999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GCD封閉集上的冪矩陣行列式間的整除性

2021-12-27 07:47:58朱光艷譚千蓉
四川大學學報(自然科學版) 2021年6期
關鍵詞:計算機大學數學

朱光艷, 李 懋, 譚千蓉

(1. 湖北民族大學教育學院, 恩施 445000;2.西南大學數學與統計學院, 重慶 400715;3.攀枝花學院數學與計算機學院, 攀枝花 617000)

1 Introduction

Throughout this paper, we denote by (x,y) (resp. [x,y]) the greatest common divisor (resp. least common multiple ) of integersxandy. LetZdenote the set of integers and |T| stand for the cardinality of a finitie setTof integers. Letfbe an arithmetical function andS={x1,…,xn}be a set ofndistinct positive integers. Let (f(xi,xj)) (abbreviated by (f(S))) denote then·nmatrix havingfevaluated at the greatest common divisor (xi,xj) ofxiandxjas its (i,j)-entry. Let (f[xi,xj])(abbreviated by(f[S])) denote then·nmatrix havingfevaluated at the least common multiple [xi,xj] ofxiandxjas its (i,j)-entry. Letξabe the arithmetical function defined byξa=xafor any positive integerx, whereais a positive integer. Then·nmatrix (ξa(xi,xj)) (abbreviated by (Sa)) and (ξb[xi,xj]) (abbreviated by [Sb]) are called power GCD matrix and power LCM matrix, respectively. A setSis calledfactorclosed(FC) if the conditionsx∈Sandd|ximply thatd∈S. We say that the setSisgcdclosedif (xi,xj)∈Sfor all 1≤i,j≤n. Evidently, any FC set is gcd closd but not conversely.

In 1875, Smith[1]showed that

whereμis the M?bius function andf*μis the Dirichlet convolution offandμ. Apostol[2]extended Smith’s result by showing that iffandgare arithmetical functions and ifβis defined for positive integerstandrby

then

det(β(i,j))=g(1)nf(1)…f(n).

and

ES(x):={z∈Z+:?y∈S,y

Divisibility is one of the most important topics in the field of Smith matrices. Bourque and Ligh[7]showed that ifSis FC, then (S)|[S] holds in the ringMn(Z) ofn×nmatrices over the integers. That is, there exists a matrixA∈Mn(Z) such that [S]=(S)Aor [S]=A(S). Hong[8]showed that such factorization is no longer true in general ifSis gcd closed. Letx,y∈Swithx

Definition1.1[12]LetTbe a set ofndistinct positive integers and 1≤r≤n-1 be an integer. We say thatTis 0-fold gcd closed ifTis gcd-closed. We say thatTisr-foldgcdclosedif there is a divisor chainR?Twith |R|=rsuch that max(R)| min(TR)and the setTRis gcd closed.

Note that Definition 1.1 is stated in a different way from that given in Ref.[12]. However, they are equivalent. It is easy to see that anr-fold gcd closed set is (r-1)-fold gcd closed, but the converse is not necessarily true. Hong[12]proved that the Bourque-Ligh conjecture is true whenn≤5 and ifn≥6 then the LCM matrix [S] defined on any (n-5)-fold gcd-closed setSis nonsingular. In 2005, Zhou and Hong[13]considered the divisibility among power GCD and power LCM matrices for unique factorization domains. On the other hand, Hong[14]initiated the study of the divisibility properties among power GCD matrices and among power LCM matrices. Tan and Lin[15]studied the divisibility of determinants of power GCD matrices and power LCM matrices on finitely many quasi-coprime divisor chains.

In this paper, our main goal is to study the divisibility among the determinants of power matrices (Sa) and (Sb), among the determinants of power matrices [Sa]and [Sb] and among the determinants of power matrices (Sa) and [Sb]. The main result of this paper can be stated as follows.

Theorem1.2Letaandbbe positive integers witha|band letn≥1 be an integer.

(i) Ifn≤3, then for any gcd-closed setSofndistinct positive integers, one has det(Sa)|det(Sb), det[Sa]|det[Sb],det (Sa)|det [Sb].

(ii) Ifn≥4, then for any (n-3)-fold gcd-closed setSofndistinct positive integers, one has det(Sa)|det(Sb),det[Sa]|det[Sb]and det(Sa)|[Sb].

Evidently, Theorem 1.2 extends Hong’s theorem[16]obtained in 2003 and the theorems of Chen and Hong[17]gotten in 2020.

Throughout this paper,aandbstand for positive integers. We always assume that the setS={x1,…,xn} satisfies thatx1<…

2 Auxiliary results

In this section, we supply two lemmas that will be needed in the proof of Theorem 1.2. We begin with a result due to Hong which gives the determinant formulas of a power GCD matrix and a power LCM matrix on a gcd-closed set.

Lemma2.1[18]LetS={x1,...,xn} be a gcd-closed set. Then

and

We can now use Hong’s formulae to deduce the formulae for det(Sa) and det[Sa] whenSis a divisor chain.

