999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

生物質熱解過程中氮遷移轉化機理研究進展

2022-02-06 00:58:42黃思彪肖庭熠卿夢霞
農業工程學報 2022年19期

劉 亮,鄭 揚,黃思彪,肖庭熠,田 紅,卿夢霞

生物質熱解過程中氮遷移轉化機理研究進展

劉 亮,鄭 揚,黃思彪,肖庭熠,田 紅,卿夢霞※

(長沙理工大學能源與動力工程學院,長沙 410114)

生物質熱解產物中熱解氣和熱解油具有較高能源利用價值,可作為替代燃料或化工原料,但伴隨熱解過程遷移至熱解氣/油中的氮元素不僅會影響其品質,熱解氣/油進一步利用后也會污染大氣環境。該研究圍繞生物質資源制備清潔能源的總目標,系統分析生物質熱解過程中氮遷移轉化機理,重點論述氣相氮、液相氮和焦炭氮的生成與轉化機理。通過總結前人研究,得出生物質熱解氣中的含氮物質主要為HCN、NH3等,其中NH3主要來源于氨基酸熱解釋放的氨基以及HCN在焦炭表面的水解轉化;HCN主要來源于腈、含氮雜環等一次熱解產物的二次裂解;熱解油中的含氮物質主要為含氮雜環、腈與酰胺,其中含氮雜環主要由部分氨基酸片段或氨基酸間的脫水縮合反應產生;腈主要來源于氨基酸分子脫H2反應以及酰胺脫H2O反應;酰胺主要來源于NH3與羧基的置換反應。不同生物質種類與熱解工況下氮的遷移轉化特性復雜多樣,生物質種類以及熱解過程中的壓力、停留時間、升溫速率、溫度、熱解氣氛、粒徑、催化劑等因素均會影響熱解過程中氮的遷移轉化路徑,最終影響生物質熱解氣/油中含氮物質的組成及分布。進一步提出生物質熱解過程中氮排放控制未來研究方向,以期為實現農村生物質資源高效清潔利用提供參考。

生物質;熱解;氣相氮;液相氮;焦炭氮;NO

0 引 言

生物質具備分布廣泛、易于存儲運輸、近零排放等優點,在世界能源戰略中的地位日益凸顯[1]。生物質廢棄物轉化為生物能源主要有熱化學和生物化學2種途徑,其中,熱解技術可以減少土地資源占用且適用性廣,是生物質資源化利用中最有前景的技術之一[2]。生物質熱解產物中的熱解氣與熱解油可作為能源燃料或化工原料,其中熱解氣可直接作為高熱值可燃氣;熱解油可直接作為液體燃料,其中含有吲哚、酰胺等也是重要的化工原料[3]。

生物質中蘊含豐富的氮元素[4],其在熱解過程中會遷移至熱解氣/油等產物中,轉化為相應的NO前驅物或其他含氮物質。NO前驅物存在于熱解氣中,主要為HCN、NH3和HNCO,其中NH3被吸入肺后容易通過肺泡進入血液,與血紅蛋白結合,破壞運氧功能;HCN是一種劇毒氣體,嚴重危害人體健康。NO前驅物在空氣中燃燒又會轉化為NO,嚴重影響人體健康與環境安全[5]。而含氮物質主要以含氮雜環、腈與酰胺等形式存在于熱解油中,其含量過高時會影響熱解油品質[6]。部分含氮雜環高溫下易分解生成HCN與HNCO,腈具有生物毒性,且高溫下易分解生成HCN[7]。

生物質作為未來重要的清潔能源,掌握其熱解過程中N的遷移轉化路徑與規律,有助于控制其熱解過程中控制含氮物質向熱解氣/油中的轉化,對生物質能源的高效化、清潔化利用具有重要意義。

1 生物質中氮的賦存形態

生物質中氮元素主要賦存于蛋白質中,約占生物質中氮總量的60%~80%;有5%的氮以游離形態的氨基酸形式存在;其余則存在于核酸、葉綠素、酶、維生素和激素等物質中[8]。不同生物質中蛋白質氮含量略有差異,如:稻殼與豆萁中蛋白質氮含量高達92%~97%,木質生物質中為70%~77%,而麥秸、煙草中蛋白質氮僅含約62%[9]。農業廢棄物(麥稈、水稻秸稈、玉米秸稈)中的蛋白質含量低于食品廢物(豬肉、牛肉、大豆),其熱解氣/油中含氮物質相對更少[10-12]。

生物質中蛋白質由多種氨基酸組成,不同生物質中各氨基酸含量顯著不同,但相對占比基本相當[10-12],可為生物質含氮物質模型中氨基酸種類與占比的初步確定提供依據。總體而言,谷氨酸(Glu)與天冬氨酸(Asp)為各生物質中主要的氨基酸物質,而半胱氨酸(Cys)、組氨酸(His)、色氨酸(Trp)與甲硫氨酸(Met)在生物質中的含量相對較低[10-12]。

生物質中各氨基酸由于R基的不同,其化學性質也有所不同,導致熱解過程中反應產物差異顯著。表1為常見生物質中氨基酸的分類,主要可分為極性氨基酸、非極性氨基酸、芳香類氨基酸和雜環亞氨基酸4類[13]。極性氨基酸中谷氨酸(Glu)和天門冬氨酸(Asp)的含量較高,這些氨基酸具有長側鏈,易發生脫水縮合反應而生成多種雜環化合物[14];而非極性氨基酸中亮氨酸(Leu)與丙氨酸(Ala)含量較高,這些氨基酸易發生脫水縮合反應生成哌嗪二酮類化合物(Diketopiperazines,DKPs)[15];芳香類氨基酸中苯丙氨酸(Phe)熱解易產生芳香族化合物[16];雜環亞氨基酸中酪氨酸(Tyr)熱解主要產生酚類物質[17]。不同氨基酸熱解過程中的反應路徑及產物均有不同,生物質的熱解反應機理可通過選擇相應的氨基酸構建含氮模型化合物開展試驗與模擬。

表1 常見生物質中各氨基酸的分類[13]

2 生物質熱解過程氮轉化機理

2.1 NOx前驅物的生成機理

生物質熱解過程中氮元素會在氣相、液相與固相產物中遷移,轉變為相應的氣相氮、液相氮與焦炭氮。NO前驅物一方面直接來源于氣相氮,也可由液相氮與焦炭氮的進一步轉化生成。

2.1.1 氣相氮轉化為NO前驅物

氣相氮主要有2個來源:一是生物質中的蛋白質等含氮物質直接一次裂解生成;二是蛋白質等一次裂解后形成的雜環化合物隨著溫度升高后繼續分解產生[18-19],其中NH3、HNCO、HCN是NO前驅物[20-21]。NO前驅物進一步反應后主要轉化為NO,但是在一定條件下也可以轉化為N2。氣相氮對NO的產生具有直接影響[22],因此,了解氣相氮的生成機理對生物質的清潔利用具有重要意義。

