李紫薇,喬 俊,支彩艷,雷振宇,霍金仙,2,趙建國,2,3
石墨烯浸種處理對蘿卜生長和品質的影響
李紫薇1,喬 俊1,3※,支彩艷1,雷振宇1,霍金仙1,2,趙建國1,2,3
(1. 山西大同大學化學與化工學院,大同 037009;2. 山西大同大學炭材料研究所,大同 037009;3. 石墨烯林業應用國家林業和草原局重點實驗室,大同 037009)
為了揭示石墨烯浸種和處理對蘿卜生長的影響,該研究開展石墨烯4個濃度處理蘿卜種子和澆灌土壤,對蘿卜發芽和田間生長影響試驗,分析石墨烯浸種對蘿卜種子發芽、植株生長生理及肉質根品質指標影響。結果發現,石墨烯濃度在20~100 mg/L范圍內,對蘿卜種子萌發均有促進作用,40 mg/L的石墨烯促進效果最顯著;石墨烯施加濃度為40 mg/L時,在蘿卜葉片生長旺盛期可顯著提高葉片葉綠素含量,增強光合作用,提高植株對氮吸收能力,并促進植株增高;石墨烯能夠提高蘿卜肉質根產量3.6%~13.8 %,顯著提高蘿卜肉質根可溶性糖和維生素A含量。研究結果對促進蘿卜生產和品質提高具有較大參考意義。
農作物;試驗;石墨烯;生長;品質;蘿卜
石墨烯(graphene)是一種新型的碳納米材料,它是由碳原子組成并以sp2雜化軌道雜化而成的六角型呈蜂巢晶格的二維納米片層材料[1]。石墨烯具有大的比表面積,是目前已知的強度最高、導電性、導熱性最好的物質,被認為是一種革命性的材料,在材料學、能源、生物醫學、藥物傳遞、微納加工等領域具有廣闊的應用前景[2]。
近年來,隨著石墨烯應用研究的不斷深入和拓展,研究石墨烯對植物生長的影響,探討其在農林業領域的應用受到關注[3-4]。越來越多的研究表明,石墨烯對植物生長的影響與石墨烯添加量有關,較高的添加量會對植物形成脅迫,抑制植物的生長[5-7],但適宜的濃度則會促進植物的生長,尤其是促進植物根系的生長,并最終提高植物的生物量。Liu等[8]發現5 mg/L石墨烯溶液對水稻側根的數量、根鮮質量有明顯的促進作用;胡曉飛等[9]研究發現,2.0 mg/L的石墨烯處理后的樹莓組培苗,根長、根面積、根尖和分叉數提高了2倍;姚建忠等[10]發現,3.0 mg/L的石墨烯能促進歐洲山楊組培苗主根形成,并促進不定根數量增加;劉澤慧等[11]發現,20~25 mg/L的石墨烯能夠促進蠶豆的總根長、根體積顯著增加,且根瘤的數量和體積也顯著增加。許多學者從石墨烯的結構、石墨烯處理后的植物生理以及轉錄組基因差異性表達等探索了石墨烯促進植物生長的機理。He等[12]研究表明,石墨烯憑借含氧官能團的親水性促進了菠菜、香蔥對水分的吸收和生長;Chen等[13]研究發現,適量石墨烯可提高鹽堿環境苜蓿的葉綠素含量,降低丙二醛含量,顯著促進紫花苜蓿生長;適量石墨烯可提高白榆的光合作用效率并促進根系生長[14];Guo等[15]研究表明,石墨烯顯著增加了番茄根系生長素的含量并誘導根發育相關基因表達上調;Zhao等[16]發現,適量石墨烯可促進大豆根系生長,水楊酸、茉莉酸和脫落酸等激素含量提高,耐旱相關基因表達上調,顯著提高了大豆的抗旱能力;Chen等[17]研究了石墨烯對48種植物根系生長的影響,根系轉錄組測序研究發現,石墨烯可誘導呼吸途徑有關基因表達上調,增強根系細胞線粒體呼吸功能,從而促進植物根系生長。此外,也有研究表明適量石墨烯在促進作物生長、提高產量的同時還可改善作物的品質。蔣月喜等[18]在朝天椒定植后淋施0.35%的石墨烯溶液,發現可顯著提高朝天椒維生素C、辣椒素的含量和產量;Younes等[19]發現,青椒和茄子葉面噴施適量石墨烯可激活光合活性,顯著增加果糖、蔗糖和淀粉的含量;Park等[20]研究表明,適量石墨烯可促進西瓜根系生長,葉面積和葉片數增加,并促進果徑和含糖量增加。因此,基于國內外關于石墨烯可顯著促進各類植物根系生長、生物量增加乃至品質改善的研究報道,研究石墨烯對肉質根類蔬菜、經濟作物生長的影響,探討其在根部利用類作物種植中的應用潛力和價值,尤為值得關注。
