禹保軍,鄧占釗,辛國省,蔡正云,顧亞玲,張娟
靜原雞肌肉組織肌苷酸特異性沉積相關(guān)LNC_003828- gga-miR-107-3p-MINPP1的關(guān)聯(lián)分析

1寧夏大學(xué)農(nóng)學(xué)院,銀川 750021;2彭陽縣畜牧技術(shù)推廣服務(wù)中心,寧夏固原 756000;3寧夏大學(xué)生命科學(xué)學(xué)院/寧夏飼料工程技術(shù)研究中心,銀川 750021
【】探究靜原雞肌肉組織肌苷酸沉積過程中關(guān)鍵調(diào)控因子的調(diào)節(jié)作用,利用lncRNA-miRNA-mRNA關(guān)聯(lián)分析鑒定與肌苷酸特異性沉積相關(guān)的LNC_003828、gga-miR-107-3p和MINPP1,其作為肉質(zhì)研究的候選基因,為分子輔助育種提高肌肉品質(zhì)提供理論基礎(chǔ)。測定15只靜原雞胸肌和腿肌的肌苷酸含量,篩選高肌苷酸含量的胸肌和低肌苷酸含量的腿肌各3個(gè)樣本提取總RNA,質(zhì)量檢測合格后構(gòu)建cDNA文庫、PCR擴(kuò)增,利用Agilent 2100對文庫質(zhì)量進(jìn)行評價(jià),庫檢合格后送Illumina-Hiseq平臺進(jìn)行轉(zhuǎn)錄組測序。利用生物信息學(xué)方法篩選出靜原雞肌肉組織不同部位差異表達(dá)的MINPP1、gga-miR-107-3p和LNC_003828,進(jìn)行GO注釋和蛋白互作網(wǎng)絡(luò)分析MINPP1的功能。采用qRT-PCR方法檢測LNC_003828、gga-miR-107-3p和MINPP1在靜原雞胸肌和腿肌組織中的表達(dá)情況,并分析其與肌苷酸含量的相關(guān)性。測序樣品間基因表達(dá)水平相關(guān)性2>0.9,即試驗(yàn)樣本之間基因表達(dá)可用于后續(xù)的差異基因分析。參與肌苷酸合成和代謝的糖酵解/糖異生途徑中檢測出3個(gè)差異表達(dá)基因MINPP1、PKM和ALDH9A1。互作分析發(fā)現(xiàn)lncRNA-miRNA-mRNA網(wǎng)絡(luò)圖中共有17個(gè)miRNA(9個(gè)上調(diào),8個(gè)下調(diào))、44個(gè)mRNA(16個(gè)上調(diào),28個(gè)下調(diào))和155個(gè)lncRNA(68個(gè)上調(diào)、87個(gè)下調(diào)),核心節(jié)點(diǎn)gga-miR-107-3p互作的靶基因有MINPP1、靶l(wèi)ncRNA有LNC_003828。GO富集分析發(fā)現(xiàn)MINPP1基因具有磷酸酶活性、雙磷酸甘油酸酯磷酸酶活性等功能;蛋白互作網(wǎng)絡(luò)中MINPP1基因與參與糖酵解/糖異生和氨基酸生物合成通路中的PGAM1、ENO1、BPGM基因均有互作關(guān)系。qRT-PCR結(jié)果表明,靜原雞胸肌LNC_003828和gga-miR-107-3p的相對表達(dá)量低于腿肌,但差異不顯著;胸肌MINPP1的相對表達(dá)量顯著低于腿肌(<0.05)。靜原雞胸肌和腿肌組織中g(shù)ga-miR-107-3p的表達(dá)量與LNC_003828表達(dá)量均呈正相關(guān),與MINPP1的表達(dá)量均呈負(fù)相關(guān)。胸肌和腿肌組織中LNC_003828、gga-miR-107-3p的表達(dá)量與肌苷酸含量均呈正相關(guān),且差異均不顯著;胸肌MINPP1表達(dá)量與肌苷酸含量呈負(fù)相關(guān),腿肌MINPP1表達(dá)量與肌苷酸含量呈顯著負(fù)相關(guān)(<0.05)。綜上所述,推測靜原雞肌肉組織中g(shù)ga-miR-107-3p作為核心調(diào)節(jié)因子吸附LNC_003828,影響MINPP1基因調(diào)控肌肉肌苷酸特異性沉積,從而改善肉質(zhì)。篩選出LNC_003828、gga-miR-107-3p和MINPP1為影響肌苷酸特異性沉積的候選調(diào)控因子。
靜原雞;肌苷酸;gga-miR-107-3p;MINPP1基因;lncRNA-miRNA-mRNA互作
【研究意義】家禽肌肉中肌苷酸(IMP)具有顯著鮮味呈味作用,是影響肉質(zhì)風(fēng)味的重要物質(zhì)基礎(chǔ)[1]。研究表明,雞肉中的肌苷酸含量是牛肉的10倍以上,在常見畜禽肉品中IMP含量最高[2]。靜原雞作為優(yōu)良的地方品種,其個(gè)體小、生長速度慢、抗逆性強(qiáng)、氨基酸含量豐富、膽固醇含量低,肌肉內(nèi)IMP含量較高[3],是研究慢速生長雞肌肉中IMP特異性沉積調(diào)控規(guī)律的良好模式動(dòng)物。ncRNA已經(jīng)成為目前肉質(zhì)調(diào)控研究的熱點(diǎn)領(lǐng)域,是闡明特征性肉質(zhì)形成的關(guān)鍵分子基礎(chǔ)和完整闡釋肉質(zhì)形成機(jī)制的重要組成部分。而目前對于雞肉中 IMP特異性沉積的分子機(jī)制的相關(guān)研究還十分欠缺,尤其是對不同部位雞肉IMP特異性沉積的轉(zhuǎn)錄后調(diào)控機(jī)制方面的研究。因此,鑒定IMP特異性沉積的關(guān)鍵mRNA、miRNA和lncRNA并驗(yàn)證其生物學(xué)功能,完整闡釋雞肉中IMP特異性沉積調(diào)控的分子機(jī)制對揭示優(yōu)質(zhì)肉質(zhì)形成機(jī)理、分子標(biāo)記輔助育種等均具有重要意義。【前人研究進(jìn)展】最初,人們認(rèn)為編碼RNA在生物體的多種代謝過程中發(fā)揮重要作用,而非編碼RNA(ncRNA)被視為轉(zhuǎn)錄噪音,并無實(shí)際作用。然而,近年來越來越多的研究表明,基因組中占據(jù)轉(zhuǎn)錄產(chǎn)物約98%的ncRNA具有廣泛的調(diào)節(jié)作用[4],可參與調(diào)節(jié)DNA結(jié)構(gòu)、RNA轉(zhuǎn)錄和翻譯,從轉(zhuǎn)錄水平、轉(zhuǎn)錄后水平及表觀遺傳修飾等方面調(diào)控基因的表達(dá)[5],從而組成復(fù)雜的ncRNA調(diào)控網(wǎng)絡(luò),影響著編碼基因的最終翻譯結(jié)果。非編碼RNA根據(jù)其分子鏈長度可分為小非編碼RNA(sncRNA)和長鏈非編碼RNA(lncRNA)。miRNA是一種內(nèi)源性的、長度在22個(gè)核苷酸左右的高度保守的sncRNA,通過與靶mRNA的3’UTR中的互補(bǔ)序列結(jié)合來抑制靶基因的mRNA翻譯或降解,對基因的轉(zhuǎn)錄后表達(dá)水平起到負(fù)調(diào)節(jié)作用[6]。lncRNA是長度大于200個(gè)核苷酸的不編碼蛋白質(zhì)的長鏈RNA分子[7],其保守性較差,表達(dá)水平也較低,在哺乳動(dòng)物細(xì)胞中廣泛表達(dá)。lncRNA通過控制蛋白質(zhì)的合成、RNA成熟以及轉(zhuǎn)運(yùn)的過程參與基因的轉(zhuǎn)錄后調(diào)控,可以通過調(diào)控染色體的結(jié)構(gòu)來控制轉(zhuǎn)錄后的基因沉默[8]。lncRNA基因序列具有miRNA的結(jié)合位點(diǎn),可以作為miRNA海綿競爭性結(jié)合miRNA,抑制miRNA對靶基因的調(diào)節(jié)作用,從而間接調(diào)節(jié)基因表達(dá)。Ebert等[9]利用miRNA抑制劑在細(xì)胞內(nèi)進(jìn)行試驗(yàn)發(fā)現(xiàn),當(dāng)抑制劑導(dǎo)致相關(guān)miRNA的功能喪失時(shí),其內(nèi)源性靶點(diǎn)的表達(dá)水平升高,將這種能引起miRNA功能喪失的競爭性抑制劑稱為“miRNA海綿”。
Caretti等[10]研究發(fā)現(xiàn),ncRNA在調(diào)節(jié)骨骼肌的生長和發(fā)育方面扮演重要角色,通過介導(dǎo)基因表達(dá)間接影響肉品質(zhì)。近年來大量研究表明,lncRNA在通過與內(nèi)源性RNA競爭性與miRNA結(jié)合而在動(dòng)物生長、肌肉發(fā)育[11]以及脂肪的形成和代謝[12]過程中發(fā)揮著重要的調(diào)控作用。lncRNA可以調(diào)控脂肪分化和脂肪酸代謝等通路中的關(guān)鍵基因,進(jìn)而影響脂肪分布和肉品質(zhì)[13]。miRNA作為生物發(fā)生過程中基因調(diào)控的重要調(diào)節(jié)因子,可以影響肌纖維類型的組成而進(jìn)一步改善肌肉品質(zhì),通過多種代謝通路的調(diào)節(jié)而影響肌肉發(fā)育及分化[14]。目前關(guān)于miRNA對肉品質(zhì)的調(diào)控研究主要集中在其對骨骼肌發(fā)育調(diào)控[15]、肉品質(zhì)調(diào)控[16]、不同肌肉類型形成[17-19]、不同體組織形成[20]、不同處理后影響[21]等方面。miRNA已經(jīng)成為當(dāng)前肉質(zhì)調(diào)控研究的熱點(diǎn),是闡明特征性肉質(zhì)形成的關(guān)鍵分子基礎(chǔ)和完整闡釋肉質(zhì)形成機(jī)制的重要組成部分。多肌醇多聚磷酸磷酸酶1(MINPP1)具有編碼組氨酸磷酸酶的保守結(jié)構(gòu)域,其編碼的一種約52kDa的酶能夠從肌醇磷酸底物P4以及其他肌醇部分中去除3-磷酸[22]。已有研究表明,MINPP1具有廣泛的組織分布模式,其亞細(xì)胞定位似乎針對內(nèi)質(zhì)網(wǎng)(ER),是一種內(nèi)質(zhì)網(wǎng)管腔酶,可在體內(nèi)和體外條件下水解多種肌醇多聚磷酸鹽[23]。雖然MINPP1在細(xì)胞分化和凋亡中起作用,但其參與的信號傳導(dǎo)通路機(jī)制尚不清楚。miR-107是microRNA-15/107家族成員,2002年首次在人宮頸癌Hela細(xì)胞系中發(fā)現(xiàn)并克隆測序[24]。miR-107參與細(xì)胞分裂、代謝、應(yīng)激反應(yīng)和血管生成的基因表達(dá)調(diào)控,以及人類腫瘤、心腦血管疾病、神經(jīng)退行性疾病等的調(diào)控[25]。【本研究切入點(diǎn)】目前對于雞肉IMP沉積方面的研究主要集中在關(guān)鍵基因的表達(dá)譜及功能分析上,對于其轉(zhuǎn)錄后調(diào)控機(jī)制和表觀遺傳修飾方面的研究較少,尤其是對不同部位肌肉IMP含量差異的轉(zhuǎn)錄后調(diào)控機(jī)制尚未見報(bào)道。【擬解決的關(guān)鍵問題】lncRNA的“miRNA海綿”功能與肌肉的發(fā)生發(fā)展機(jī)制密不可分。本研究以靜原雞為研究對象,基于轉(zhuǎn)錄組測序篩選靜原雞不同部位(胸肌和腿肌)差異表達(dá)且處于lncRNA-miRNA-mRNA共調(diào)控網(wǎng)絡(luò)關(guān)鍵節(jié)點(diǎn)的miRNA,及其具有靶向調(diào)控關(guān)系的差異lncRNA和mRNA。鑒定IMP特異性沉積的關(guān)鍵mRNA、miRNA和lncRNA并驗(yàn)證其在不同部位的表達(dá)量,分析各調(diào)控因子與肌苷酸的相關(guān)性,對從轉(zhuǎn)錄水平探究靜原雞IMP特異性沉積的調(diào)控機(jī)制提供理論依據(jù)。
試驗(yàn)雞均來自寧夏彭陽縣朝那雞繁育中心,隨機(jī)屠宰相同飼養(yǎng)管理?xiàng)l件下的180日齡靜原雞母雞15只,采集胸肌和腿肌組織,置于凍存管迅速投入液氮罐中,帶回實(shí)驗(yàn)室儲存于-80℃?zhèn)溆谩S?019年在寧夏昊標(biāo)檢測服務(wù)研究院測定肌苷和肌苷酸含量(表1)[26],篩選高肌苷酸含量的胸肌和低肌苷酸含量的腿肌各3個(gè)樣本進(jìn)行轉(zhuǎn)錄組測序。