氣相氮在生物質熱解轉化過程中的來源略有不同。如圖1所示,NH3主要有2個來源[23]:一是生物質中氨基酸熱解釋放的氨基(路徑1),這是熱解初期NH3的主要來源;二是HCN與H2O在焦炭的催化作用下反應生成NH3與CO[24-25](路徑6)。溫度的升高會促進NH3的析出,導致停留在焦炭表面參與反應的NH3減少[26],因此通過轉化的HCN也隨之減少。HCN主要有3個來源:一是生物質一次熱解中生成的各種含氮雜環隨著溫度進一步分解生成[24](路徑3);二是高溫下熱解油中腈類物質二次裂解生成[7](路徑2);三是熱解油中的環酰胺進一步分解生成[27]。隨熱解溫度升高,NH3和HCN的生成量均增加[18]。但不同升溫速率下其生成特性有所不同,低升溫速率下NH3是主要產物,而高升溫速率下HCN是唯一產物,在高溫環境下,生成NH3的主要途徑來自氣態HCN在焦炭催化作用下與氫自由基的反應,因此當溫度逐漸升高時HCN會快速減少而NH3則快速增加[28]。HNCO化學性質不穩定、具有毒性、且缺少標準標定光譜,因此難以分析其生成路徑以及生成量。有研究認為,熱解生成的HNCO含量非常少,且易還原成HCN,所以對NO生成影響較小[19]。

圖1 NOx前驅物的生成路徑[18-19]

2.1.2 液相氮轉化為NO前驅物

液相氮中含量較高的物質有五元環氮、六元環氮、甲基吡啶、喹啉和多環含氮化合物,這些物質主要來源于氨基酸熱解[29]。液相氮含量與組分特性受生物質成分影響,如纖維素會促進氮元素向液相氮中的遷移。此外,熱解條件也會改變液相氮的遷移轉化,如反應溫度的升高則會導致液相氮向氣相氮的轉化,但不同溫度條件下其轉化產物差異明顯[30]。在400~800 ℃溫度范圍內,溫度升高會促進生物油進一步裂解生成HCN和NH3,但當溫度超過600 ℃時,HCN的產率高于NH3[31]。當反應溫度超過1 000 ℃時,熱穩定性強的含氮物質易生成NH3,熱穩定性弱的則生成HCN[32]。多環含氮化合物比單環含氮化合物具有更好的熱穩定性,更易轉變為NH3[33]。此外,熱解氣氛也會影響液相氮向氣相氮的轉化特性,如在較低氣體溫度及高水蒸汽條件下易生成NH3,而高氣體溫度和低水蒸汽條件下則易生成HCN[34]。

2.1.3 焦炭氮轉化為NOx前驅物

焦炭氮中的N元素主要以N-C、N-H鍵的形式存在[35]。當熱解溫度達到900 ℃時,生物質中仍有30%的N存在于焦炭中[18]。焦炭氮主要來源于氨基酸的分子內脫水成環反應、分子間脫水成環反應[36-37]和蛋白質側鏈間的相互反應[38]。隨著熱解反應的進行,焦炭氮在高溫下會繼續裂解,轉化為氣相氮,此時,若反應氣氛中有足夠的H自由基,焦炭氮會與H自由基反應生成NH3[39](路徑5),反之則更傾向于生成HCN[40](路徑4)。在熱解過程中加入適量的H2O可生成H自由基,從而有助于降低HCN的生成[41]。

2.2 熱解油中含氮物質的生成機理

生物質中氮元素向熱解油中的遷移轉化機理如圖2所示,其主要產物為含氮雜環、腈與酰胺等物質[6]。

含氮雜環主要有吡啶、吡咯、DKPs、吲哚以及多種五、六元環化合物[26]。含氮雜環直接來源于蛋白質的裂解,其中吡咯主要由脯氨酸和賴氨酸片段組成[42];DKPs通常由蛋白質的2個氨基酸之間的脫水縮合反應生成[15];吡咯、吡啶和哌啶類化合物也來源于蛋白質片段的縮合反應[42];吲哚主要由色氨酸和苯丙氨酸轉化而來[17](路徑1、2),其中色氨酸通過R基的斷裂可以直接生成吲哚,苯丙氨酸通過氨基與苯環環化反應以及脫羧基反應生成吲哚;含氮五元環或六元環主要通過部分具有長側鏈的氨基酸如谷氨酸、天冬氨酸等發生脫水縮合反應生成[14](路徑6、7)。隨著熱解反應的進行,部分含氮雜環會隨溫度升高而裂解,而超過6個環的多環化合物,因具有較好的熱穩定性,高溫時不易裂解[17]。

腈類物質主要通過氨基酸分子脫H2反應以及酰胺脫H2O反應生成(路徑9、10)[43-44]。其中,脫H2反應能壘較高,反應要吸收大量的熱,溫度升高會促進腈類物質的生成。但高溫下腈類物質自身會發生裂解反應[21],導致其最終生成量逐漸下降。

酰胺類物質主要由NH3與羧基通過置換反應生成[43-44](路徑8)。生物質熱解油中的酰胺多具有長鏈結構,長鏈酰胺隨著溫度的升高會裂解成短鏈酰胺[14]。高溫環境會促進酰胺發生脫H2O反應生成腈類物質[43]。此外,高溫會促使熱解氣中NH3直接析出而不與羧基反應,降低酰胺類物質生成[26]。

圖2 生物質熱解油中含氮組分的生成路徑[18-19]

3 影響氮遷移路徑的因素

不同生物質組分及其中的氮含量與分布均有所不同,這必將導致不同生物質熱解過程中含氮物質的遷移轉化路徑不同。此外,熱解過程中的壓力、停留時間、升溫速率、熱解溫度、熱解氣氛、粒徑與催化劑等因素也會影響相應的氮的遷移轉化特性[45]。表2給出了上述因素對N轉化的影響。

3.1 生物質種類

生物質主要由木質素、纖維素、半纖維素、蛋白質與淀粉等組分組成,其在熱解過程中極易發生相互反應而影響N的遷移轉化,如糖類物質易與蛋白質或氨基酸發生美拉德反應[46],促進各種含氮化合物的生成,木質素易與蛋白質或氨基酸發生聚合反應[47],促進N在熱解油及熱解焦中的固定,這些相互作用均會影響氮的遷移路徑。由于不同生物質中的各組分含量占比不同,相應的熱解產物組成特性也存在差異。如餐廚垃圾熱解生成的氣相氮與液相氮高于農林廢棄生物質[4];農林廢棄生物質中棉稈熱解產生的焦炭氮含量低于水稻秸稈,但氣相氮含量高于玉米稈[48]。