蘿卜(.L)為十字花科蘿卜屬的草本植物,是常見的食用肉質根類蔬菜作物,四季均適宜栽培。本研究以蘿卜為供試材料,通過種子發芽和田間栽培試驗,探討石墨烯對蘿卜生長發育全過程(包括種子萌發、植株生長、肉質根產量及品質等)的影響,以期為石墨烯在農業領域應用提供借鑒和參考。
供試種子為“板葉大紅袍”蘿卜種子,河北高碑店市蔬菜研究中心提供。該品種蘿卜外表皮為紅色,直根肉質,生長期約90 d。該品種對土壤酸堿度適應范圍較廣,全國各地均有種植,在氣候適宜的地區可四季栽培,是大眾日常消費的蔬菜品種,產銷量足。
石墨烯由山西大同大學炭材料研究所提供,石墨烯片層平均直徑為40 nm,片層厚度約為3 nm,層數約為5層,為多層石墨烯。該石墨烯表面含有一定量的羧基和羥基官能團,可在水中穩定分散形成石墨烯溶膠。
1.2.1 發芽試驗
發芽試驗中石墨烯濃度設置4個水平:0、20、40、100 mg/L,分別記為CK、G-20、G-40、G-100。選取大小均勻、籽粒飽滿的蘿卜種子300粒左右,用70%的乙醇溶液消毒2 min,消毒后用蒸餾水沖洗3~4次,再用蒸餾水浸泡2 h。選擇直徑為90 mm的玻璃培養皿,皿底鋪雙層濾紙,每個培養皿放置20粒蘿卜種子,添加對應濃度的石墨烯溶液15 mL,置于恒溫培養箱中培養7 d,培養箱溫度為20~25 ℃,相對濕度為70%~80%,每個處理設置3個平行。每隔24 h統計一次發芽數以及胚根長度,統計7 d。
1.2.2 田間種植試驗
田間試驗于2021年6—9月在山西大同大學炭材料研究所試驗田進行,小區面積為9 m×12 m。將蘿卜種植區域平均劃分為4個區域設置不同濃度水平試驗,播種前將種子用對應濃度的石墨烯溶液浸泡2 h,以穴播的播種方式播種,每穴3粒。種植前起壟挖溝做畦,每個處理種植三畦(3次重復),行株距為57 cm×23 cm。將石墨烯與尿素和磷酸二氫鉀混合配制為肥料,尿素和磷酸二氫鉀濃度分別為3.0、1.0 g/L,石墨烯濃度則與發芽試驗的石墨烯濃度相同。每一個穴用石墨烯溶液一周澆灌一次,肥料混合液一個月澆灌一次,一次均為0.5 L,石墨烯溶液共澆灌12次,肥料混合液共澆灌3次。常規種植方式施肥、翻地、播種、收獲。期間澆水、除草、防治病蟲害等同周邊田間管理相同[21]。
1.3.1 蘿卜發芽率及胚根長度
在種子發芽試驗中,每天在相同時間內統計種子的發芽率,以胚根長度大于2 mm視為“發芽”,用毫米刻度尺測量種子胚根長度。
1.3.2 蘿卜生物量及形態學指標
播種45 d隨機取樣,千分刻度尺測量株高,統計植株的葉片數,測定植株葉片最大長度、鮮質量。90 d后將蘿卜整株挖出,將根系的土壤沖洗干凈,保留完整根系,測定蘿卜單根鮮質量及總產量。
1.3.3 蘿卜葉片光合特性
播種45 d后用利用光合儀(CIRAS-3; PP Systems, USA)進行蘿卜葉片光合特性的測定。選擇晴朗無風、陽光充足的天氣,對植株自上而下完全展開、綠色健康的第二片葉子進行測定。為減小系統誤差,測定部位均選擇葉片的中上部,且避開中央葉脈的位置進行。測定前儀器預熱30 min,測定葉片的凈光合速率(P)、蒸騰速率(T)、氣孔導度(G)、胞間CO2濃度(C),分析植物水分利用效率(WUE=P/T)。每個處理3個重復。
1.3.4 蘿卜生化指標及品質指標
分別在蘿卜生長的幼苗期、葉片生長旺盛期、肉質根生長旺盛期以及貯藏休眠期對各處理植株葉片的葉綠素、氮含量測定。葉綠素含量的測定采用分光光度法[22];葉片氮含量的測定采用靛酚比色法[23]。蘿卜收獲后,對肉質根可溶性糖、維生素A的含量進行測定,可溶性糖含量的測定采用蒽酮比色法[24],維生素A含量的測定采用高效液相色譜法[25]。