表1 肌苷和肌苷酸含量測定
表中同列標(biāo)不同大寫字母表示差異極顯著(<0.01)
The letters in the same column in the table indicate that the difference is extremely significant (<0.01)
使用Trizol (Invitrogen, USA) 法從胸肌和腿肌組織中分離總RNA,用1%瓊脂糖凝膠電泳檢測RNA有無降解和污染。Agilent 2100 bioanalyzer檢測RNA質(zhì)量合格后,進(jìn)行上機(jī)前預(yù)處理,包括:cDNA文庫構(gòu)建、PCR擴(kuò)增、Agilent 2100對文庫質(zhì)量進(jìn)行評價(jià),庫檢合格后,在Illumina-Hiseq平臺上對cDNA文庫制劑測序。由北京康普森生物技術(shù)有限公司完成。
測序獲得的圖像數(shù)據(jù)文件通過堿基識別分析轉(zhuǎn)化為Raw Reads,隨后通過刪除包含adapter、ploy-N和低質(zhì)量的reads(質(zhì)量值Qs <= 20 的堿基數(shù)占整個(gè)read的30%以上的 reads)獲得高質(zhì)量的Clean Reads進(jìn)行后續(xù)分析。使用HTSeq v0.6.0計(jì)算比對到每個(gè)基因上的reads數(shù),根據(jù)基因的長度和比對到本基因的reads數(shù)計(jì)算每個(gè)基因的FPKM。使用DESeq2 R包進(jìn)行兩組間的差異表達(dá)分析,得到的結(jié)果矯正后<0.05被指定為差異表達(dá)基因。
RNA之間可以通過競爭結(jié)合共同的microRNA反應(yīng)元件(microRNA response element,MRE)實(shí)現(xiàn)相互調(diào)節(jié),這種調(diào)控模式構(gòu)成競爭性內(nèi)源RNA (Competing endogenous RNA,ceRNA)。基于ceRNA理論,尋找擁有相同miRNA結(jié)合位點(diǎn)的lncRNA-gene pairs,構(gòu)建以lncRNA為decoy、miRNA為核心、mRNA為靶標(biāo)的lncRNA-miRNA-gene pairs,構(gòu)建互作網(wǎng)絡(luò),利用cytoscape軟件進(jìn)行可視化展示。
利用STRING數(shù)據(jù)庫對MINPP1進(jìn)行蛋白質(zhì)相互作用網(wǎng)絡(luò)分析。
1.5.1 RNA質(zhì)量檢測及反轉(zhuǎn)錄 本試驗(yàn)用超微量核酸蛋白測定儀(scandrop100)檢測RNA OD值,使用的是A260/A280比值(表2)。采用Aidlab公司反轉(zhuǎn)錄試劑盒(TUREscript 1st Stand cDNA SYNTHESIS Kit)進(jìn)行反轉(zhuǎn)錄,得到的cDNA -20℃保存?zhèn)溆谩?/p>
1.5.2 實(shí)時(shí)熒光定量PCR反應(yīng) LNC_003828和MINPP1的引物使用Beacon Designer7.9軟件設(shè)計(jì),gga-miR- 107-3p的引物采用頸環(huán)法進(jìn)行設(shè)計(jì)(表3),引物送上海生工合成。采用SYBR法對LNC_003828、gga-miR-107-3p和MINPP1的表達(dá)水平進(jìn)行定量PCR反應(yīng)(表4),反應(yīng)總體系為10 μL(表5),選擇U6和β-actin作為內(nèi)參。