表2 不同因素對N轉化的影響

生物質中氨基酸與木質素和纖維素等其他組分間的反應也會影響熱解產物的組成與分布特性。天冬氨酸與纖維素、半纖維素或木質素共熱解過程中,產生的NH3和HCN高于天冬氨酸單獨熱解;脯氨酸與纖維素、半纖維素或木質素共熱解過程中,產生的HCN高于脯氨酸單獨熱解[47];木質素、纖維素與氨基酸共熱解時發生的美拉德反應減少了氮向生物油的轉化,從而提高熱解油的品質[49];葡萄糖與苯丙氨酸、谷氨酸共熱解時均以聚合反應為主,生成大量的含氮雜環[46];天冬酰胺與葡萄糖共熱解過程中,生成的HCN高于天冬酰胺單獨熱解,而生成的NH3和HNCO則會下降[50]。葡萄糖、果糖與甘氨酸共熱解時生成的HCN低于甘氨酸單獨熱解[51]。不同氨基酸與生物質中其他典型組分間相互作用對控制HCN或NH3的排放以及提高熱解油的品質具有一定作用。

生物質蛋白質中不同的氨基酸間也存在相互作用,從而影響含氮物質的遷移轉化過程。如谷氨酸與甘氨酸共熱解時焦炭氮增加;谷氨酸與亮氨酸共熱解時氣相氮減少,且主要為NH3;谷氨酸與脯氨酸共熱解時氣相氮中HCN含量高于NH3;谷氨酸與苯丙氨酸共熱解時HCN生成溫度降低且生成量顯著下降[52]。不同氨基酸間的相互作用各不相同,生物質中蛋白質的熱解反應過程復雜,單一采用1種或幾種氨基酸作為含氮模型化合物并不能充分研究N的遷移轉化路徑。直接選用蛋白質作為含氮模型化合物可探究各氨基酸在熱解過程中的相互作用,減小實際生物質與模型化合物熱解特性間的差異。

此外,生物質中存在少量具有催化作用的礦物質,其對生物質熱解過程中氮的遷移轉化也會產生影響[53-54]。生物質中許多礦物元素都可以促進焦炭氮向HCN的轉化[55];鉀、鈣或鐵可以改變氨基酸的初級分解反應途徑,進而改變DKPs的二級裂解途徑[55];鉀離子還可以促進大分子液相氮發生重聚反應,增加氣相氮與焦炭氮的生成量[56]。

3.2 升溫速率

升溫速率的變化會改變生物質熱解初始反應路徑,從而影響熱解產物的組成及分布特性[57]。低升溫速率下,氣相氮的生成量較低,液相氮的生成量較高。升溫速率提高會促進液相氮的裂解而導致氣相氮生成量增加[58],其中丙氨酸、亮氨酸、異亮氨酸、脯氨酸等熱解生成HCN的量均隨著升溫速率的提高而增加[59]。高升溫速率下焦炭表面孔隙更為豐富,有助于氣相氮快速析出,但熱解過程焦炭產率基本不變[60]。此外,升溫速率對生物質不同典型組分熱解特性的影響存在差異,如較低的升溫速率下木質素會促進氣相氮的生成,而纖維素則促進了液相氮的生成[61]。總體而言,較高的升溫速率會促進生物油裂解生成NO前驅物,低升溫速率條件下有助于熱解油的生成。

3.3 熱解溫度

生物質熱解過程中熱解溫度的升高會促進熱解油與熱解焦的二次裂解,促進氣相氮的生成,但不同溫度下液相氮與焦炭氮的生成轉化特性顯著不同[62-63]。

當溫度低于500 ℃時,溫度升高促進了液相氮的生成;當溫度高于500 ℃時,溫度升高反而抑制了其生成[33]。低溫下,溫度升高促進熱解反應過程,一次熱解生成的液相氮含量不斷增加;當溫度超過500 ℃時,生物油及其中的液相氮自身開始分解,且隨著溫度的升高其分解速率不斷加快[64-65]。由上述可知,高溫會促進氣相氮的生成并減少生物油的產量,而低溫則會導致熱解不完全。因此,選擇合適的熱解溫度對提高熱解油產量以及減少氣相氮的產生具有重要意義。

焦炭氮的生成量隨著溫度的升高也呈現出先上升后下降的趨勢,高溫會使焦炭氮轉化為氣相氮[66],但隨溫度升高焦炭中剩余的焦炭氮熱穩定性逐漸上升[67]。焦炭中的N大多以吡咯啉-N、吡啶-N、季銨鹽-N和吡啶-N-O的形式存在。這些物質的熱穩定性排序為:吡咯啉-N<吡啶-N<季銨鹽-N<吡啶-N-O[66]。

3.4 熱解氣氛

熱解氣氛會影響生物質熱解反應過程,熱解過程中加入水蒸氣加入提高了H自由基含量而促進NH3的產生,且提高了熱解氣中氫氣產率[68]。熱解氣氛中O2的加入與H2O具有相似的作用,在O2與H2O氣氛下,生物質熱解過程中會生成大量的OH、O、H自由基,從而促進HCN向NH3的轉化[69]。在麥稈的熱解過程中,發現CO2可促進氮析出,增加N2的產量,同時減少焦炭氮與氣相氮的生成[70]。熱解過程中加入H2能夠促進液相氮的裂解[71],而NH3的加入則會導致液相氮生成量大幅上升[72]。不同的反應氣氛對生物質熱解過程影響不同,合適的調控反應氣氛可實現生物質熱解過程中氮的選擇性控制。

3.5 停留時間與壓力

熱解反應的停留時間對氮元素遷移轉化產生的影響可以分為2種:固相反應物停留時間與氣相產物停留時間。在相同的工作溫度和加熱頻率下,隨著固相反應物停留時間的縮短,焦炭氮含量降低,氣相氮含量增加。氣相產物停留時間一般不影響生物質的一次熱解,但是會影響焦油氮的二次裂解。氣相產物停留時間越長,焦油氮的二次裂解反應越劇烈,導致焦油氮向氣相氮發生顯著轉化[73-74]。

壓力的大小通過影響氣相產物停留時間來影響熱解產物的二次裂解,壓力越大氣相氮與液相氮的停留時間越長,導致相應的液相氮二次裂解反應時間更長。此外,當壓力逐漸升高時,生物質熱解反應活化能逐漸減小,熱解反應會更劇烈[75]。

3.6 粒 徑

生物質粒徑越大,熱解過程揮發分析出越慢,氣相氮的生成量大幅度增加,液相氮與焦炭氮的生成量減少[62]。生物質的粒徑是作用于熱解過程中的升溫速率以及傳熱傳質從而改變熱解產物[76]。較小的粒徑會促進熱解反應的進行,增加氣相氮的生成。較大的粒徑會增加生物質的加熱時間,導致含氮化合物長時間在低溫下熱解,生成大量的焦炭氮和不可冷凝氣體[77]。因此,適當增大生物質的粒徑有利于減少熱解過程中氣相氮的生成。