所得數據使用WPS Office以及IBM SPSS Statistics軟件進行各項數據分析(單因素顯著差異性分析為≤0.05)。
種子萌發是植物生長開端,會受到內部自身因素及外部因素影響[26]。由圖1可知,經石墨烯溶液處理(20~100 mg/L)后蘿卜種子的發芽率均高于對照,表明適宜石墨烯濃度可促進蘿卜種子萌發。在整個發芽過程中,G-40處理蘿卜種子的發芽率最高,其次是G-100和G-20。培養至7 d時,G-20、G-40、G-100處理蘿卜種子發芽率比對照(CK)分別提高6.7%,26.7%和24.0%。

注:CK、G-20,G-40,G-100分別代表石墨烯濃度0、20、40、100 mg·L-1。下同。
種子胚根長度變化也是衡量種子發芽情況重要指標。從圖2看出,不同濃度石墨烯處理蘿卜種子的胚根長度均高于對照,G-40與G-100處理對蘿卜種子胚根生長促進效果尤為顯著。試驗第3 天時,G-40與G-100處理蘿卜胚根長度比對照分別提高49.1%、50.9%;7 d時G-40與G-100蘿卜胚根長度比對照分別提高43.8%和37.5%,G-40與G-100間無顯著性差異(>0.05)。整體上,石墨烯溶液處理對蘿卜種子胚根生長影響與對發芽率影響趨勢基本一致,結合發芽率,G-40處理(即石墨烯濃度為40 mg/L)對蘿卜種子萌發促進效果最好。
吳金海等[27]研究發現5~100 mg/L氧化石墨烯處理可顯著促進甘藍型油菜種子的萌發,Khodakovsk等[28]和Zhang等[4]研究發現,石墨烯對西紅柿種子發芽產生促進作用,可加速種子發芽過程,縮短發芽時間。本研究表明適量石墨烯對蘿卜種子萌發具有促進作用,與上述研究結論一致。

注:不同字母代表不同處理之間差異顯著(P<0.05)。下同。
2.2.1 石墨烯對蘿卜植株生長的影響
播種45 d時蘿卜處葉片生長旺盛期,對不同處理蘿卜生長統計結果列表1。株高方面,G-40>G-100>CK> G-20,其中G-40與CK間有顯著性差異,其余無顯著性差異。觀察各處理的植株葉片數、最大葉片鮮質量和長度數據,發現各處理數據在統計學上無顯著性差異。上述結果表明石墨烯濃度為40 mg/L時對蘿卜植株生長有促進作用,表現在播種45 d時株高比對照提高24.5%,但對植株葉片生長促進作用不顯著。

表1 不同濃度的石墨烯溶液對蘿卜植株株高、葉片數、最大葉片鮮質量、葉片長度的影響
2.2.2 石墨烯對蘿卜葉片光合作用的影響
光合作用是作物生長的重要代謝過程[29],光合作用強弱決定植株的生物量[30-31]。為分析石墨烯影響蘿卜生長的生理原因,對播種45d后各處理葉片光合作用強度測定如表2所示。G-40光合作用各指標數值均最高,G-40處理蘿卜P、T、G及C顯著高于CK,分別提高275.6%,251.1%,214.5%和42.6%;G-100處理T、G顯著高于CK,而P和C與CK無顯著性差異。
水分利用效率(WUE)系指植物消耗單位水量生產出的同化量,是反映植物生長中能量轉化效率的重要指標。分析各處理葉片的WUE值可知,G-20和G-40處理的葉片WUE高于CK,而G-100處理的WUE顯著低于CK(表2),這表明適量石墨烯可提高蘿卜葉片水分利用效率,促進植株能量轉化和生長,而石墨烯施加濃度過高會對植物生長帶來不利影響。

表2 不同濃度石墨烯溶液對蘿卜植株光合作用的影響
注:P是凈光合速率;T是蒸騰速率;C是氣孔導度;C是胞間CO濃度;WUE是水分利用效率。
Note:Pis net photosynthetic rate;Tis transpiration rate;Cis stomata conductance;Cis internal cellular CO2concentration; WUE is water use efficiency.
