999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

關于高斯最小值猜測的一個注記

2021-12-27 07:46:56鐘揚帆胡澤春
四川大學學報(自然科學版) 2021年6期
關鍵詞:數學

鐘揚帆, 馬 婷, 胡澤春

(四川大學數學學院, 成都 610064)

Letn≥2 and (Xi,1≤i≤n) be a centered Gaussian random vector. The well-knownidk’s Inequality[1-2]says that

E(max1≤i≤n|Xi|)≤E(max1≤i≤n|Yi|)

(1)

If we replace “max” by “min” inidák’s inequality, Gordonetal[3-4]. proved among other things that

(2)

E(min1≤i≤n|Xi|)≥E(min1≤i≤n|Yi|)

(3)

Now we state the main result of this paper.

Theorem1.1The Gaussian minimum conjecture holds if and only ifn=2.

The rest of this paper is organized as follows. In Section 2 and Section 3, we give the necessity proof and the sufficiency proof of Theorem 1.1, respectively. In the final section, we give some remarks.

2 Necessity proof of Theorem 1.1

At first, we calculateE(min1≤i≤3|Yi|). The density functionp1(x,y,z) of (Y1,Y2,Y3) can be expressed by

By the symmetry, we have

(4)

Define a function

and a set

Define a transformation

Denote byDTthe original image ofDunderT.Then we have

DT={(u,v)∈R2:T(u,v)∈D}={(u,v)∈

Now, we have

(5)

By (4) and (5), we get

(6)

Then the density functionp2(x,y) of (X1,X2) can be expressed by

By the symmetry, we have

(7)

where

We have

It follows that

(8)

We have

It follows that

(9)

We have

It follows that

(10)

We have

(11)

By (7)~(11), we obtain

E(min1≤i≤3|Xi|)=

(12)

Hence we get

E(min1≤i≤3|Yi|)-E(min1≤i≤3|Xi|)=

(ii)n≥4. Without loss of generality, we only consider the case thatn=4. We use proof by contradiction. Suppose that (3) holds forn=4. LetYi,Xi,i=1,2,3 be the same as in the above example. LetY4be a standard Gaussian random variable independent of (Y1,Y2,Y3). Then, by the assumption, for anya>0, we have

E((min1≤i≤3|Xi|)∧|aY4|)≥

E((min1≤i≤3|Yi|)∧|aY4|).

Lettinga→∞, by the monotone convergence theorem, we obtain that

E(min1≤i≤3|Xi|)≥E(min1≤i≤3|Yi|).

It is a contradiction. Hence for anyM>0, there existsa0>Msuch that

E((min1≤i≤3|Xi|)∧|a0Y4|)<

E((min1≤i≤3|Yi|)∧|a0Y4|).

3 Sufficiency proof of Theorem 1.1

In this part, we will show that the inequality(3) holds ifn=2.WriteX1=x1f1,X2=x2f2, where bothf1andf2have the standard normal distributionN(0,1).Without loss of generality, we can assume thatx1,x2>0. Further we can assume thatx1=1,x2=a∈(0,1].

and thus the density function of (f1,af2) is

p(x,y)=

At first, we assume thatρ∈[0,1). By the symmetry, we have

E(|f1|∧|af2|)=

Define

Then

We have

Define

whereα>0,β>0,αβ-γ2>0. Then we have

I(?)=J(a2,1,a?)+J(1,a2,a?),

thus

[J(a2,1,aρ)+J(1,a2,aρ)+J(a2,1,-aρ)+

J(1,a2,-aρ)]

(13)

In the following, we come to calculate the functionJ(α,β,γ). We have

J1(α,β,γ)-J2(α,β,γ)

(14)

where

We have

J1(α,β,γ)=

(15)

J2(α,β,γ)=

(16)

By (14)~(16), we get

which together with (13) implies that

[J(a2,1,aρ)+J(1,a2,aρ)+J(a2,1,-aρ)+

(17)

Ifρ=1, thenf2=f1a.s.. Note thata∈(0,1]. Then we have

E(|f1|∧|af2|)=aE(|f1|)=

In addition, ifρ=1, we have

Hence (17) holds for anyρ∈[0,1].