3.7 催化劑

催化劑的添加可以減少熱解所需時間,降低熱解所需溫度,對熱解過程中氮元素的遷移轉化具有顯著的影響[78]。

Fe2O3、Co3O4和NiO均可以促進液相氮的生成,其中Co3O4的促進效果更顯著[79]。赤泥中的Fe3O4能夠降低生物質熱解油中含氮化合物的含量[80]。CaCO3可減少熱解后剩余焦炭氮含量,增加氣相氮和液相氮的生成量[81]。CaO能促進焦炭中氮的固定,降低反應活化能并強烈抑制NH3和HCN的析出[82],相比于HCN,CaO對NH3的抑制作用更大[83]。鐵鹽類催化劑能夠促進生物質的熱解,增加焦炭氮的含量[84]。KCl能夠促進焦炭氮的生成[56]。此外,近些年一些新型催化劑逐漸被廣泛使用,如生物炭以及分子篩催化劑。松木鋸末焦炭(PSC)催化劑可以有效地抑制高溫下焦油中大分子化合物的縮聚反應,從而減少液相氮的產生[71]。HZSN-5分子篩催化劑能夠促進大分子液相氮的裂解,減少液相氮的生成[80]。

不同催化劑的催化效果差異較大,選擇合適的催化劑對提高熱解油的質量與產量,減少NO前驅物的生成具有重要作用。

4 結 論

本文針對生物質熱解過程中氮元素的遷移轉化機理對前人的研究進行了歸納與總結,對熱解過程中NO前驅物以及熱解油中典型含氮物質的產生機制進行了分析并結合相應的機理圖進行解釋說明;對生物質種類、升溫速率、熱解溫度、熱解氣氛、停留時間、壓力、粒徑與催化劑等外部因素對熱解過程中氮元素遷移的影響進行了歸納與總結,具體結論如下。

1)生物質熱解過程中氮元素會遷移至三相產物中。其中,熱解氣中的含氮物質主要是NH3與HCN;熱解油中的含氮物質主要是含氮雜環、腈與酰胺。

2)氣相氮中NH3主要來源于氨基酸熱解釋放的氨基以及HCN在焦炭表面的水解轉化,HCN主要來源于腈、含氮雜環等一次熱解產物的二次裂解。

3)液相氮中含氮雜環主要由部分氨基酸的片段以及氨基酸間的脫水縮合生成。腈主要來源于氨基酸分子脫H2反應以及酰胺的脫H2O反應。酰胺主要由NH3與羧基的置換反應生成。

4)生物質種類以及熱解反應參數如升溫速率、熱解溫度、熱解氣氛、停留時間、壓力、粒徑、催化劑等均會影響氮的遷移路徑,最終改變熱解產物中氮的組成與分布特性。

5)有效控制生物質中氮元素向熱解氣與熱解油中的遷移轉化是實現其高效清潔燃燒的重要問題之一。但現階段煙氣中的NO常采用尾部脫除技術,無法從根源上減少污染物的排放;通過總結現有研究發現熱解油中含氮組分多樣,且不同含氮物質的遷移轉化特性存在差異,難以通過單一控制某一參數實現液相氮的控制。因此,探究生物質熱解過程中氣相氮的遷移轉化路徑以減少NO前驅物的生成,通過控制熱解參數、生物質摻混熱解等調控減少熱解油中含氮物質的生成是未來生物質熱解技術需關注的重點方向。

[1] 單明. 生物質能開發利用現狀及挑戰[J]. 可持續發展經濟導刊,2022(4):48-49.

Shan Ming. Current situation and challenge of biomass energy development and utilization[J]. China Sustainability Tribune, 2022(4): 48-49.(in Chinese with English abstract)

[2] 王芳,劉曉風,陳倫剛,等. 生物質資源能源化與高值利用研究現狀及發展前景[J]. 農業工程學報,2021,37(18):219-231.

Wang Fang, Liu Xiaofeng, Chen Lungang, et al. Research status and development prospect of energy and high value utilization of biomass resources[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2021, 37(18): 219-231. (in Chinese with English abstract)

[3] 李志成,王輝輝,買文鵬,等. 酰胺的合成方法綜述[J]. 廣東化工,2013,40(3):62-63,90.

Li Zhicheng, Wang Huihui, Mai Wengpeng, et al. Synthetic methods of the amide[J]. Guangdong Chemical Industry, 2013, 40(3): 62-63, 90. (in Chinese with English abstract)

[4] Qing M X, Long Y T, Luo Y D, et al. Insights into the slagging process during the utilization of food waste: Ash-making temperature and additives[J]. Chemical Engineering Science, 2022, 255: 117680.

[5] 仉利,姚宗路,趙立欣,等. 生物質熱解制備高品質生物油研究進展[J]. 化工進展,2021,40(1):139-150.

Zhang Li, Yao Zonglu, Zhao Lixin, et al. Research progress on preparation of high quality bio-oil by pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 139-150. (in Chinese with English abstract)

[6] 董長青,楊勇平,高攀,等. 生物質熱解過程中含氮模型化合物研究進展[J]. 環境污染與防治,2019,41(1):110-117.

Dong Changqin, Yang Yongping, Gao Pan, et al. The mechanism of nitrogen conversion during the pyrolysis of biomass: A review of model compounds study[J]. Environmental Pollution and Control, 2019, 41(1): 110-117. (in Chinese with English abstract)

[7] 龔千代. 甘氨酸與DKP高溫熱解含氮產物生成機理研究[D]. 長沙:長沙理工大學,2017.

Gong Qiandai. Mechanistic study on the generation of nitrogen-containing products from high-temperature pyrolysis of glycine and DKP[D]. Changsha: Changsha University of Technology, 2017. (in Chinese with English abstract)

[8] Yuan S, Chen X, Li W, et al. Nitrogen conversion under rapid pyrolysis of two types of aquatic biomass and corresponding blends with coal[J]. Bioresource Technology, 2011, 102(21): 10124-10130.

[9] 王鵬,朱立軍,尚軍,等. 國內外不同卷煙總氮、蛋白質氮、總植物堿氮的差異分析[J]. 湖北農業科學,2011,50(7):1406-1407,1410.

Wang Peng, Zhu Lijun, Shang Jun, et al. The variation analysis of total nitrogen, proteinnitrogen, nicotine nitrogen contents in different cigarettes[J]. Hubei Agricultural Science, 2011, 50(7): 1406-1407, 1410. (in Chinese with English abstract)

[10] 陳超,唐潔,姜濤,等. 不同類型玉米氨基酸組成及含量的比較分析[J]. 糧食儲藏,2020,49(4):38-41.

Chen Chao, Tang Jie, Jiang Tao, et al. Comparative analysis of amino acid composition and content in different maize[J]. Grain Storage, 2020, 49(4): 38-41. (in Chinese with English abstract)

[11] 歐行奇, 李新華, 朱彬. 甘薯莖尖與常見葉菜類蔬菜氨基酸含量及組成的比較分析[J]. 氨基酸和生物資源,2007,29(3):5.

Ou Xingqi, Li Xinhua, Zhu Bin. Comparison of amino acid content and composition between vegetable sweet potato tips and leaf vegetables[J]. Amino Acids & Biological Resources, 2007, 29(3): 5. (in Chinese with English abstract)

[12] Dhyani V, Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass[J]. Renewable Energy, 2018, 129: 695-716.