氣孔作為CO2和水汽進出的共同通道,調節著植物固碳和水分散失的平衡關系,但由于光合產物和水分的運輸系統和方向不同,往往造成氣孔對CO2和水汽擴散不同步,進而影響植物的水分利用效率[32]。本研究中G-40處理各項光合作用指標最高但WUE值低于G-20,這是由于G-40處理下胞間CO2濃度(C)值較G-20增加19.3%,C值升高將減弱蒸騰速率,同時伴隨著WUE值升高[33-34],然而其氣孔導度(C)較G-20增加202.8%,氣孔是蒸騰過程中水蒸氣由內到外的主要出口,影響著蒸騰作用,C值增加引起蒸騰速率的提升[35],綜合C和C的影響最終導致G-40處理葉片的蒸騰速率(T)增加,降低了水分利用效率。
葉片葉綠素的含量與光合作用強度密切相關[36]。幼苗期(30 d)、葉片生長旺盛期(45 d)、肉質根生長旺盛期(65 d)以及貯藏休眠期(90 d)蘿卜葉片葉綠素含量測定結果見圖3。蘿卜生長周期內各處理葉綠素含量都呈現先升高后降低趨勢。葉片生長旺盛期(45 d)時,各處理葉綠素含量差異顯著,其他時期差異補顯著。播種45 d時,G-40處理的葉綠素含量最高,這與前文G-40處理的株高、光合作用指標在所有處理中數值最高的結果相一致。光合作用及葉綠素含量的數據進一步表明,適量的石墨烯能夠提高蘿卜葉片葉綠素含量,促進蘿卜光合作用能力提高,進而促進蘿卜生長。石墨烯促進植物葉片葉綠素含量提高,并促進植物生長,這與其他學者的研究結果一致[37-38]。

圖3 不同濃度的石墨烯溶液對蘿卜葉片葉綠素含量的影響
2.2.3 石墨烯對蘿卜養分吸收及生理生化指標的影響
氮是植物細胞組成和功能代謝必不可少的元素[39],也是植物生長發育過程中需求最大的必須營養元素之一[40-41]。為評估石墨烯對蘿卜生長的影響,蘿卜生長期中對各處理蘿卜葉片中氮(N)的含量測定見圖4,發現各處理蘿卜葉片中N的含量隨著蘿卜生長呈先增高后降低趨勢。結果表明,G-40處理在蘿卜葉片生長旺盛期(45 d)和肉質根生長旺盛期(65 d)均能促進植株對N的吸收,增加了植株體內N的含量,因而對蘿卜生長產生促進作用,該結果也與前文株高、光合作用等研究結果相互印證。

圖4 不同濃度的石墨烯溶液對蘿卜葉片營養元素N含量的影響
有研究表明,石墨烯等碳納米材料能夠提高土壤對氮、磷、鉀等元素的持留作用,并促進植物對養分元素的吸收。隋祺祺等[42]土柱淋溶試驗發現,石墨烯能夠顯著減緩降水、灌溉等對土壤中氮磷鉀的淋溶作用,減少養分元素的流失。高榮光等[43]研究表明,盆栽桃植株施用納米碳后,桃植株葉、枝、根中,元素氮、鉀、鎂、鈣、錳、銅、鋅的含量均高于對照,并推測納米碳的表面效應和小尺寸效應,能增強土壤對肥料的吸附,減少肥料流失、淋失。王小燕等[44]研究表明,納米碳通過改變植株根系周圍的水環境,提高根系活力,并提高土壤脲酶活性,且土壤脲酶活性增加是促進植物對氮素吸收的主要原因。
2.3.1 石墨烯對蘿卜產量的影響
從表3可知,石墨烯各處理的蘿卜單根重量、單根長度雖略高對照,但無顯著性差異。G-20、G-40和G-100的蘿卜產量分別為比對照提高3.6%、13.8%和8.5%,表明適量石墨烯能夠提高蘿卜產量。結合前文發現石墨烯濃度對蘿卜前期生長指標的影響與蘿卜最終產量結果相一致。
國內外學者在石墨烯等碳納米材料對作物產量影響方面有類似報道。趙娜等[45]研究表明施入納米碳溶膠的玉米產量均高于不施溶膠處理。Chakravarty等[46]研究表明200 mg/L石墨烯能明顯促進香菜和大蒜根、莖、葉、花和果實的生長,并最終促進產量提高。

表3 不同濃度石墨烯溶液對蘿卜肉質根長度、質量以及產量的影響
2.3.2 石墨烯對蘿卜品質的影響
蔬菜或作物品質也是農業領域關注的重點。蘿卜肉質根可溶性糖含量和維生素是衡量其品質的重要指標[47],可溶性糖含量和維生素含量越多,蘿卜的口感、營養價值更高,品質更好。由表4可知,石墨烯處理的蘿卜的肉質根的可溶性糖和維生素A含量均有提高,G-20處理可溶性糖、維生素A含量與對照無顯著性差異,G-40和G-100蘿卜肉質根可溶性糖含量均值分別比對照提高54.0%和40.4%,蘿卜肉質根維生素A含量比對照分別提高64.8%和39.5%。

表4 不同濃度石墨烯溶液對蘿卜可溶性糖含量和維生素A含量的影響
本研究設置4個石墨烯濃度水平(0、20、40和100 mg/L),探討石墨烯濃度對蘿卜浸種萌發和田間生長的影響,得出如下結論:
1)石墨烯濃度在20~100 mg/L范圍浸種能有效促進蘿卜種子萌發,表現為發芽率和胚根長度顯著增加,石墨烯濃度為40 mg/L時促進效果尤為顯著。
2)石墨烯施加濃度為40 mg/L時,在蘿卜葉片生長旺盛期可顯著提高葉片葉綠素含量,增強光合作用,提高植株對氮的吸收能力,并促進植株增高。石墨烯濃度過高(100 mg/L)時,會降低葉片的水分利用效率,不利于植株生長。
3)施加石墨烯濃度在20~100 mg/L范圍可提高蘿卜肉質根產量3.6%~13.8%,當濃度為40 mg/L時,能顯著提高肉質根可溶性糖和維生素A含量,改善蘿卜口感,提升營養價值和品質。
綜上,適宜濃度的石墨烯可以促進蘿卜植株生長,提高產量和品質,將石墨烯用于農業生產可以提高經濟效益,具有應用潛力。隨著石墨烯材料制備生產技術和工藝的不斷進步,石墨烯的價格必然會隨之降低,這將為石墨烯在農業領域的規?;瘧脛撛炜赡?。此外,在將石墨烯用于農業生產之前,還需要對其生態環保性和食品安全等進行充分研究和評估。
[1] 劉霞. 石墨烯及其復合材料的制備與性能研究[D]. 北京:東華大學,2016.