For anya∈(0,1] and anyρ∈(0,1), we have

Hence for anya∈(0,1],

is a strictly increasing function inρ∈[0,1]. Hence it reaches its minimum value atρ=0,i.e. the inequality (3) holds.

4 Remarks

Remark1(i) Prof. Shao Qi-Man[9]told us that the Gaussian minimum conjecture forn=2 can be proved based on the following fact:

P(min(|X1|,|X2|)>x)=1-P(|X1|≤x)-

P(|X2|≤x)+P(|X1|≤x,|X2|≤x)≥

1-P(|X1|≤x)-P(|X2|≤x)+

P(|X1|≤x)P(|X2|≤x)=

1-P(|Y1|≤x)-P(|Y2|≤x)+

P(|Y1|≤x)P(|Y2|≤x)=

1-P(|Y1|≤x)-P(|Y2|≤x)+

P(|Y1|≤x,|Y2|≤x)=

P(min(|Y1|,|Y2|)>x)

(18)

where the Gaussian correlation inequality was used.

Remark2Forn≥3, we can’t obtain the corresponding inequality similar to (18) by using the Gaussian correlation inequality. In fact, these inequalities do not hold by the necessity result of Theorem 1.1.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 国产91小视频在线观看| 自拍偷拍欧美日韩| 亚洲AV人人澡人人双人| 亚洲伦理一区二区| 亚洲视频影院| 国产导航在线| 久久毛片网| 一本大道无码高清| 国产又粗又猛又爽视频| 67194在线午夜亚洲| 成人国产一区二区三区| 99热这里只有精品在线观看| 自拍欧美亚洲| av一区二区三区高清久久| 91精品综合| 欧美国产视频| 麻豆AV网站免费进入| 99国产精品免费观看视频| a级毛片免费看| 日韩精品无码一级毛片免费| 亚洲三级片在线看| 狠狠色噜噜狠狠狠狠色综合久 | 欧美成人第一页| 伊人福利视频| 久草视频精品| 国产不卡国语在线| 国产黑人在线| 内射人妻无套中出无码| 色婷婷天天综合在线| 国产精品自在在线午夜| 欧洲日本亚洲中文字幕| 99热这里只有精品5| 色九九视频| 久久久久夜色精品波多野结衣| 精品91自产拍在线| 九色91在线视频| 亚洲大尺码专区影院| AV熟女乱| 成人综合网址| 亚洲综合色在线| 久久99国产综合精品女同| 久久国产高清视频| 欧美成人综合在线| 中文字幕在线一区二区在线| 精品一区二区无码av| 亚洲国产精品不卡在线| 欧美一级片在线| 波多野一区| 亚洲熟妇AV日韩熟妇在线| 国产精品伦视频观看免费| 亚洲资源在线视频| 国产亚洲精品97AA片在线播放| 国产在线八区| www精品久久| 再看日本中文字幕在线观看| 免费人成视频在线观看网站| 国产丝袜精品| 日本免费精品| 国产无码网站在线观看| 成人综合在线观看| 亚洲国产欧美目韩成人综合| 亚洲欧美日本国产专区一区| h视频在线观看网站| 国产微拍一区二区三区四区| 中文字幕在线观| 中文字幕av无码不卡免费| 福利国产微拍广场一区视频在线| 亚洲伊人久久精品影院| 青青青伊人色综合久久| 少妇精品网站| 亚洲视频四区| 毛片在线播放a| 欧美成人一区午夜福利在线| 国产网友愉拍精品视频| 99国产精品一区二区| 日韩国产亚洲一区二区在线观看| 久久青草精品一区二区三区 | 午夜a视频| 亚洲欧美不卡| 日韩a级片视频| 欧美一区福利| 拍国产真实乱人偷精品|