表2 RNA純度及濃度檢測

表3 引物信息

表4 熒光定量PCR程序

表5 熒光定量PCR體系
1.5.3 數(shù)據(jù)處理 利用2-ΔΔCT計(jì)算各個(gè)樣品的基因相對表達(dá)量,使用單因素方差分析對結(jié)果進(jìn)行分析,數(shù)據(jù)結(jié)果以“平均值±標(biāo)準(zhǔn)誤”的形式呈現(xiàn),<0.05表示差異顯著,<0.01表示差異極顯著。應(yīng)用Bivariate correlation分析IMP與LNC_003828、gga- miR-107-3p、MINPP1的相關(guān)性。
通過轉(zhuǎn)錄組測序獲得靜原雞胸肌和腿肌組織的基因差異表達(dá)水平,分析樣品間基因表達(dá)水平相關(guān)性可知:2>0.9(圖1),說明生物學(xué)重復(fù)所選擇試驗(yàn)樣本可靠,樣品之間表達(dá)模式高度相似,即可用于后續(xù)的差異基因分析。
根據(jù)轉(zhuǎn)錄組數(shù)據(jù)信息,篩選所關(guān)注的KEGG通路(表6),其中與肌苷酸的合成和代謝有關(guān)的代謝通路為糖酵解/糖異生途徑,在此通路中篩選出3個(gè)差異表達(dá)基因,即MINPP1、PKM和ALDH9A1(圖2)。對靜原雞胸肌和腿肌組織進(jìn)行l(wèi)ncRNA-miRNA-mRNA表達(dá)譜綜合分析,在互作網(wǎng)絡(luò)圖中共有17個(gè)miRNA(9個(gè)上調(diào),8個(gè)下調(diào))、44個(gè)mRNA(16個(gè)上調(diào),28個(gè)下調(diào))和155個(gè)lncRNA(68個(gè)上調(diào)、87個(gè)下調(diào)),核心節(jié)點(diǎn)gga-miR-107-3p互作的靶基因有MINPP1、靶l(wèi)ncRNA有LNC_ 003828(圖3)。

圖中X代表胸肌,T代表腿肌;R2:Pearson相關(guān)系數(shù)的平方
對篩選到的MINPP1基因進(jìn)行GO富集分析發(fā)現(xiàn),MINPP1在靜原雞上富集的分子功能為磷酸酶活性和雙磷酸甘油酸酯磷酸酶活性,細(xì)胞組分富集的功能條目為內(nèi)質(zhì)網(wǎng),沒有富集相關(guān)生物學(xué)過程(表7)。
對差異基因MINPP1進(jìn)行蛋白互作分析發(fā)現(xiàn)(圖4),MINPP1基因與參與糖酵解/糖異生和氨基酸生物合成通路中的PGAM1、ENO1和BPGM基因均有互作。

表6 糖酵解/糖異生通路
*代表所選基因(MINPP1)*Represents the selected gene(MINPP1)

表7 MINPP1基因GO注釋分析

Starch and sucrose metabolism:淀粉和蔗糖代謝;α-D-Glucose-1P:α-D-葡萄糖-1P;D-Glucose (extracellular):D-葡萄糖(細(xì)胞外);Arbutin (extracellular):熊果苷(細(xì)胞外);Salicin (extracellular):水楊苷(細(xì)胞外);β-D-Fructose-6P:β-D-果糖-6P;Glycerone-6P:甘油酮-6P;Glyceraldehyde:甘油醛;Pentose phosphate pathway:磷酸戊糖途徑;Glycerate:甘油酸酯;Carbon fixation in photosynthetic organisms:光合作用生物中的碳固定;Phosphoenol pyruvate:磷酸烯醇丙酮酸;Citrate cycle:檸檬酸循環(huán);Oxaloacetate:草酰乙酸;Pyruvate metabolism:丙酮酸代謝;Acetyl CoA:乙酰輔酶A;2-Hydroxyethy1-ThPP:2-羥乙基1-ThPP;L-Lactate:乳酸;Dihydrolipoamide:二氫硫辛酰胺;S-Acetyldihydrolipoamide-E:S-乙酰二氫硫辛酰胺-E;Lipoamide-E:硫辛酰胺-E;Propanoate metabolism:丙酸代謝;Acetate:醋酸;Acetaldehyde:乙醛;Ethanol:乙醇
LNC_003828、gga-miR-107-3p、MINPP1基因和內(nèi)參U6、β-actin的擴(kuò)增結(jié)果如圖5所示,其溶解曲線均呈尖而窄的單峰,且產(chǎn)物Tm值處峰曲線較聚集,無特異性片段存在,說明擴(kuò)增特異性較好。
根據(jù)數(shù)據(jù)分析結(jié)果可知,靜原雞胸肌和腿肌組織中g(shù)ga-miR-107-3p的表達(dá)量與LNC_003828表達(dá)量均呈正相關(guān),與MINPP1的表達(dá)量均呈負(fù)相關(guān)(表8)。靜原雞胸肌LNC_003828和gga-miR-107-3p的相對表達(dá)量低于腿肌,但差異不顯著,MINPP1的相對表達(dá)量顯著低于腿肌(<0.05)(圖6)。

圖3 lncRNA-miRNA-mRNA調(diào)控網(wǎng)絡(luò)

