曹大林
(河北省承德市灤平縣第四中學,河北 承德 068250)
隨著教學改革的不斷深入,根據初中數學新課標要求,教師在教學過程中應引導學生積極參與實踐活動,通過動手操作,使學生提高學習興趣,加深對概念、性質的理解,培養其思維能力;并通過教師在教學中創設實驗型思維情境,設計開放性試題,使學生在實踐中提高創新思維能力,有效地獲取數學知識,從而提高分析問題及解答問題的能力。那么在實際的教學中,應怎樣將數學實踐活動與數學思維能力培養有機結合,并很好把握,促使教學質量的不斷提高,就成為當前數學教學中的研究課題了。
新課標指出:數學教學活動必須建立在學生的認知發展水平和已有知識經驗基礎之上。教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識和技能、數學思想和方法,獲得廣泛的數學活動經驗。因此,數學教學過程中,教師要有意識地為學生創造條件,讓學生通過參加教學實踐活動,發現、理解和掌握知識,使思維能力和智力水平得到提高。下面,我就初中數學教學工作談幾點個人的體會。
興趣是學生學習的直接動力,它是求知欲的外在表現,它能促進學生積極思考、勇于探索。教師在教學中有效地激發學生的學習興趣,使學生對所學知識產生了極大的興趣,那么學生學習的動力,就會促使學生在學習中不斷的克服困難,積極的探索、思考,從而提高學生的感知認知能力。教師在教學中認真組織學生通過參加教學實踐活動,可以極大地提高學習興趣,使他們在學習過程中獲得成功的體驗,并不斷獲取新的知識。
數學概念、性質、定理等具有高度的抽象性和概括性,如果讓學生直接理解,肯定會存在很大困難,所以在數學教學中,教師應該為學生提供一些實物、模型、教具、教學軟件等豐富的學習材料,讓學生有充分的時間對具體事物進行操作,使他們獲得學習新知識所需要的具體經驗。通過自己的思維活動來形成對概念的理解,而不是通過機械的重復,記住教師講述的那些關于概念、性質的現成解釋,這樣學生所獲得的知識才是全面的、清晰的、牢固的。
動手實驗能直接刺激大腦進行積極思維,它不但能幫助學生理解所學的概念,還能讓學生通過親身實踐真切感受到發現的快樂。因此,在數學教學中,教師應盡可能為學生提供概念、定理的實際背景,設計定理、公式的發現過程,讓學生的思維能夠經歷一個從模糊到清晰,從具體到抽象,從直覺到邏輯的過程,再由直觀、粗糙向嚴格、精確的追求過程中,使學生體驗數學發展的過程,領悟數學概念、定理的根本思想,掌握定理證明過程的來龍去脈,增強數學學習的自覺性,使學生在對概念形成過程的分析中,在對公式、定理的發現過程的總結論證中,提高主動參與的機會,以便學生在“做數學”過程中啟迪思維,突破教學難點。
數和式是問題的抽象和概括、圖形和圖像是問題的具體和直觀的反映。初中代數教材列方程解應用題所選很多是采用了圖示法的例題,所以,教學過程中要充分利用圖形的直觀性和具體性,引導學生從圖形上發現數量關系找出解決問題的突破口。學生掌握了這一思想要比掌握一個公式或一種具體方法更有價值,對解決問題更具有指導意義。
眾所周知,方程思想是初等代數思想方法的主體,應用十分廣泛,可謂數學大廈基石之一,在眾多的數學思想中顯得十分重要。
主要是指建立方程(組)解決實際問題的思想方法。教材中大量出現這種思想方法,如列方程解應用題,求函數解析式,利用根的判別式、根與系數關系求字母系數的值等。
教學時,可有意識的引導學生發現等量關系從而建立方程組。如講“利用待定系數法確定二次函數解析式”時,可啟發學生去發現確定解析式的關鍵是求出各項系數,可把他們看成三個“未知量”告訴學生利用方程思想來解決,那學生就會自覺的去找三個等量關系建立方程組。在這里如果單講解題步驟,就會顯得呆板、僵硬,學生只知其然,不知其所以然。與此同時,還要注意滲透其他與方程思想有密切關系的數學思想,諸如換元,消元,降次,函數,化歸,整體,分類等思想,這樣可起到撥亮一盞燈,照亮一大片的作用。
辯證思想是科學世界觀在數學中的體現,是最重要的數學思想之一。自然界中的一切現象和過程都存在著對立統一規律,數學中的有理數和無理數、整式和分式、已知和未知、特殊和一般、常量和變量、整體和局部等同樣蘊涵著這一辯證思想。抓辯證思想教學,不僅可以培養學生的科學意識,而且可提高學生的探索能力和觀察能力。
綜上所述,結合自己在長期從事數學教學工作中的實踐,我認為在新課標的要求指引下,為進一步培養學生的思維能力,創新能力,在教學中教師根據教材內容和大綱要求,結合教材內容有效地組織學生開展數學實踐活動,并在活動中認真創設問題情境,巧妙引導學生極積思維、分析、判斷,讓學生從直觀實物中去感知、認知,實現讓學生從“做中學和學中做”中不斷提高思維能力,不斷培養學生分析問題解決問題的能力,并能養成學生良好的學習習慣,有利于教育教學質量的提高。