[13] 陳德民. 生物質中氮賦存形式與熱解過程氮遷移轉化實驗研究[D]. 武漢:華中科技大學,2016.

Chen Demin. Experimental Study on Nitrogen Fugitive Forms in Biomass and Nitrogen Migration Transformation during Pyrolysis[D]. Wuhan: Huazhong University of Science and Technology, 2016. (in Chinese with English abstract)

[14] Kang P, Qin W, Fu Z Q, et al. Generation mechanism of NOand N2O precursors (NH3and HCN) from aspartic acid pyrolysis: A DFT study[J]. International Journal of Agricultural and Biological Engineering, 2017, 99: 169-176.

[15] Fabbri D, Adamiano A, Falini G, et al. Analytical pyrolysis of dipeptides containing proline and amino acids with polar side chains. Novel 2,5-diketopiperazine markers in the pyrolysates of proteins[J]. Journal of Analytical & Applied Pyrolysis, 2012, 95: 145-155.

[16] 田紅,何正文,劉亮,等. 基于量子化學理論的苯丙氨酸熱解過程中NO前驅體生成機理研究[J]. 太陽能學報,2021, 42(10): 317-323.

Tian Hong, He Zhengwen, Liu Liang, et al. Study on formation mechanism of NOprecursor in pyrolysis process of phenylalanine based on quantum chemidtry theory[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 317-323. (in Chinese with English abstract)

[17] Kim Y M, Han T U, Lee B, et al. Analytical pyrolysis reaction characteristics of Porphyratenera[J]. Algal Research, 2018, 32: 60-69.

[18] 柏繼松. 生物質燃燒過程氮和硫的遷移、轉化特性研究[D]. 杭州:浙江大學,2012:49.

Bai Jisong. Migration and Transformation Characteristics of Nitrogen and Sulfur During Biomass Combustion[D]. Hangzhou: Zhejiang University, 2012: 49. (in Chinese with English abstract)

[19] Zhou J Q, Gao P, Dong C Q, et al. TG-FTIR analysis of nitrogen conversion during straw pyrolysis: A model compound study[J]. Journal of Fuel Chemistry and Technology, 2015, 43(12): 1427-1432.

[20] Wang X, Tang X H, Yang X Y. Pyrolysis mechanism of microalgae Nannochloropsis sp. based on model compounds and their interaction[J]. Energy Conversion and Management, 2017, 140: 203-210.

[21] 劉亮,龍雨田,卿夢霞,等. 餐廚垃圾典型組分的熱解產物分布特性[J]. 可再生能源,2022,41(3):11-16.

Liu Liang, Long Yutian, Qing Mengxia, et al. Distribution characteristics of pyrolysis products of typical kitchen waste fractions[J]. Renewable Energy, 2022, 41(3): 11-16. (in Chinese with English abstract)

[22] Li D, Gao S Q, Song W L, et al. NO reduction in decoupling combustion of biomass and biomass-coal blend[J]. Energy & Fuels, 2009, 23(1): 224-228.

[23] Ren Q Q, Zhao C S. NOand N2O precursors from biomass pyrolysis: Role of cellulose, hemicellulose and lignin[J]. Environmental Science & Technology, 2013, 47(15): 8955-8961.

[24] Kang P, Qin W, Fu Z Q, et al. Generation mechanism of NOand N2O precursors (NH3and HCN) from aspartic acid pyrolysis: A DFT study[J]. International Journal of Agricultural and Biological Engineering, 2017, 99: 169-176.

[25] 周建強,高攀,董長青,等. 固體生物質燃燒中氮氧化物產生機理綜述[J]. 熱力發電,2018,47(12):1-9,16.

Zhou Jianqiang, Gao Pan, Dong Changqin, et al. Formation mechanism of nitrogen oxides during solid biomass fuel burning:A review[J]. Thermoelectric Power Generation, 2018, 47(12): 1-9, 16. (in Chinese with English abstract)

[26] 展新,吳文廣,崔國民. 生物質氣化過程中熱解焦油的生成及其均相轉化機理[J]. 能源研究與信息,2019,35(3):125-133.

Zhan Xin, Wu Wenguang, Cui Guoming. Formation and homogeneous conversion mechanism of biomass pyrolysis tar[J]. Energy Research and Information, 2019, 35(3): 125-133. (in Chinese with English abstract)

[27] Hansson K M, Samuelsson J, Tullin C, et al. Formation of HNCO, HCN, and NH3from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combustion and Flame, 2004, 137(3): 265-277.

[28] Gong Q D, Liu L, Tian H, et al. Theoretic and experiment study on nitrogen-containing products of glycine during high temperature pyrolysis[J]. Acta Energiae Solaris Sinica, 2019, 4: 1107-1113.

[29] Chen H F, Tomoaki N, Kunio Y. Characteristics of tar, NOprecursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge[J]. Applied Energy, 2011, 88(12): 5032-5041.

[30] 李小華,焦麗華,樊永勝,等. 纖維素木聚糖和木質素含量對生物質熱解特性及產物的影響[J]. 農業工程學報,2015,31(13):236-243.

Li Xiaohua, Jiao Lihua, Fan Yongshen, et al. Effects of cellulose, xylan and lignin content on biomass pyrolysis characteristics and product distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 236-243. (in Chinese with English abstract)

[31] Zhao C, Yan Z Z, Yang S, et al. Affecting the migration of nitrogen elements during coal pyrolgsis[J]. Applied Chemical Industry, 2018, 47(4): 208-211.

[32] Wei F, Cao J P, Zhao X Y, et al. Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge: A study of sewage sludge and model amino acids[J]. Fuel, 2018, 218: 148-154.

[33] Neves D, Thunman H, Matos A, et al. Characterization and prediction of biomass pyrolysis products[J]. Progress in Energy & Combustion Science, 2011, 37(5): 611-630.

[34] Archan G, Scharier R, Leonhard P, et al. Detailed NOprecursor measurements within the reduction zone of a novel small-scale fuel flexible biomass combustion technology[J]. Fuel, 2021, 302(15): 113-121.

[35] 周賽,劉虎,于鵬飛,等. 基于密度泛函理論的CO2氧化含氮焦炭的機理研究[J]. 燃料化學學報,2022,50(1):19-27.

Zhou Sai, Liu Hu, Yu Pengfei, et al. Study on the mechanism of oxidation of nitrogen-containing char by CO2based on density functional theory[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 19-27. (in Chinese with English abstract)

[36] Kibet J K, Khachatryan L, Dellinger B. Molecular products from the thermal degradation of glutamic acid[J]. Journal of Agricultural and Food Chemistry, 2013, 61(32): 7696-7704.