表8 不同部位gga-miR-107-3p與LNC_003828、MINPP1的相關(guān)性
靜原雞胸肌LNC_003828的表達(dá)量與IMP、肌苷含量均呈正相關(guān),腿肌LNC_003828的表達(dá)量與IMP含量呈正相關(guān),與肌苷含量呈負(fù)相關(guān),但均差異不顯著;胸肌和腿肌gga-miR-107-3p的表達(dá)量與IMP、肌苷含量均呈正相關(guān),且差異均不顯著;胸肌MINPP1表達(dá)量與IMP、肌苷含量均呈負(fù)相關(guān),腿肌MINPP1表達(dá)量與IMP含量呈顯著負(fù)相關(guān)(<0.05),與肌苷含量呈負(fù)相關(guān)(表9)。

表9 LNC_003828、gga-miR-107-3p、MINPP1表達(dá)量與肌苷、肌苷酸含量的相關(guān)性
*表示差異顯著(<0.05)
*Indicating significant difference (<0.05)

圖中圓圈(節(jié)點(diǎn))代表差異表達(dá)的蛋白質(zhì),包含插圖的圓圈表示該基因具有相關(guān)的蛋白質(zhì)結(jié)構(gòu),而空圓圈則表示該基因的蛋白質(zhì)結(jié)構(gòu)尚未確定
家禽肌肉中肌苷酸是影響多種致鮮肽類和核苷酸的主要物質(zhì),其鮮味強(qiáng)度是谷氨酸鈉(味精)的40倍,并且與谷氨酸鈉具有很強(qiáng)的協(xié)同作用,已經(jīng)成為評價(jià)肉質(zhì)鮮味和新鮮程度的重要指標(biāo)[1]。動(dòng)物體內(nèi)的IMP合成途徑有兩條,即從頭合成途徑和補(bǔ)救合成途徑,其中從頭合成途徑是動(dòng)物體內(nèi)IMP合成的主要途徑。目前已發(fā)現(xiàn)遺傳因素、飼養(yǎng)管理因素、營養(yǎng)因素、屠宰方法和屠宰后的貯存方法等均會(huì)影響肉品內(nèi)IMP含量[27]。Rudolph[28]研究發(fā)現(xiàn),活體動(dòng)物進(jìn)行正常生理活動(dòng)時(shí),其體內(nèi)ATP處于不斷合成和分解的動(dòng)態(tài)變化中,ATP→IMP反應(yīng)產(chǎn)生的肌苷酸含量較少。而當(dāng)動(dòng)物屠宰后,肌肉中發(fā)生糖酵解過程可以短時(shí)間產(chǎn)生大量ATP,ATP在相關(guān)酶的作用下分解產(chǎn)生IMP,使肉品IMP含量有所升高[29-30]。宰后雞肉中由ATP→IMP的反應(yīng)很快,幾乎不受保存條件的影響[31]。王述柏[32]和陳繼蘭[33]等報(bào)道,在同種動(dòng)物不同品種間,IMP含量存在較大差異,而且在同一品種(系)不同性別或不同生長發(fā)育階段,其IMP含量也不相同。劉望夷等[34]和蘇淑貞等[35]研究結(jié)果表明,胸肌IMP含量顯著高于腿肌(1.5倍左右),本課題組前期研究發(fā)現(xiàn),靜原雞胸肌的肌苷酸含量顯著高于腿肌,與劉望夷等[34]研究結(jié)果相同。
糖酵解/糖異生途徑的中間產(chǎn)物聯(lián)系其他代謝,如6-磷酸葡萄糖,它本身或者通過轉(zhuǎn)化成磷酸戊糖途徑和糖原代謝的中間產(chǎn)物,其代謝過程產(chǎn)生的能量為細(xì)胞生存和生長提供了重要保障。有大量研究表明,糖酵解/糖異生途徑中的相關(guān)酶及輔助因子參與磷酸化反應(yīng),或作為膜結(jié)合蛋白參與相關(guān)代謝過程。同時(shí),肌肉細(xì)胞的增殖、分化、凋亡及肌肉的生長發(fā)育都受到糖酵解/糖異生途徑的調(diào)控。在本研究中篩選到的差異表達(dá)基因PKM是糖酵解/糖異生途徑的關(guān)鍵調(diào)控因子,在腫瘤細(xì)胞的代謝重組以及參與細(xì)胞周期進(jìn)展和基因轉(zhuǎn)錄中起著核心作用,具有合成代謝、細(xì)胞增殖和有氧糖酵解等多種功能[36]。在小鼠脂肪肝中,PPARγ(peroxisome proliferator activated receptor gamma)通過結(jié)合PKM的啟動(dòng)子激活轉(zhuǎn)錄,增加PKM的表達(dá),從而調(diào)控糖酵解[37]。Presek等[38]研究發(fā)現(xiàn)雞胚細(xì)胞中存在PKM2蛋白酪氨酸磷酸化作用,且這種磷酸化降低了PKM2與其底物磷酸烯醇丙酮酸的親和力。MINPP1是一種磷酸酶,在細(xì)胞外空間和溶酶體中催化肌醇多磷酸鹽(InsP6)內(nèi)吞后的第一步InsP6去磷酸化。在此之前,哺乳動(dòng)物細(xì)胞中MINPP1的生理功能尚不清楚,因?yàn)樗趦?nèi)質(zhì)網(wǎng)中的定位將MINPP1與其細(xì)胞質(zhì)中的InsP底物分開[39]。InsPs的穩(wěn)態(tài)分布是MINPP1和其他調(diào)節(jié)肌醇多聚磷酸相互轉(zhuǎn)化的酶的高度動(dòng)態(tài)生產(chǎn)和周轉(zhuǎn)程序的表現(xiàn),這些酶影響細(xì)胞的生存和死亡。KILAPARTY等[40]研究MINPP1在細(xì)胞應(yīng)激中的作用時(shí)發(fā)現(xiàn),在內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)的細(xì)胞凋亡過程中,MINPP1與CHOP的表達(dá)和凋亡之間的關(guān)系表明,在內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)的凋亡過程中,MINPP1可能起到一種傳感器或調(diào)節(jié)作用,涉及不飽和蛋白反應(yīng)信號通路。MINPP1參與糖酵解/糖異生和磷酸肌醇代謝信號通路,糖酵解可以完全繞過磷酸甘油酯,通過MINPP1將2,3二磷酸甘油酯轉(zhuǎn)化為2-磷酸甘油酯,從而激活A(yù)MPK級聯(lián)[41]。此外,Ballester等[42]研究發(fā)現(xiàn)AMPK可刺激脂肪酸氧化。參與糖酵解/糖異生過程的酶聯(lián)系其他代謝途徑,產(chǎn)生的ATP為IMP的合成或代謝提供能量。MINPP1作為糖酵解/糖異生途徑中的差異基因,在靜原雞胸肌和腿肌組織中的表達(dá)量不盡相同,且差異較顯著。MINPP1基因的相對表達(dá)量與IMP的相關(guān)性分析表明,靜原雞胸肌和腿肌組織中MINPP1基因的表達(dá)量與IMP含量均呈負(fù)相關(guān),相關(guān)系數(shù)分別為-0.9626和-0.9998,即IMP含量隨著MINPP1基因的表達(dá)增加而降低。因此,不同部位MINPP1基因的相對表達(dá)對肌肉IMP的含量產(chǎn)生一定影響,從而影響肉質(zhì)。