Liu Xia. Preparation and properties of graphene based ceramics[D]. Beijing: Donghua University, 2016. (in Chinese with English abstract)
[2] 田甜,呂敏,田旸,等. 石墨烯的生物安全性研究進展[J]. 科學通報,2014,59(20):1927-1936.
Tian Tian, Lv Min, Tian Yang, et al. Progress in biological safety of graphene[J]. Science Bulletin, 2014, 59(20): 1927-1936. (in Chinese with English abstract)
[3] Anjum N A, Singh N, Singh M K, et al. Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (L.)[J]. Science of the Total Environment, 2014, 472: 834-841.
[4] Zhang M, Gao B, Chen J, et al. Effect of graphene on seed germination and seedling growth[J]. Journal of Nanoparticle Research, 2015, 17(2): 1-8.
[5] Begum P, Fugetsu B. Induction of cell death by graphene in Arabidopsis thaliana () T87 cell suspensions[J]. Journal of Hazardous Materials, 2013, 260: 1032-1041.
[6] 劉頓,呂月玲,駱漢. 氧化石墨烯對紫穗槐種子萌發及幼苗生長的影響[J]. 種子,2022,41(1):14-18,37.
Liu Dun, Lv Yueling, Luo Han. Effects of oxidized graphene on seed germination and seedling growth of[J]. Seed, 2022, 41(1): 14-18, 37. (in Chinese with English abstract)
[7] Weng Y N, You Y, Lu Q, et al. Graphene oxide exposure suppresses nitrate uptake by roots of wheat seedlings[J]. Environmental Pollution, 2020, 262: 114224.
[8] Liu S J, Wei H M, Li Z Y, et al. Effects of graphene on germination and seedling morphology in rice[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(4): 2695-2701.
[9] 胡曉飛,趙建國,高利巖,等. 石墨烯對樹莓組培苗生長發育影響[J]. 新型炭材料,2019,34(5):447-454.
Hu Xiaofei, Zhao Jianguo, Gao Liyan, et al. Effect of graphene on growth and development of raspberry tissue culture seedlings[J]. New Carbon Materials, 2019, 34(5): 447-454. (in Chinese with English abstract)
[10] 姚建忠,張占才,薛斌龍,等. 石墨烯對歐洲山楊組培苗不定根表觀形態影響作用的研究[J]. 山西大同大學學報(自然科學版),2018,34(5):1-4.
Yao Jianzhong, Zhang Zhancai, Xue Binlong, et al. Effect of graphene on adventitious roots' of tissue culture seedlings of[J]. Journal of Shanxi Datong University(Natural Science Edition), 2018, 34(5): 1-4. (in Chinese with English abstract)
[11] 劉澤慧,陳志文,趙建國,等. 石墨烯對蠶豆生長發育的效應研究[J]. 首都師范大學學報(自然科學版),2020,41(5):33-39.
Liu Zehui, Chen Zhiwen, Zhao Jianguo, et al. Effect of graphene on the growth and development ofL.[J]. Journal of Capital Normal University (Natural Science Edition), 2020, 41(5): 33-39. (in Chinese with English abstract)
[12] He Y J, Hu R R, Zhong Y J, et al. Graphene oxide as a water transporter promoting germination of plants in soil[J], Nano Research, 2018, 11(4): 1928-1937.
[13] Chen Z, Wang Q Z. Graphene ameliorates saline-alkaline stress-induced damage and improves growth and tolerance in alfalfa (L.)[J]. Plant Physiology and Biochemistry, 2021, 163: 128-138.
[14] 張曉,曹慧芬,趙建國,等. 石墨烯對白榆扦插苗生長和生理生化特征的影響[J]. 山西農業大學學報(自然科學版),2020,40(4):97-103.
Zhang Xiao, Cao Huifen, Zhao Jianguo, et al. Effects of graphene on the physiological, biochemical characteristics and growth of elm (L.) cutting seedlings[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2020, 40(4): 97-103. (in Chinese with English abstract)
[15] Guo X H, Zhao J G, Wang R W, et al. Effects of graphene oxide on tomato growth in different stages[J]. Plant Physiology and Biochemistry, 2021, 162: 447-455.
[16] Zhao L, Wang W, Fu X H, et al. Graphene oxide, a novel nanomaterial as soil water retention agent, dramatically enhances drought stress tolerance in soybean plants[J]. Frontiers in Plant Science, 2022, 13: 810905.
[17] Chen Z W, Zhao J G, Qiao J, et al. Graphene-mediated antioxidant enzyme activity and respiration in plant roots[J]. ACS Agricultural Science & Technology, 2022, 2(3): 646–660.