[37] Hao J, Guo J, Ding L, et al. TG-FTIR, Py-two-dimensional GC-MS with heart-cutting and LC-MS/MS to reveal hydrocyanic acid formation mechanisms during glycine pyrolysis[J]. Journal of Thermal Analysis and Calorimetry 2014. 115(1): 667-673.

[38] 涂德浴,潘慶民,張傳佳,等. 生物質成型燃料熱解半焦產率及理化特性[J]. 農業工程學報,2019,35(21):229-234.

Tu Deyu, Pan Qingmin, Zhang Chuanjia, et al. Yield and physicochemical properties of pyrolysis char of biomass briquetting pellets[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(21): 229-234. (in Chinese with English abstract)

[39] Li C Z, Tan L L. Formation of NOand SOprecursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and NH3during pyrolysis[J]. Fuel, 2000, 79(15): 1899-1906.

[40] Chen H, Wang Y, Xu G, et al. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012, 5(12): 5418-5438.

[41] Tian F J, Yu J, Mckenzie L J, et al. Conversion of fuel-N into HCN and NH3during the pyrolysis and gasification in steam: A comparative study of coal and biomassextdagger[J]. Energy and Fuels, 2007, 21(2): 517-521.

[42] Debono O, Villot A. Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes[J]. Journal of Analytical & Applied Pyrolysis, 2015, 114: 222-234.

[43] Kim S W, Koo B S, Lee D H. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed[J]. Bioresource Technology, 2014, 162: 96-102.

[44] 米鐵,徐玲娜,袁羽書,等. 生物質熱解過程中焦油形成機理的研究[J]. 華中師范大學學報(自然科學版),2013,47(5):671-675.

Mi Tie, Xu Linna, Yuan Yushu, et al. Study of tar formation and variation mechanism for biomass pyrolysis gasification[J]. Journal of Huazhong Normal University (Natural Science Edition), 2013, 47(5): 671-675. (in Chinese with English abstract)

[45] 胡二峰,趙立欣,吳娟,等. 生物質熱解影響因素及技術研究進展[J]. 農業工程學報,2018,34(14):212-220.

Hu Erfeng, Zhao Lixin, Wu Juan, et al. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 212-220. (in Chinese with English abstract)

[46] 宮夢,方陽,陳偉,等. 纖維素組分對氨基酸熱解的影響[J]. 化工學報,2020,71(5):2312-2319.

Gong Meng, Fang Yang, Chen Wei, et al. Effect of cellulose composition on amino acids pyrolysis[J]. Journal of Chemical Engineering, 2020, 71(5): 2312-2319. (in Chinese with English abstract)

[47] 吳丹焱,辛善志,劉標,等. 基于木質素部分脫除及其含量對生物質熱解特性的影響[J]. 農業工程學報,2018,34(1):193-197.

Wu Danyan, Xin Shanzhi, Liu Biao, et al. Influence of lignin content on pyrolysis characteristics of biomass based on part of lignin removal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 193-197. (in Chinese with English abstract)

[48] 于雪斐,伊松林,馮小江,等. 熱解條件對農作物秸稈熱解產物得率的影響[J]. 北京林業大學學報,2009,31(S1):174-177.

Yu Xuefei, Yi Songlin, Feng Xiaojiang, et al. Effects of pyrolytic conditions on pyrolysis yield of crop stalks[J]. Journal of Beijing Forestry University, 2009, 31(S1): 174-177. (in Chinese with English abstract)

[49] Chen H, Xie Y, Chen W, et al. Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019, 196: 320-329.

[50] Tian H, Wei Y Y, Huang Z J, et al. The nitrogen transformation and controlling mechanism of NH3and HCN conversion during the catalytic pyrolysis of amino acid[J]. Fuel, 2023, 333(1): 126215.

[51] Hao J, Guo J, Xie F, et al. Correlation of hydrogen cyanideformation with 2, 5-diketopiperazine and nitrogen heterocycliccompounds from co-pyrolysis of glycine and glucose/fructose[J]. Energy& Fuels, 2013, 27(8): 4723-4728.

[52] 周建強. 麥稈熱解過程中有機氮轉化機理研究[D]. 北京:華北電力大學,2019.

Zhou Jianqiang. Study on the Mechanism of Organic Nitrogen Conversion During Straw Pyrolysis[D]. Beijing: North China University of Electric Power, 2019. (in Chinese with English abstract)

[53] Liu Z, Balasubramanian R. A comparative study of nitrogen conversion during pyrolysis of coconut fiber, its corresponding biochar and their blends with lignite[J]. Bioresour Technol, 2014, 151: 85-90.

[54] Ohshima Y, Tsubouchi N, Ohtsuka Y. Iron-catalyzed nitrogen removal as N2from PAN-derived activated carbon[J]. Applied Catalysis B: Environmental, 2012, 111: 614-620.

[55] Ren Q Q, Zhao C S. NOand N2O precursors from biomass pyrolysis: Role of cellulose, hemicellulose and lignin.[J]. Environmental Science & Technology, 2013, 47(15): 170-174.

[56] 譚洪,王樹榮,駱仲泱,等. 金屬鹽對生物質熱解特性影響試驗研究[J]. 工程熱物理學報,2005,26(5):742-744.

Tan Hong, Wang Shurong, Luo Zhongyang, et al. Influence of metallic salt on biomass flash pyrolysis characteristics[J]. Journal of Engineering Thermophysics, 2005, 26(5): 742-744. (in Chinese with English abstract)

[57] Li J, Liu Y W, Shi J Y, et al. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR[J]. Thermochimica Acta, 2007, 467(1): 20-29.

[58] Tan L L, Li C Z. Formation of NOand SOprecursors during the pyrolysis of coal and biomass. Part II. Effects of experimental conditions on the yields of NOand SOprecursors from the pyrolysis of a Victorian brown coal[J]. Fuel, 2000, 79(15): 1891-1897.

[59] 郝菊芳,王洪波,曹得坡,等. 升溫速率對氨基酸裂解生成含氮氣體的影響研究[J]. 化學研究與應用,2013,25(7):981-986.

Hao Jufang, Wang Hongbo, Cao Depo, et al. Effect of heating rate on the formation of nitrogenous gases from the pyrolysis of amino acids[J]. Chemical Research and Applications, 2013, 25(7): 981-986. (in Chinese with English abstract)

[60] 李永玲,吳占松. 秸稈熱解特性及熱解動力學研究[J]. 熱力發電,2008,37(7):1-5.

Li Yongling, Wu Zhansong. Study on charicters and dynamics concerning pyrolysis of corn stalks[J]. Thermal Power Generation, 2008, 37(7): 1-5. (in Chinese with English abstract)

[61] Chen H P, Si Y H, Chen Y Q, et al. NOprecursors from biomass pyrolysis: Distribution of amino acids in biomass and Tar-N during devolatilization using model compounds[J]. Fuel, 2017, 187: 367-375.

[62] 劉嘯天,于潔,孫路石. 溫度與粒徑對生物質熱解特性影響實驗研究[J]. 能源研究與管理,2022(1):57-64.