圖5 LNC_003828、gga-miR-107-3p、MINPP1和內(nèi)參U6、β-actin的溶解曲線

*表示差異顯著(P<0.05) *Indicating significant difference (P<0. 05)
到目前為止,人們已確定家禽個(gè)體發(fā)育過程中與肌肉生長發(fā)育相關(guān)miRNA的調(diào)控機(jī)制。Ouyang等[43]對7周齡生長速度有差異的白羽雞和新華雞進(jìn)行研究證實(shí),miR-146b-3p以生長激素受體(GHR)為靶標(biāo)調(diào)控家禽肌肉生長。Wu等[44]通過對高產(chǎn)和低產(chǎn)蛋雞進(jìn)行高通量測序研究發(fā)現(xiàn),gga-miR-200a-3p普遍存在于促性腺激素信號通路和卵母細(xì)胞成熟分裂等生殖相關(guān)調(diào)控通路中。He等[45]對10周齡具有相同遺傳背景的櫻桃谷鴨進(jìn)行miRNA測序分析表明,N-miR-16020和gga-miR-144分別介導(dǎo)靶基因FASN和ELOVL6調(diào)控脂質(zhì)代謝。Li等[46]研究發(fā)現(xiàn),固始雞-安卡雞F2后代群中miR-1614-3p和miRNA-1606的單核苷酸多態(tài)性(SNP)顯著影響腹脂沉積、胴體性能及其他生長相關(guān)性狀。魏雪峰[47]通過對秦川牛骨骼肌研究揭示超表達(dá)miR-107能夠顯著抑制靶基因Wnt3a的mRNA和蛋白質(zhì)表達(dá)水平,從而調(diào)控肌細(xì)胞增殖分化及凋亡。miR-107對不同細(xì)胞的增殖有不同的作用,Zhang等[48]研究表明miR-107通過抑制Axin2基因促進(jìn)肝癌細(xì)胞的增殖,也可以抑制DAPK-KLF4基因在大腸癌細(xì)胞代謝中的表達(dá),進(jìn)而促進(jìn)結(jié)腸直腸癌細(xì)胞新陳代謝[49]。miR-107還可通過靶向周期蛋白依賴激酶6(CDK6)抑制胃癌細(xì)胞增殖[50],通過靶向VEGF基因抑制膠質(zhì)瘤細(xì)胞增殖[51]。基于以上研究,miR-107可能通過靶向調(diào)節(jié)CDK6、Wnt3a和Axin2蛋白質(zhì)的表達(dá)在靜原雞肌肉發(fā)育過程中發(fā)揮著重要作用。本研究發(fā)現(xiàn),gga-miR-107-3p在靜原雞胸肌和腿肌組織中差異表達(dá),在腿肌中的表達(dá)量高于胸肌。由此可推測gga-miR-107-3p可能通過調(diào)控靶基因的表達(dá)在靜原雞肌肉發(fā)育過程中發(fā)揮著重要作用,其作用機(jī)理還須進(jìn)一步驗(yàn)證。
內(nèi)源性表達(dá)的RNA可作為ceRNA來抑制動(dòng)物中miRNA的活性[11, 52],lncRNA正是ceRNA之一。lncRNA可作為內(nèi)源競爭性RNA(competing en-dogenous RNA,ceRNA)調(diào)控網(wǎng)絡(luò)中的誘導(dǎo)因子,以miRNA為核心,mRNA為靶標(biāo),影響miRNA對靶基因的調(diào)控,從而影響細(xì)胞脂肪的代謝狀況[53]。Wei等[54]研究發(fā)現(xiàn),豬脂肪組織中的PU.1 AS(PU.1 antisense RNA)LncRNA通過與PU.1 mRNA形成正義-反義RNA雙鏈來促進(jìn)脂肪形成。原雞前脂肪細(xì)胞分化過程中,lncRNA PLNC通過與PPARγ競爭性結(jié)合,調(diào)控其啟動(dòng)子活性和轉(zhuǎn)錄水平[55]。Zhang等[56]對分化的不同階段雞腹部前脂肪細(xì)胞中的lncRNA和mRNA進(jìn)行測序分析發(fā)現(xiàn),差異表達(dá)的lncRNA和mRNA可作用于鄰近的編碼基因,進(jìn)而參與到與脂肪細(xì)胞分化有關(guān)的多種途徑。Liu等[57]研究者探究地塞米松在誘導(dǎo)脂肪變性中的作用時(shí),發(fā)現(xiàn)lncRNA ENST00000608794可作為ceRNA吸附miR-15b-5p,使得miR-15b-5p對丙酮酸脫氫酶激酶同工酶4(Pyruvate dehydrogenase kinase isoenzyme 4, PDK-4)的負(fù)調(diào)控作用減弱,從而加強(qiáng)對脂肪的變性作用。Chen等[58]研究發(fā)現(xiàn)在以miR-146a-5p為核心的調(diào)控關(guān)系中,lncRNA NEAT1可以靶向RHO相關(guān)卷曲螺旋形成蛋白激酶1 mRNA(RHO associated coiled coil containing protein kinase 1,ROCK-1),進(jìn)而影響AMPK/SREBP通路調(diào)控脂肪沉積過程。在lncRNA- miRNA-mRNA網(wǎng)絡(luò)中l(wèi)ncRNA吸附miRNA,使原本與miRNA結(jié)合的mRNA得以釋放。通過比較不同部位gga-miR-107-3p與LNC_003828、MINPP1的相關(guān)性,可知靜原雞胸肌和腿肌組織中g(shù)ga-miR- 107-3p的表達(dá)量與LNC_003828表達(dá)量均呈正相關(guān),相關(guān)系數(shù)分別為0.8788和0.9857;胸肌和腿肌組織中g(shù)ga-miR-107-3p的表達(dá)量與MINPP1的表達(dá)量均呈負(fù)相關(guān),相關(guān)系數(shù)分別為-0.6495和-0.3895。說明gga-miR-107-3p表達(dá)增加(降低)時(shí),LNC_003828的表達(dá)相應(yīng)的增加(降低),而MINPP1的表達(dá)降低(增加)。進(jìn)行相關(guān)性和共調(diào)控互作關(guān)系分析,對探究肌肉生長發(fā)育過程中某一特性提供新型靶點(diǎn),進(jìn)而分析基因間的生物功能作用。
從靜原雞胸肌和腿肌組織轉(zhuǎn)錄組測序結(jié)果確定研究性狀相關(guān)的糖酵解/糖異生通路,通過靶基因MINPP1篩選出lncRNA-miRNA-mRNA共調(diào)控網(wǎng)絡(luò)中的gga-miR-107-3p及其靶LNC_003828。對MINPP1進(jìn)行GO富集分析,發(fā)現(xiàn)其富集的功能條目為磷酸酶活性和雙磷酸甘油酸酯磷酸酶活性,string數(shù)據(jù)庫中顯示其生物學(xué)過程有煙酰胺核苷酸生物合成和代謝過程。蛋白互作網(wǎng)絡(luò)結(jié)果發(fā)現(xiàn)與MINPP1互作的基因PGAM1、ENO1和BPGM都參與糖酵解/糖異生和氨基酸的生物合成通路,表明以上4個(gè)基因可能行使相同或相似的生物功能。本研究中,熒光定量結(jié)果顯示,在靜原雞胸肌組織中LNC_003828、gga-miR-107-3p和MINPP1的表達(dá)量極顯著低于腿肌,這與轉(zhuǎn)錄組測序結(jié)果一致,說明轉(zhuǎn)錄組測序結(jié)果可靠,可進(jìn)行下一步試驗(yàn)分析。gga-miR-107-3p、LNC_003828的相對表達(dá)量與肌苷酸的相關(guān)性分析表明,靜原雞胸肌和腿肌gga-miR-107-3p的相對表達(dá)量與IMP含量均呈正相關(guān),相關(guān)系數(shù)分別為0.4192和0.3723,即IMP含量隨著gga-miR-107-3p的表達(dá)增加而增加;胸肌和腿肌組織中LNC_003828的相對表達(dá)量與IMP含量均呈正相關(guān),相關(guān)系數(shù)分別為0.8017和0.2093,即IMP含量隨著LNC_003828的表達(dá)增加而增加。綜上,將MINPP1、gga-miR-107-3p和LNC_003828作為靜原雞不同部位肌肉IMP含量差異的轉(zhuǎn)錄后調(diào)控機(jī)制的研究,具有重要的作用和意義。
靜原雞肌肉組織中LNC_003828、gga-miR-107-3p和MINPP1的相對表達(dá)存在差異,均表現(xiàn)為胸肌低于腿肌。LNC_003828和gga-miR-107-3p的表達(dá)量與肌苷酸含量呈正相關(guān),而MINPP1的表達(dá)量與肌苷酸呈負(fù)相關(guān)。基于聯(lián)合分析結(jié)果,推測gga-miR-107-3p作為核心調(diào)節(jié)因子吸附LNC_003828,影響MINPP1基因在靜原雞肌肉組織的相對表達(dá),進(jìn)而對IMP的含量產(chǎn)生一定的影響,即LNC_003828、gga-miR-107-3p和MINPP1可能為影響肌肉肌苷酸特異性沉積的關(guān)鍵候選基因。
[1] BLONDE G D, SPECTOR A C. An examination of the role of L-glutamate and inosine 5'-monophosphate in hedonic taste-guided behavior by mice lacking the T1R1 + T1R3 receptor. Chemical Senses, 2017, 42(5): 393-404.
[2] 徐英, 李石友, 李琦華, 段剛, 楊國榮, 梁應(yīng)海. 蛋白質(zhì)水平對牛肉肌苷酸含量的影響. 西南農(nóng)業(yè)學(xué)報(bào), 2011, 24(1): 294-296.
XU Y, LI S Y, LI Q H, DUAN G, YANG G R, LIANG Y H. Effect of protein levels on beef inosine acid content. Southwest China Journal of Agricultural Sciences, 2011, 24(1): 294-296. (in Chinese)
[3] 母童, 張娟, 趙平, 顧亞玲, 劉麗元, 楊彥軍, 安克龍, 王有. 靜原雞ELOVL2和ELOVL5基因表達(dá)的組織特異性研究. 浙江農(nóng)業(yè)學(xué)報(bào), 2017, 29(8): 1290-1296.
MU T, ZHANG J A, ZHAO P, GU Y L, LIU L Y, YANG Y J, AN K L, WANG Y. Tissue-specific expression analysis of ELOVL2 and ELOVL5 genes in Jingyuan chicken. Acta Agriculturae Zhejiangensis, 2017, 29(8): 1290-1296.(in Chinese)
[4] MERCER T R, DINGER M E, MATTICK J S. Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 2009, 10(3): 155-159.
[5] 鄭偉. LncRNA-miRNA-mRNA相互作用初步研究[D]. 北京: 中國人民解放軍軍事醫(yī)學(xué)科學(xué)院, 2017.
ZHENG W. Preliminary study of LncRNA-miRNA-mRNA interaction[D]. Beijing: Chinese Academy of Military Medical Sciences, 2017. (in Chinese)
[6] BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.
[7] SPIZZO R, ALMEIDA M I, COLOMBATTI A, CALIN G A. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene, 2012, 31(43): 4577-4587.
[8] BERNSTEIN E, ALLIS C D. RNA meets chromatin. Genes & Development, 2005, 19(14):1635.
[9] EBERT M S, NEILSON J R, SHARP P A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 2007, 4(9): 721-726.
[10] CARETTI G, SCHILTZ R L, DILWORTH F J, DI PADOVA M, ZHAO P, OGRYZKO V, FULLER-PACE F V, HOFFMAN E P, TAPSCOTT S J, SARTORELLI V. The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Developmental Cell, 2006, 11(4): 547-560.