[18] 蔣月喜,蔣哲,王曉國,等. 碳化石墨烯對朝天椒產量及其根區土壤養分和微生物群落結構的影響[J]. 南方農業學報,2022,53(5):1337-1347.
Jiang Yuexi, Jiang Zhe, Wang Xiaoguo, et al. Effects of carbonized graphene on yield, soil nutrient of rhizosphere and microbial community structure ofL[J]. Journal of Southern Agriculture, 2022, 53(5): 1337-1347. (in Chinese with English abstract)
[19] Younes N A, Dawood M F A, Wardany A A. Biosafety assessment of graphene nanosheets on leaf ultrastructure, physiological and yield traits ofL. andL.[J]. Chemosphere, 2019, 228: 318-327.
[20] Park S, Choi K S, Kim S, et al. Graphene oxide-assisted promotion of plant growth and stability[J]. Nanomaterials, 2020, 10(4): 758.
[21] 彭玉凈,高進華,卞會濤,等. 黃腐酸鉀對春蘿卜生長及產量的影響研究[J]. 腐植酸,2016(1):12-15.
Peng Yujing, Gao Jinhua, Bian Huitao, et al. Effect of potassium fulvic acid potassium on growth and yield of spring radish[J]. Humic Acid, 2016(1): 12-15. (in Chinese with English abstract)
[22] 高俊鳳. 植物生理學實驗指導[M]. 北京:高等教育出版社,2006.
[23] 林桂范. 植物全氮快速測定靛酚比色法[J]. 北方園藝,1988(2):5-7.
Lin Guifan. Indiphenol colorimetry for rapid determination of total nitrogen in plants[J]. Northern Horticulture, 1988(2): 5-7. (in Chinese with English abstract)
[24] 張述偉,宗營杰,方春燕,等. 蒽酮比色法快速測定大麥葉片中可溶性糖含量的優化[J]. 食品研究與開發,2020,41(7):196-200.
Zhang Shuwei, Zong Yingjie, Fang Chunyan, et al. Optimization of anthrone colorimetric method for rapid determination of soluble sugar content in barley leaves[J]. Food Research and Development, 2020, 41(7): 196-200. (in Chinese with English abstract)
[25] 周遠華,陳靜,張立雯,等. HPLC法測定維生素AD微丸中維生素A棕櫚酸酯的有關物質[J]. 中國藥品標準,2022,23(1):40-45.
Zhou Yuanhua, Chen Jing, Zhang Liwen, et al. Determination of related substance of vitamin A palmitate in vitamin AD pellets by HPLC[J]. Drug Standards of China, 2022, 23(1): 40-45. (in Chinese with English abstract)
[26] 段代祥,劉俊華. 重金屬鉛脅迫對綠豆種子萌發及幼苗生長的抑制效應[J]. 種子,2021,40(1):84-87,98.
Duan Daixiang, Liu Junhua. Inhibitory effects of plumbum(Pb) stress on seed germination and seedling growth of mung bean[J]. Seed, 2021, 40(1): 84-87, 98. (in Chinese with English abstract)
[27] 吳金海,焦靖芝,謝伶俐,等. 氧化石墨烯處理對甘藍型油菜生長發育的影響[J]. 基因組學與應用生物學,2015,34(12):2738-2742.
Wu Jinhai, Jiao Jingzhi, Xie Lingli, et al. Effects of graphene oxide on growth and development ofL.[J]. Genomics and Applied Biology, 2015, 34(12): 2738-2742. (in Chinese with English abstract)
[28] Khodakovskaya M, Vaňková R, Malbeck J, et al. Enhancement of flowering and branching phenotype in chrysanthemum by expression ofunder the control of a 0.821 kb fragment of the LEACO1 gene promoter. [J]. Plant Cell Reports, 2009, 28(9): 1351-1362.
[29] 趙黎明,鄭殿峰,馮乃杰,等. 耕作與植物生長調節劑對優質粳稻產量及光合特性的影響[J]. 農業工程學報,2022,38(15):93-103.
Zhao Liming, Zheng Dianfeng, Feng Naijie, et al. Effects of tillage and plant growth regulators on the yield and photosynthetic characteristics of high-quality japonica rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 93-103. (in Chinese with English abstract)
[30] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves[J]. Plant Physiology, 1992, 98(4): 1222-1227.
[31] 邢阿寶,崔海峰,俞曉平,等. 光質及光周期對植物生長發育的影響[J]. 北方園藝,2018(3):163-172.
Xing Abao, Cui Haifeng, Yu Xiaoping, et al. Effects of different lights qualities and photoperiods on plant growth and development[J]. Northern Horticulture, 2018(3): 163-172. (in Chinese with English abstract)
[32] 王建林,于貴瑞,房全孝,等. 不同植物葉片水分利用效率對光和CO2的響應與模擬[J].生態學報,2008,28(2):525-533.
