区在线| h视频在线观看网站| 最新国产网站| 亚洲第一成年免费网站| 国产成人永久免费视频| 日本国产一区在线观看| 欧洲免费精品视频在线| 亚洲视频四区| 国产在线观看99| 午夜一级做a爰片久久毛片| 精品一区二区三区无码视频无码| 一级毛片在线播放免费观看 | 一级全黄毛片| 成年片色大黄全免费网站久久| 天堂中文在线资源| 青青网在线国产| 91蝌蚪视频在线观看| 国产第一页免费浮力影院| 亚洲欧州色色免费AV| 九九热这里只有国产精品| 久久免费精品琪琪| 精品乱码久久久久久久| 亚洲视频一区在线| 欧美爱爱网| 国产精品尤物在线| 91久久夜色精品| 欧美在线黄| 国产情侣一区| 国产91成人| av大片在线无码免费| 亚洲精品成人片在线观看| 国产理论一区| 成人午夜视频在线| 色婷婷亚洲综合五月| 国内精品久久久久鸭| 99中文字幕亚洲一区二区| 成人综合网址| 欧美日韩精品一区二区在线线 | 亚洲六月丁香六月婷婷蜜芽| 亚洲成aⅴ人片在线影院八| 亚洲欧洲自拍拍偷午夜色| 91偷拍一区| 国产毛片片精品天天看视频| 久久久久免费精品国产| 日韩黄色在线| 国产成人精品三级| 国产第一页亚洲| 亚洲娇小与黑人巨大交| 国产女人喷水视频| 亚洲一级毛片在线观| 婷婷亚洲最大| 免费av一区二区三区在线| 97视频在线观看免费视频| 亚洲成人手机在线| 97se亚洲综合在线韩国专区福利| 久久黄色一级片| 午夜视频www| 无码粉嫩虎白一线天在线观看| 久久精品嫩草研究院| 国产高颜值露脸在线观看| 理论片一区| 欧美性猛交xxxx乱大交极品| 精品精品国产高清A毛片| 久久国产乱子伦视频无卡顿| 福利在线不卡| 国产精品99在线观看| 欧美日韩精品一区二区在线线| 亚洲 成人国产| 一级成人a做片免费| 国产精品一区在线观看你懂的| 久久精品娱乐亚洲领先| 国产乱人乱偷精品视频a人人澡| 国产99免费视频| 国产91丝袜在线播放动漫 |