[11] CESANA M, CACCHIARELLI D, LEGNINI I, SANTINI T, STHANDIER O, CHINAPPI M, TRAMONTANO A, BOZZONI I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2): 358-369.
[12] HUANG W L, ZHANG X X, LI A, XIE L L, MIAO X Y. Differential regulation of mRNAs and lncRNAs related to lipid metabolism in two pig breeds. Oncotarget, 2017, 8(50): 87539-87553.
[13] ZOU C, LI S, DENG L L, GUAN Y, CHEN D, YUAN X K, XIA T R, HE X L, SHAN Y W, LI C C. Transcriptome analysis reveals long intergenic noncoding RNAs contributed to growth and meat quality differences between Yorkshire and Wannanhua pig. Genes, 2017, 8(8): 203.
[14] SHEN L Y, CHEN L, ZHANG S H, ZHANG Y, WANG J Y, ZHU L. MicroRNA-23a reduces slow myosin heavy chain isoforms compositionthrough myocyte enhancer factor 2C (MEF2C) and potentially influences meat quality. Meat Science, 2016, 116: 201-206.
[15] CASIRO A, VELEZ-IRIZARRY D, BATES R O, ERNST C W, STEIBEL J P. 030 Genomewide association study for meat quality traits in an F2 Duroc × Piétrain population. Journal of Animal Science, 2016, 94(2): 14-15.
[16] LIU G, UPDIKE M S. miRNA-dysregulation associated with tenderness variation induced by acute stress in Angus cattle. Journal of Animal Science and Biotechnology, 2012(2): 60-67.
[17] HONG J S, NOH S H, LEE J S, KIM J M, HONG K C, LEE Y S. Effects of polymorphisms in the porcine microRNA miR-1 locus on muscle fiber type composition and miR-1 expression. Gene, 2012, 506(1): 211-216.
[18] SHEN L Y, DU J J, XIA Y D, TAN Z D, FU Y H, YANG Q, LI X W, TANG G Q, JIANG Y Z, WANG J Y, LI M Z, ZHANG S H, ZHU L. Genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA transcriptomes in oxidative and glycolytic skeletal muscles. Scientific Reports, 2016, 6: 32186.
[19] MA J D, WANG H M, LIU R, JIN L, TANG Q Z, WANG X, JIANG A A, HU Y D, LI Z W, ZHU L, LI R Q, LI M Z, LI X W. The miRNA transcriptome directly reflects the physiological and biochemical differences between red, white, and intermediate muscle fiber types. International Journal of Molecular Sciences, 2015, 16(5): 9635-9653.
[20] WANG Q, QI R L, WANG J, HUANG W M, WU Y J, HUANG X F, YANG F Y, HUANG J X. Differential expression profile of miRNAs in porcine muscle and adipose tissue during development. Gene, 2017, 618: 49-56.
[21] CAI Z W, ZHANG L F, JIANG X L, SHENG Y F, XU N Y. Differential miRNA expression profiles in the longissimus dorsi muscle between intact and castrated male pigs. Research in Veterinary Science, 2015, 99: 99-104.
[22] CHI H, TILLER G E, DASOUKI M J, ROMANO P R, WANG J, O'KEEFE R J, PUZAS J E, ROSIER R N, REYNOLDS P R. Multiple inositol polyphosphate phosphatase: evolution as a distinct group within the histidine phosphatase family and chromosomal localization of the human and mouse genes to chromosomes 10q23 and 19. Genomics, 1999, 56(3): 324-336.
[23] CAFFREY J J, HIDAKA K, MATSUDA M, HIRATA M, SHEARS S B. The human and rat forms of multiple inositol polyphosphate phosphatase: functional homology with a histidine acid phosphatase up-regulated during endochondral ossification. FEBS Letters, 1999, 442(1): 99-104.
[24] MOURELATOS Z, DOSTIE J, PAUSHKIN S, SHARMA A, CHARROUX B, ABEL L, RAPPSILBER J, MANN M, DREYFUSS G. miRNAs: A novel class of ribonucleoproteins containing numerous microRNAs. Genes & Development, 2002, 16(6): 720-728.
[25] FINNERTY J R, WANG W X, HEBERT S S, WILFRED B R, MAO G G, NELSON P T. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases. Journal of Molecular Biology, 2010, 402(3): 491-509.
[26] 虎紅紅, 母童, 馬正旭, 馮小芳, 蔡正云, 黃增文, 顧亞玲, 辛國省, 張娟. 基于RNA-seq技術(shù)對靜原雞不同部位肉質(zhì)相關(guān)差異基因的篩選. 基因組學(xué)與應(yīng)用生物學(xué), 2019.(網(wǎng)絡(luò)首發(fā)).
HU H H, MU T, MA Z X, FENG X F, CAI Z Y, HUANG Z W, GU Y L, XIN G S, ZHANG J. Screening of differentially expressed genes related to meat quality in different parts of jingyuan chicken based on RNA-Seq technology. Genomics and Applied Biology,2019. (in Chinese)(Network starting)
[27] ZHANG H J, PAN J, LIANG J, XIA X X. High-pressure effects on the mechanism of accumulated inosine 5 '-monophosphate. Innovative Food Science & Emerging Technologies, 2018, 45: 330-334.
[28] RUDOLPH F B. The biochemistry and physiology of nucleotides. Journal of Nutrition, 1994, 124(Suppl. 1): 1994, 124(suppl_1): 124S-127S.
[29] HAMANO Y. Alteration of fatty acid profile and nucleotide-related substances in post-mortem breast meat of α-lipoic acid-fed broiler chickens. British Poultry Science, 2016, 57(4): 501-514.
[30] MATSUISHI M, TSUJI M, YAMAGUCHI M, KITAMURA N, TANAKA S, NAKAMURA Y, OKITANI A. Inosine-5'-monophosphate is a candidate agent to resolve rigor mortis of skeletal muscle. Animal Science Journal, 2016, 87(11): 1407-1412.
[31] 野崎義孝, 南基哲, 蔣國文. 雞肉的鮮度與K值(上). 國外畜牧科技, 1994(3): 31-32.
YE Q, NAN J Z, JIANG G W. The freshness and K value of chicken (up). Animal Science Abroad, 1994(3): 31-32.(in Chinese)
[32] 王述柏. 雞肉肌苷酸沉積規(guī)律及營養(yǎng)調(diào)控研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2004.
WANG S B. Studies on the deposition of 5'-inosinic acid in chicken meat and its modification by nutrition[D]. Beijing: Chinese Academy of Agricultural Sciences, 2004. (in Chinese)
[33] 陳繼蘭. 雞肉肌苷酸和肌內(nèi)脂肪含量遺傳規(guī)律及相關(guān)候選基因的研究[D]. 北京: 中國農(nóng)業(yè)大學(xué), 2004.
CHEN J L. Studies on inheritance and candidate genes of inosine-5'- monophosphate and intramuscular fat contents in chicken meat[D]. Beijing: China Agricultural University, 2004. (in Chinese)
[34] 劉望夷, 竺來發(fā), 翁志發(fā), 沈洪民. 肉用雞肌肉中肌苷酸含量的比較. 中國農(nóng)業(yè)科學(xué), 1980(4):79-83.
LIU W Y, ZHU L F, WENG Z F, SHEN H M. A comparative study of inosinic acid contents in chicken muscle. Scientia Agricultura Sinica1980(4): 79-83. (in Chinese)