Lemma2.2[17]LetS={x1,...,xn} be a divisor chain such thatx1|...|xnandn≥2. Then

3 Proof of Theorem 1.2

In this section, we use the lemmas presented in previous section to show Theorem 1.2.

First, we prove part (i) as follows.

Letn=1. It is clear that the statement is true.

Letn=2. SinceS={x1,x2}is gcd closed, we have (x1,x2)=x1andx1|x2. It then follows that

and

The statement is true for this case.

Letn=3. SinceS={x1,x2,x3} is gcd closed, we havex1|xi(i=2,3) and (x2,x3)=x1orx2. Consider the following two cases:

Case 1 (x2,x3)=x1. Then

and

The statement is true for this case.

Case 2 (x2,x3)=x2. Thenx2|x3. It follows that

and

The statement is true for this case. Part (i) is proved.

Consequently, we prove part (ii).First of all, any (n-3)-fold gcd-closed setSmust satisfy eitherx1|x2|…|xn-3|xn-2|xn-1|xn, orx1|x2|…|xn-3|xn-2and gcd(xn,xn-1)=xn-2.

Case aSis a divisor chain. That is,x1|x2|…|xn-3|xn-2|xn-1|xn. Then by Lemma 2.2, one deduces that

and

The statement is true for this case.

Case bx1|x2|…|xn-3|xn-2and gcd(xn,xn-1)=xn-2. By Lemma 2.1, one has

and

Then

and

The statement is true for this case.

Finally, we prove part (iii).Letn≥4 be an integer,a=1,b=2 and

xk=3k-1,1≤k≤n-3,

xn-2=2·3n-4,xn-1=7·3n-4,xn=28·3n-4.

By Definition 1.1, one knows thatSis (n-4)-fold gcd closed. By Lemma 2.1, one has

det(Sb)=61·23n-6·3n2-3n-1,

and

det[Sb]=(-1)n-4·191·74·

23n-2·3n2-n-9.

Then we can compute and obtain that

and

Part (iii) is proved. This finishes the proof of Theorem 1.2.

猜你喜歡
計算機大學數學
“留白”是個大學問
計算機操作系統
《大學》
大學(2021年2期)2021-06-11 01:13:12
48歲的她,跨越千里再讀大學
海峽姐妹(2020年12期)2021-01-18 05:53:08
大學求學的遺憾
基于計算機自然語言處理的機器翻譯技術應用與簡介
科技傳播(2019年22期)2020-01-14 03:06:34
信息系統審計中計算機審計的應用
消費導刊(2017年20期)2018-01-03 06:26:40
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
Fresnel衍射的計算機模擬演示
主站蜘蛛池模板: 国产乱子伦一区二区=| h视频在线播放| 色哟哟国产精品| 国产成人精品一区二区秒拍1o | 精品小视频在线观看| 亚洲天堂久久新| 日本三级欧美三级| 日本道综合一本久久久88| 亚洲成人一区二区三区| 91网址在线播放| 久久五月视频| 99热这里只有免费国产精品| a级免费视频| 国产黄色爱视频| 欧美日本在线播放| 精品91视频| 国产精品爽爽va在线无码观看 | 亚洲九九视频| 中文字幕日韩视频欧美一区| 在线观看国产黄色| 成人毛片免费在线观看| 91成人在线观看| 国产午夜福利亚洲第一| 毛片在线区| AV不卡无码免费一区二区三区| 国产欧美日韩一区二区视频在线| 永久免费无码成人网站| 欧美精品在线观看视频| www.国产福利| 国产人人射| 婷婷五月在线| 99视频在线观看免费| 欧美五月婷婷| 一级片免费网站| 国产成人欧美| 91麻豆久久久| 69综合网| 亚洲美女一级毛片| 丁香五月婷婷激情基地| 日本一区二区三区精品AⅤ| 91青青视频| 国产中文在线亚洲精品官网| 在线中文字幕日韩| 国产欧美日韩va| 亚洲浓毛av| 国产一区二区三区免费观看| 亚洲国产欧洲精品路线久久| 久久免费成人| 日本高清在线看免费观看| 国产不卡一级毛片视频| 伊人久综合| 欧美亚洲国产一区| 成人午夜久久| 人妻无码中文字幕一区二区三区| 婷婷色一二三区波多野衣| 国产精品久久久久鬼色| 尤物国产在线| 亚洲自偷自拍另类小说| 刘亦菲一区二区在线观看| 国产亚洲精| 国产91高跟丝袜| 中文纯内无码H| 中文字幕资源站| 亚洲一区二区三区中文字幕5566| 无码专区国产精品一区| 国产真实自在自线免费精品| 中日韩一区二区三区中文免费视频 | www.亚洲一区| 青青青国产视频手机| 国产精品区视频中文字幕| 免费国产福利| 国产三级成人| 久久久噜噜噜久久中文字幕色伊伊| 国产女主播一区| 欧美区一区| 中文字幕第1页在线播| 国产美女免费| 日本人真淫视频一区二区三区| 日本91在线| 午夜爽爽视频| 国产精女同一区二区三区久| 亚洲精品久综合蜜|