Liu Xiaotian, Yu Jie, Sun Lushi. Experimental study on effects of temperature and particle size on biomass pyrolysis characteristics[J]. Energy Research and Management, 2022(1): 57-64. (in Chinese with English abstract)

[63] 楊選民,王雅君,邱凌,等. 溫度對生物質三組分熱解制備生物炭理化特性的影響[J]. 農業機械學報,2017,48(4):284-290.

Yang Xuanming, Wang Yajun, Qiu Ling, et al. Effect of temperature on physicochemical properties of biochar prepared by pyrolysis of three components of biomass[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 284-290. (in Chinese with English abstract)

[64] Kathirvel B, Susaimanickam A, Eldon R, et al. Effect of reaction temperature on the conversion of algal biomass to bio-oil and biochar through pyrolysis and hydrothermal liquefaction - science direct[J]. Fuel, 2021, 285(1): 119106.

[65] Li J, Tian Y Y, Zong P J, et al. Thermal cracking behavior, products distribution and char/steam gasification kinetics of seawater spirulina by TG-FTIR and Py-GC/MS[J]. Renewable Energy, 2020, 145: 1761-1771.

[66] Xu, S Y, Chen, J F, Peng, H Y, et al. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar[J]. Fuel, 2021, 291(1): 120128.

[67] 李飛躍,汪建飛,謝越,等. 熱解溫度對生物質炭碳保留量及穩定性的影響[J]. 農業工程學報,2015,31(4):266-271.

Li Feiyue, Wang Jianfei, Xie Yue, et al. Effects of pyrolysis temperature on carbon retention and stability of biochar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 266-271. (in Chinese with English abstract)

[68] 付鵬. 生物質熱解氣化氣相產物釋放特性和焦結構演化行為研究[D]. 武漢:華中科技大學,2010.

Fu Peng. Study on the Release Characteristics and Coke Structure Evolution Behavior of Gas Phase Products From Biomass Pyrolysis Gasification[D]. Wuhan: Huazhong University of Science and Technology, 2010. (in Chinese with English abstract)

[69] 詹昊,張曉鴻,陰秀麗,等. 生物質熱化學轉化過程含N污染物形成研究[J]. 化學進展,2016,12:1880-1890.

Zhan Hao, Zhang Xiaohong, Yin Xiuli, et al. Formation of nitrogenous pollutants during biomass thermo-chemical conversion[J]. Progress in Chemistry, 2016, 12: 1880-1890. (in Chinese with English abstract)

[70] 洪文鵬,張鈺,姜海峰,等. CO2氣氛耦合粉煤灰催化生物質熱解生油特性分析[J]. 農業工程學報,2022,38(4):235-241.

Hong Wenpeng, Zhang Yu, Jiang Haifeng, et al. Characteristics of bio-oil generated from biomass pyrolysis catalyzed by coal fly ash under CO2atmosphere[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(4): 235-241. (in Chinese with English abstract)

[71] Li J, Tian Y Y, Qiao Y Y, et al. Synergistic effect of hydrogen atmosphere and biochar catalyst on tar decomposition and methane-rich gas production during biomass pyrolysis[J]. Fuel, 2022, 330(15): 125680.

[72] Zheng Y W, Li D H, Wang J D, et al. Ammonia (NH3)/ nitrogen (N2) torrefaction pretreatment of waste biomass for the production of renewable nitrogen-containing chemicals via catalytic ammonization pyrolysis: Evolution of fuel-N under a N2/NH3-rich atmosphere[J]. Journal of the Energy Institute. 2022, 102: 143-159.

[73] 馬承榮,肖波,楊家寬,等. 生物質熱解影響因素研究[J]. 環境技術,2005,5:16-18,41.

Ma Chengrong, Xiao Bo, Yang Jiakuan, et al. Study on the effects of operating conditions of biomass pyrolysis[J]. Environmental Technology, 2005, 5: 16-18, 41. (in Chinese with English abstract)

[74] Rolando Z, Kridter S, Emilia B. Rapid pyrolysis of agricultural residues at high temperature[J]. Biomass and Bioenergy, 2002, 23(5): 357-366.

[75] Cetin E, Gupta R, Moghtaderi B. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity[J]. Fuel, 2004, 84(10): l328-l334.

[76] 馬培勇,孫亞棟,邢獻軍,等. 粒徑對棉稈成型顆粒熱解動力學特性的影響[J]. 太陽能學報,2016,37(5):1308-1314.

Ma Peiyong, Sun Yadong, Xing Xianjun, et al. Effect of particle size on pyrolysis kinetic characteristics of cotton stalk briquette[J]. Acta Energiae Solaris Sinica, 2016, 37(5): 1308-1314. (in Chinese with English abstract)

[77] 何明明. 生物質快速熱解生物油產率和組分的影響因素[J].木材加工機械,2010,21(1):38-41.

He Mingming. Influnce factors of biomass fast pyrolysis bio-oil' production rate and composition[J]. Wood Processing Machinery, 2010, 21(1): 38-41. (in Chinese with English abstract)

[78] 楊延璐,許成君,仝坤,等. 污泥熱解催化劑的研究進展[J]. 化工環保,2020,40(6):580-585.

Yang Yanlu, Xu Chengjun, Tong Kun, et al. Research progresses on catalysts for sludge pyrolysis[J]. Environmental Protection of Chemical Industry, 2020, 40(6): 580-585. (in Chinese with English abstract)

[79] 何正文. 堿(土)金屬對生物質熱解過程中含氮化合物轉化過程的影響[D]. 長沙:長沙理工大學,2021.

He Zhengwen. Effect of Alkali (earth) Metals on The Conversion Process of Nitrogenous Compounds in Biomass Pyrolysis[D]. Changsha: Changsha University of Science and Technology, 2021. (in Chinese with English abstract)

[80] Mohamed H A, Nuuo B, Zeid A A, et al. Transforming red mud into an efficient acid-base catalyst by hybridization with mesoporous ZSM-5 for co-pyrolysis of biomass and plastics[J]. Chemical Engineering Journal, 2022, 430: 132965.

[81] 孫振杰,黃思思,時號,等. 生物質炭負載鎳鈣催化劑催化裂解/重整生物質熱解氣研究[J]. 農業工程學報,2021,37(17):211-217.

Sun Zhenjie, Huang Sisi, Shi Hao, et al. Investigation into the catalytic cracking/reforming of biomass pyrolysis gas by biochar supported Ni-Ca catalyst[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2021, 37(17): 211-217. (in Chinese with English abstract)

[82] 惠吉成. CaO對污泥中蛋白質熱解生成NO前驅體的脫除機理研究[D]. 吉林:東北電力大學,2019.

Hui Jicheng. Study on the Removal Mechanism of CaO to Protein Pyrolysis to NOPrecursors in Sludge[D]. Jilin: Northeast Dianli University, 2019.

[83] Guo S, Liu T C, Hui J C, et al. Effects of calcium oxide on nitrogen oxide precursor formation during sludge protein pyrolysis[J]. Energy, 2019, 189: 213-217.