[35] 蘇淑貞, 朱漢炎, 劉建樑, 李民. 鵪鶉、雞、鴿子肌肉中肌苷酸含量的比較. 中國家禽, 1987(2): 32-33+35.
SU S Z, ZHU H Y, LIU J L, LI M. Comparison of inosinic acid content in muscle of quail, chicken and pigeon. China Poultry, 1987(2): 32-33+35. (in Chinese)
[36] 姬舒云. 基于轉(zhuǎn)錄組學(xué)和代謝組學(xué)研究蘇氨酸水平對肉雞腸道的影響[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2019.
JI S Y. Effects of threonine levels on broilers intestinal based on teanscriptology and metabomics[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
[37] PANASYUK G, ESPEILLAC C, CHAUVIN C, PRADELLI L A, HORIE Y, SUZUKI A, ANNICOTTE J S, LLUIS-FAJAS, FORETZ M, VERDEGUER F, PONTOGLIO M, FERRE P, SCOAZEC J Y, BIRNBAUM M, RICCI J E, PENDE M. PPARγ contributes toandexpression in fatty liver. Nature Communications, 2012, 3(1).
[38] PRESEK P, REINACHER M, EIGENBRODT E. Pyruvate kinase typeis phosphorylated at tyrosine residues in cells transformed by rous sarcoma virus. FEBS Letters, 1988, 242(1): 194-198.
[39] ALI N, CRAXTON A, SHEARS S B. Hepatic Ins(1, 3, 4, 5)P43-phosphatase is compartmentalized inside endoplasmic. The Journal of Biological Chemistry, 1993, 268(9): 6161-6167.
[40] KILAPARTY S P, AGARWAL R, SINGH P, KANNAN K, ALI N. Endoplasmicstress-induced apoptosis accompanies enhanced expression of multiple inositol polyphosphate phosphatase 1 (Minpp1): A possible role for Minpp1 in cellular stress response. Cell Stress and Chaperones, 2016, 21(4): 593-608.
[41] CHO J, KING J S, QIAN X, HARWOOD A J, SHEARS S B. Dephosphorylation of 2,3-bisphosphoglycerate byexpands the regulatory capacity of the rapoport-luebering glycolytic shunt. Proceedings of the National academy of Sciences of the United States of America, 2008, 105(16): 5998-6003.
[42] BALLESTER M, AMILLS M, GONZáLEZ-RODRíGUEZ O, CARDOSO T F, PASCUAL M, GONZáLEZ-PRENDES R, PANELLA-RIERA N, DíAZ I, TIBAU J, QUINTANILLA R. Role of AMPK signalling pathway during compensatory growth in pigs. BMC Genomics, 2018, 19(1): 682.
[43] OUYANG H J, HE X M, LI G H, XU H P, JIA X Z, NIE Q H, ZHANG X Q. Deep sequencing analysis of miRNA expression in breast muscle of fast-growing and slow-growing broilers. International Journal of Molecular Sciences, 2015, 16(7): 16242-16262.
[44] WU N, GAUR U, ZHU Q, CHEN B, XU Z, ZHAO X, YANG M, LI D. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles. Animal Genetics, 2017, 48(2): 205-216.
[45] HE J, WANG W Q, LU L Z, TIAN Y, NIU D, REN J D, DONG L Y, SUN S W, ZHAO Y, CHEN L, SHEN J L, LI X H. Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver. Scientific Reports, 2016, 6: 27418.
[46] LI H, WANG S H, YAN F B, LIU X J, JIANG R R, HAN R L, LI Z J, LI G X, TIAN Y D, KANG X T, SUN G R. Effect of polymorphism within miRNA-1606 gene on growth and carcass traits in chicken. Gene, 2015, 566(1): 8-12.
[47] 魏雪鋒. miR-378a-3p、miR-107和相關(guān)circRNA調(diào)控牛肌細(xì)胞發(fā)育的機(jī)制研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2017.
WEI X F. Mechanism study on miR-378a-3p, miR-107 and related circRNA regulating bovine myoblasts development[D]. Yangling: Northwest A & F University, 2017. (in Chinese)
[48] ZHANG J J, WANG C Y, HUA L, YAO K H, CHEN J T, HU J H. miR-107 promotes hepatocellular carcinoma cell proliferation by targeting Axin2. International Journal of Clinical and Experimental Pathology, 2015, 8(5): 5168-5174.
[49] CHEN H Y, LIN Y M, CHUNG H C, LANG Y D, LIN C J, HUANG J, WANG W C, LIN F M, CHEN Z, HUANG H D, SHYY J Y J, LIANG J T, CHEN R H. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Research, 2012, 72(14): 3631-3641.
[50] WANG P, WU T Y, ZHOU H, JIN Q Q, HE G Q, YU H Y, XUAN L J, WANG X, TIAN L L, SUN Y N, LIU M, QU L M. Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. Journal of Experimental & Clinical Cancer Research, 2016, 35: 22.
[51] CHEN L, LI Z Y, XU S Y, ZHANG X J, ZHANG Y A, LUO K, LI W P. Upregulation of miR-107 inhibits glioma angiogenesis and VEGF expression. Cellular and Molecular Neurobiology, 2016, 36(1): 113-120.
[52] HANSEN T B, JENSEN T I, CLAUSEN B H, BRAMSEN J B, FINSEN B, DAMGAARD C K, KJEMS J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388.
[53] PARASKEVOPOULOU M D, HATZIGEORGIOU A G. Analyzing MiRNA-LncRNA interactions. Methods in Molecular Biology (Clifton, N J), 2016, 1402(1): 271-286.
[54] WEI N, WANG Y, XU R X, WANG G Q, XIONG Y, YU T Y, YANG G S, PANG W J. PU.1 antisense lncRNA against its mRNA translation promotes adipogenesis in porcine preadipocytes. Animal Genetics, 2015, 46(2): 133-140.
[55] 姜修英, 武春艷, 董翔宇, 高卓然, 李輝, 杜志強(qiáng). 雞PPARγ基因相關(guān)長鏈非編碼RNA的鑒定及其轉(zhuǎn)錄調(diào)控. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2018, 26 (11): 1909-1918.
JIANG X Y, WU C Y, DONG X Y, GAO Z R, LI H, DU Z Q. Identification of a long non-coding RNA related to PPARγ gene and study on its transcriptional regulation in chicken(). Journal of Agricultural Biotechnology, 2018, 26 (11): 1909-1918. (in Chinese)
[56] ZHANG T, ZHANG X Q, HAN K P, ZHANG G X, WANG J Y, XIE K Z, XUE Q A. Genome-wide analysis of lncRNA and mRNA expression during differentiation of abdominal preadipocytes in the chicken. G3 (Bethesda, Md), 2017, 7(3): 953-966.
[57] LIU F Q, CHEN Q, CHEN F, WANG J, GONG R J, HE B C. The lncRNA ENST00000608794 acts as a competing endogenous RNA to regulate PDK4 expression by sponging miR-15b-5p in dexamethasone induced steatosis. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2019, 1864(10): 1449-1457.
[58] CHEN X, TAN X R, LI S J, ZHANG X X. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ ROCK1 in nonalcoholic fatty liver disease. Life Sciences, 2019, 235: 116829.
Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 inChicken Muscle Tissue