Wang Jianlin, Yu Guirui, Fang Quanxiao, et al. Responses of water use efficiency of nine plant species to light and CO2and it's modeling[J]. Acta Ecologica Sinica, 2008, 28(2): 525-533. (in Chinese with English abstract)
[33] Cohen I, Lichston J E, Macêdo C E C, et al. Leaf coordination between petiole vascular development and water demand in response to elevated CO2in tomato plants[J]. Plant Direct, 2022, 6(1): e371.
[34] Wu Y N, Zhong H X, Li J B, et al. Water use efficiency and photosynthesis ofleaves under drought stress through CO2concentration increase[J]. Journal of Plant Interactions, 2022, 17(1): 60-74.
[35] Xiong Z, Dun Z, Wang Y C, et al. Effect of stomatal morphology on leaf photosynthetic induction under fluctuating light in rice[J]. Frontiers in Plant Science, 2021, 12: 754790.
[36] 印玉明,王永清,馬春晨,等. 利用日光誘導葉綠素熒光監測水稻葉片葉綠素含量[J]. 農業工程學報,2021,37(12):169-180.
Yin Yuming, Wang Yongqing, Ma Chunchen, et al. Monitoring of chlorophyll content in rice canopy and single leaf using sun-induced chlorophyll fluorescence[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 169-180. (in Chinese with English abstract)
[37] 曹慧芬,張曉,趙建國,等. 氧化石墨烯對銀白楊扦插苗生長的影響[J]. 首都師范大學學報(自然科學版),2021,42(3):31-36.
Cao Huifen, Zhang Xiao, Zhao Jianguo, et al. Effects of graphene oxide on the growth ofL. cutting plantlets[J]. Journal of Capital Normal University (Natural Science Edition), 2021, 42(3): 31-36. (in Chinese with English abstract)
[38] 郭緒虎,趙建國,劉建霞,等. 不同濃度石墨烯對藜麥幼苗形態和生理特性的影響[J]. 山西農業科學,2021,49(9):1040-1044.
Guo Xuhu, Zhao Jianguo, Liu Jianxia, et al. Effects of graphene with different concentrations on morphological and physiological characteristics of quinoa seedlings[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(9): 1040-1044. (in Chinese with English abstract)
[39] 楊屹宇,崔爽,張蕓香,等. 油松人工林新生枝葉碳氮磷含量及化學計量比對氮添加的響應[J]. 廣西林業科學,2022,51(1):10-16.
Yang Yiyu, Cui Shuang, Zhang Yunxiang, et al. Responses of C, N and P contents and their stoichiometric ratios of new branches and leaves of Pinus tabulaeformis plantations to N addition[J]. Guangxi Forestry Science, 2022, 51(1): 10-16. (in Chinese with English abstract)
[40] 康靜,韓國棟,任海燕,等. 不同降水條件下荒漠草原植物的養分含量及回收對增溫和氮素添加的響應[J]. 西北植物學報,2019,39(9):1651-1660.
Kang Jing, Han Guodong, Ren Haiyan, et al. Responses of plant nutrient contents and resorption to warming and nitrogen addition under different precipitation conditions in a desert grassland[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(9): 1651-1660. (in Chinese with English abstract)
[41] 袁凱凱,盧苗,李慧敏,等. 基于U弦長曲率的番茄氮肥調控目標區間獲取方法[J]. 農業工程學報,2022,38(11):188-196.
Yuan Kaikai, Lu Miao, Li Huimin, et al. Data acquisition of regulating target range for tomato nitrogen fertilizer using U-chord curvature[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 188-196. (in Chinese with English abstract)
[42] 隋祺祺,焦晨旭,喬俊,等. 石墨烯溶膠配施化肥對土壤中養分流失的影響[J]. 水土保持學報,2019,33(1):39-44.
Sui Qiqi, Jiao Chenxu, Qiao Jun, et al. Effect of combined application of graphene solution and fertilizer on soil nutrient loss, 2019, 33(1): 39-44. (in Chinese with English abstract)
[43] 高榮廣,趙鑫,高曉蘭,等. 納米碳對桃園土壤肥力及植株養分吸收的影響[J]. 落葉果樹,2018,50(3):11-14.
Gao Rongguang, Zhao Xin, Gao Xiaolan, et al. Effects of nano carbon on soil fertility and plant nutrient uptake in peach orchard[J]. Deciduous Fruits, 2018, 50(3): 11-14. (in Chinese with English abstract)
[44] 王小燕,王燚,田小海,等. 納米碳增效尿素對水稻田面水氮素流失及氮肥利用率的影響[J]. 農業工程學報, 2011,27(1):106-111.
Wang Xiaoyan, Wang Yi, Tian Xiaohai, et al. Effects of NMUrea on nitrogen runoff losses of surface water and nitrogen fertilizer efficiency in paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 106-111. (in Chinese with English abstract)
[45] 趙娜,姚玉鵬,劉曉東,等. 不同用量納米碳溶膠對玉米生長及產量的影響[J]. 北方農業學報,2017,45(6):62-66.