[84] Xia S W, Yang H P, Lei S S, et al. Iron salt catalytic pyrolysis of biomass: Influence of iron salt type[J]. Energy, 2022, 262: 125415.

Review of nitrogen migration and transformation during biomass pyrolysis

Liu Liang, Zheng Yang, Huang Sibiao, Xiao Tingyi, Tian Hong, Qing Mengxia※

(,,410114,)

Biomass pyrolysis can generate tar and gas products with high industrial value. But the nitrogen (N) element in the biomass can inevitably migrate to the products along with the pyrolysis process, thus possibly polluting the environment. Focusing on the overall goal of preparing clean energy from biomass resources, this study systematically analyzes nitrogen migration and conversion mechanism during biomass pyrolysis, focusing on the research progress of the generation and conversion mechanism of gas nitrogen, tar nitrogen and char nitrogen. The NOprecursors can be the HCN and NH3in the biomass pyrolysis gas. Specifically, the NH3comes from the amino acids that are released from the amino acid pyrolysis and hydrolysis of HCN on the surface of char, while the HCN is from the secondary cracking of primary pyrolysis products, such as nitrile and N-containing heterocycle. The N-containing substances in the pyrolysis oil include the N-containing heterocycles, nitrile, and amide. Furthermore, the N-containing heterocycles can be produced by the fragmentation of some amino acids and by dehydration condensation between the amino acids. The nitrile is derived from the de-H2reaction of amino acid molecules and the de-H2O reaction of amides. The substitution reactions can also be used to form amides from NH3and carboxyl groups. More importantly, the biomass varies greatly in the different pyrolysis characteristics and products, due to the composition during the reaction. The higher heating rates can promote tar cracking for higher NOprecursor production during biomass pyrolysis, while the lower heating rates can contribute to tar production for better quality. The pyrolysis temperature and atmospheres of biomass can pose a large effect on the yield and composition of the pyrolysis products. The pyrolysis in the O2and H2O atmosphere can enhance the conversion of HCN to NH3, while the pyrolysis in the CO2atmosphere can reduce the production of NOprecursors. In terms of the pyrolysis pressure, the gas-N residence time can facilitate the reaction path of the secondary pyrolysis for the migration path of nitrogen. The larger particle sizes of the biomass can increase the NOprecursors but less the tar production, whereas, the smaller particle sizes can promote the N fixation in the char. The catalysts can reduce the pyrolysis time and the temperature for the N migration and conversion during biomass pyrolysis. The mineral elements (such as K, Ca, and Fe) in the biomass can promote the conversion of nitrogenous substances in the coke into the HCN. By contrast, the metal oxides (such as Fe2O3, Co3O4, and NiO) can be used to enhance the production of Tar-N, where Co3O4has the best performance. The KOH can reduce the types of hydrocarbon compounds in the pyrolysis oil, but for less NH3and HCN production. The current NOtreatments are the catalytic, plasma, microbial, absorption, and adsorption methods. All tail-end treatments cannot reduce the emission of pollutants with low efficiency and high energy consumption. Anyway, the N migration and transformation mechanism in the pyrolysis of biomass can reduce the emission of N-containing pollutants at the source during the pyrolysis process.

biomass; pyrolysis; gas phase nitrogen; tar nitrogen; char nitrogen; NO

10.11975/j.issn.1002-6819.2022.19.025

TK6

A

1002-6819(2022)-19-0227-10

劉亮,鄭揚,黃思彪,等. 生物質熱解過程中氮遷移轉化機理研究進展[J]. 農業工程學報,2022,38(19):227-236.doi:10.11975/j.issn.1002-6819.2022.19.025 http://www.tcsae.org

Liu Liang, Zheng Yang, Huang Sibiao, et al. Review of nitrogen migration and transformation during biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 227-236. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.19.025 http://www.tcsae.org

2022-07-11

2022-09-30

湖南省教育廳重點項目(21A0201);湖南省自然科學基金項目(2022JJ40489)

劉亮,博士,教授,研究方向為煤與生物質高效清潔利用。Email:liuliang_hn@163.com

卿夢霞,博士,講師,研究方向為煤與生物質高效清潔利用。Email:qingmx@csust.edu.cn

主站蜘蛛池模板: 无码一区二区三区视频在线播放| 国产精品污视频| 国产精品成人久久| 亚洲人成网站18禁动漫无码| 美女无遮挡免费视频网站| 亚洲全网成人资源在线观看| 在线国产综合一区二区三区 | 亚洲无码电影| 免费在线国产一区二区三区精品| 亚洲中文字幕久久精品无码一区 | 日韩欧美国产中文| 伊人天堂网| av一区二区无码在线| 毛片网站在线看| 亚洲香蕉在线| 欧美三级视频在线播放| 精品人妻一区无码视频| 久久精品娱乐亚洲领先| 国产精品人莉莉成在线播放| 92午夜福利影院一区二区三区| 中文字幕欧美日韩| 四虎国产精品永久一区| 午夜a视频| 性色一区| 亚洲精品国产日韩无码AV永久免费网| 欧美精品综合视频一区二区| 精品丝袜美腿国产一区| 毛片一级在线| 国产欧美视频在线观看| 国产剧情伊人| 日韩无码一二三区| 国产精品青青| 色综合中文| 玖玖免费视频在线观看| 亚洲精品无码日韩国产不卡| 一本大道视频精品人妻| 性欧美在线| 国产乱视频网站| 伊人大杳蕉中文无码| аⅴ资源中文在线天堂| 亚洲天堂久久久| 日本三区视频| 国产精品亚洲精品爽爽| 最新亚洲人成无码网站欣赏网 | 国产精品区视频中文字幕| 国产91久久久久久| 中文字幕久久亚洲一区| 成人91在线| 亚洲水蜜桃久久综合网站| 日韩在线网址| 欧美五月婷婷| 欧美日韩亚洲国产| 久久精品亚洲热综合一区二区| 国产菊爆视频在线观看| 亚洲中文字幕在线精品一区| 国产成人免费高清AⅤ| 视频一本大道香蕉久在线播放| 亚洲人成影视在线观看| 97久久精品人人| 久久免费精品琪琪| 99久久精品久久久久久婷婷| 91麻豆国产精品91久久久| 亚洲无码视频图片| 欧美自拍另类欧美综合图区| 国产幂在线无码精品| 日本免费精品| 午夜少妇精品视频小电影| 欧美人与性动交a欧美精品| 在线观看国产小视频| 国产在线拍偷自揄拍精品| 国产午夜精品一区二区三区软件| 久青草网站| 国产办公室秘书无码精品| 国产欧美在线观看精品一区污| 制服丝袜亚洲| 欧美全免费aaaaaa特黄在线| 国产免费人成视频网| 色婷婷啪啪| 日韩午夜福利在线观看| 毛片免费在线| 国产av色站网站| 成人欧美日韩|