1College of Agriculture, Ningxia University, Yinchuan 750021;2Pengyang County Animal Husbandry Technology Promotion Service Center, Guyuan 756000, Ningxia;3School of Life Science, Ningxia University/Ningxia Feed Engineering Technology Research Center, Yinchuan 750021
【】The aim of this study was to explore the regulatory role of key regulatory factors in the process of inosine monophosphate deposition in the muscle tissue ofchickens, and to use lncRNA-miRNA-mRNA association analysis to identify LNC_003828, gga-miR-107-3p and MINPP1 related to inosine monophosphate specific deposition, so as to provide a theoretical basis for molecular-assisted breeding to improve chicken muscle quality.【】The inosine monophosphate content of the breast and leg muscles of 15chickens was determined, and three samples of the breast muscles with high inosine monophosphate content and the leg muscles with low inosine monophosphate content were screened to extract total RNA. The cDNA library was constructed after passing the quality test, and PCR amplification test was carried out. Then, the cDNA library quality was evaluated by using Agilent 2100, which was sent the library to the Illumina-Hiseq platform for transcriptome sequencing. Using bioinformatics methods, the differentially expressed MINPP1, gga-miR-107-3p and LNC_003828 in different parts of the muscle tissue ofchicken were screened out, and GO annotation and protein interaction network was used to analyze the function of MINPP1. The qRT-PCR method was used to detect the expression of LNC_003828, gga-miR-107-3p and MINPP1 in the breast and leg muscles ofchickens, and the correlation between them and the content of inosine monophosphate was analyzed. 【】2, the correlation of gene expression levels between sequenced samples, was greater than 0.9, that is, gene expression between experimental samples could be used for subsequent differential gene analysis. Three differentially expressed genes, including MINPP1, PKM, and ALDH9A1, were detected in the glycolysis/gluconeogenesis pathway involving in the synthesis and metabolism of inosine monophosphate. Interaction analysis found that there were 17 miRNAs (9 up-regulated, 8 down-regulated), 44 mRNAs (16 up-regulated, 28 down-regulated), and 155 lncRNAs (68 up-regulated, 87 down-regulated) in the lncRNA-miRNA-mRNA network diagram, of which the target gene of the core node gga-miR-107-3p interaction was MINPP1, and the target lncRNA was LNC_003828. GO enrichment analysis found that the MINPP1 gene had functions such as phosphatase activity and bisphosphoglycerate phosphatase activity; the MINPP1 gene in the protein interaction network were all interact with PGAM1 and ENO1, which were involved in glycolysis/gluconeogenesis and amino acid biosynthesis pathways BPGM genes. The results of qRT-PCR showed that the relative expression of LNC_003828 and gga-miR-107-3p in breast muscle ofchicken was lower than that of leg muscle, but the difference was not significant; the relative expression of MINPP1 in breast muscle was significantly lower than that of leg muscle (<0.05). The expression of gga-miR-107-3p in the breast and leg muscle tissues ofchicken was positively correlated with the expression of LNC_003828 and negatively correlated with the expression of MINPP1. The expression of LNC_003828 and gga-miR-107-3p in breast and leg muscle tissues were positively correlated with inosine monophosphate content, and the difference was not significant; the expression of breast muscle MINPP1 was negatively correlated with inosine monophosphate content and the expression of leg muscle MINPP1. The amount was significantly negatively correlated with the content of inosine monophosphate (<0.05). In summary, it was speculated that gga-miR-107-3p in the muscle tissue ofchicken was used as a core regulator to adsorb LNC_003828, which affected the MINPP1 gene to regulate the specific deposition of muscle inosine monophosphate, thereby improving meat quality. 【】LNC_003828, gga-miR-107-3p, and MINPP1 were selected as candidate regulatory factors affecting the specific deposition of inosine monophosphate.
chicken; inosine monophosphate; gga-miR-107-3p; MINPP1 gene; lncRNA-miRNA-mRNA interaction

10.3864/j.issn.0578-1752.2021.19.017
2020-07-27;
2020-10-30
國家自然科學(xué)基金(31860621)
禹保軍,E-mail:yubaojunb@163.com。通信作者張娟,Tel:17795194299;E-mail:zhangjkathy@126.com
(責(zé)任編輯 林鑒非)