Zhao Na, Yao Yupeng, Liu Xiaodong, et al. Effects of different dosages of nano-carbon sol on growth and yield of maize[J]. Journal of Northern Agriculture, 2017, 45(6): 62-66. (in Chinese with English abstract)
[46] Chakravarty D, Erande M B, Late D J. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants[J]. Journal of the Science of Food and Agriculture, 2015, 95(13): 2772-2778.
[47] 肖時運,劉強,榮湘民,等. 不同施氮水平對萵苣產量、品質及氮肥利用率的影響[J]. 植物營養與肥料學報,2006(6):913-917.
Xiao Shiyun, Liu Qiang, Rong Xiangmin, et al. Effects of N applying rates on yield, quality ofand the N use efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2006(6): 913-917. (in Chinese with English abstract)
Effects of graphene soaking and treatment on radish growth and quality
Li Ziwei1, Qiao Jun1,3※, Zhi Caiyan1, Lei Zhenyu1, Huo Jinxian1,2, Zhao Jianguo1,2,3
(1.,037009,; 2.,037009,; 3.,037009,)
Graphene is a new type of carbon nanomaterial with a broad application prospect in modern agriculture in recent years. Most studies have reported that the effect of graphene on the plant growth is closely related to the amount of added graphene. An appropriate concentration can promote the growth of plants, especially the growth of plant roots, and ultimately increase the biomass of plants. However, the high amount of graphene can inhibit the growth of plants. Therefore, it is very necessary to clarify the influence of graphene on the growth and quality of various crops with the great economic value of roots, in order to explore the application potential and value. Taking the radish (a popular fleshy root vegetable crop) as the research object, this study aims to reveal the influence of graphene soaking and treatment on the growth and quality of some root-utilizing crops. A scientific basis was also provided for the graphene application in the high-efficiency and high-quality cultivation of radish. Four concentrations of graphene (0, 20, 40, and 100 mg/L) were used to treat the radish seeds and irrigate soil. An analysis was then made on the effects on the radish seed germination and field planting. In the seed germination experiment, the germination rate of radish seeds was counted to measure the bacon length, in order to characterize the effect of graphene on the radish seed germination. In the field planting experiment, the effect of graphene on the radish growth was evaluated to measure the plant height, leaf number, leaf fresh weight, and leaf length. Some photosynthetic parameters were measured to calculate the leaf Water Use Efficiency (WUE), leaf nitrogen content, fleshy root yield and weight, soluble sugar and vitamin A content, further to comprehensively evaluate the effect of graphene on the radish yield and quality. The results showed that the concentration of graphene in the range of 20-100 mg/L was greatly promoted the germination of radish seeds, where the 40 mg/L graphene presented the most significant effect. Furthermore, the growth of radish plants was significantly improved, when the concentrations of graphene were 20 and 40 mg/L in the field experiment. There was an increase in the chlorophyll content, enhanced photosynthesis, and the leaf WUE. Among them, the WUE referred to the light and function that produced by the unit transpiration water consumption of leaves. The higher WUE value indicated the stronger drought resistance of plants. Specifically, there was the higher WUE of radish leaves that treated with 20 and 40 mg/L graphene, whereas the lower with the 100 mg/L graphene, compared with the control. All graphene treatments were promoted the absorption of N by plants in the main growth and development stage of radish. A leading role of N component was found in the plant life activities, crop yield, and quality, particularly in many important organic compounds, such as the enzymes and protein, nucleic acids, vitamins, alkaloids, and plant hormones. Therefore, the graphene was applied to increase the yield of radish fleshy roots by 3.6%-13.8%. There was also an increase in the contents of soluble sugar and vitamin A. The soluble sugar was the direct product of plant photosynthesis for the normal physiological activities and functions of cells in the plant carbon metabolism. The main process was dominated by the plant growth and development, yield and quality. Vitamin A was also closely related to the plant growth and cell division. Consequently, the graphene with the appropriate concentration can be expected to promote the radish seed germination and plant growth. As such, the absorption of nutrients can also be improved in the radish plant for the high yield and quality. Anyway, the graphene has great an application potential in the high-efficiency and high-quality cultivation of radish in agricultural production.
crops; experiment; graphene; growth; quality; radish
10.11975/j.issn.1002-6819.2022.19.010
S529
A
1002-6819(2022)-19-0087-07
李紫薇,喬俊,支彩艷,等. 石墨烯浸種處理對蘿卜生長和品質的影響[J]. 農業工程學報,2022,38(19):87-93.doi:10.11975/j.issn.1002-6819.2022.19.010 http://www.tcsae.org
Li Ziwei, Qiao Jun, Zhi Caiyan, et al. Effects of graphene soaking and treatment on radish growth and quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 87-93. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.19.010 http://www.tcsae.org
2022-08-03
2022-09-21
國家自然科學基金項目(52071192);中央預算內投資項目(晉發改審批發〔2021〕118號);大同市重點研發項目(2019023)
李紫薇,研究方向為碳納米材料對植物生長的影響。Email:1750252141@qq.com
喬俊,博士,副教授,研究方向為環境化學、碳納米材料對環境影響。Email:qiaojun_nk@163.com