999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

桂西北喀斯特小流域降雨穩定氫氧同位素組成及影響因素

2022-02-12 08:38:18陳洪松
生態學報 2022年1期
關鍵詞:大氣研究

張 君,陳洪松,黃 榮

1 中國科學院亞熱帶農業生態研究所亞熱帶農業生態過程重點實驗室,長沙 410125 2 中國科學院環江喀斯特生態系統觀測研究站, 環江 547100 3 中國科學院大學,北京 100049

雨水是大氣圈與水圈物質與能量交換最積極的一部分,降雨中穩定氫(δD)氧(δ18O)同位素及氘盈余(d-excess)的變化已廣泛應用于生態水文過程和氣候變化的研究中[1]。利用降雨穩定氫氧同位素可以獲取水汽源、水汽狀況、大氣循環類型及季節變化特征等信息[2—3]。然而,大氣降雨中穩定氫氧同位素的變化受到多種因素的影響,區域位置、緯度、高程、溫度以及降雨量等均會不同程度影響同位素組成特征[4],導致穩定氫氧同位素在時空尺度上存在較大差異。這種差異也為利用穩定氫氧同位素示蹤技術開展水文過程研究提供了基礎,被廣泛地應用于調查區域地下水的補給特征、蒸發和蒸騰作用的區分、植物水分來源判定等方面的研究[5—6]。因此,開展大氣降雨穩定氫氧同位素變化特征的相關研究,對生態水文過程及水循環研究的開展有重要意義。另一方面,也有助于補充和完善全球范圍內較欠缺的降雨同位素數據網[7]。

早在1961年,世界氣象組織WMO和國際原子能機構IAEA就已建立全球大氣降雨同位素觀測網絡(GNIP, Global Network of Isotope in Precipitation),開始對大氣降雨穩定氫氧同位素進行觀測。Craig[8]于1961年提出了全球大氣降雨線,為δD=8δ18O+10。從20世紀70年代開始,國內學者開展了大量的對大氣降雨穩定同位素組成及影響因素的研究,并建立了適合當地的地區大氣降水線方程,并基于全球大氣降水線及氘盈余值判斷水汽來源及水循環特征[1]。另外,通過氣象數據模擬的手段也可以判定區域范圍降水的水汽來源,一方面可以進一步加深對氣候變化的認識,同時也可以為地區應對氣候預報、減災預警的制定提供科學依據[9]。HYSPLIT后向軌跡模型被廣泛運用到大氣降雨水汽來源輸送路徑模擬和水汽來源比例分析中,取得了較好的研究成果[4,10]。例如張百娟等[11]基于HYSPLIT模型發現祁連山中段夏季連續降雨水汽來源主要為西風水汽。Bedaso等[7]則利用該模型模擬了空間尺度上降雨δ18O濃度的季節變化。然而,受制于巨大的空間異質性,不同區域大氣降雨穩定氫氧同位素的影響因素仍不明晰,例如陳衍婷等[12]監測分析發現廈門地區年尺度的大氣降雨氫同位素值變化有顯著的雨量效應,即同位素值隨降雨量增加而減小,而到了月尺度或季尺度則不存在這種效應。同樣是中國南方,王超等[13]發現西南紫色土丘陵區降雨穩定氫氧同位素存在明顯的雨量和反溫度效應。因此,點尺度上的降雨穩定氫氧同位素監測、分析及模擬的相關研究仍需進一步的完善和深入。

西南喀斯特地區具有特殊的地表—地下二元三維水文地質結構,土層淺薄且滲透性強,導致水文過程迅速,同時也增加了水文過程研究的難度[14]。大氣降雨是流域范圍水循環的重要輸入因子,因此利用降雨穩定同位素技術在示蹤喀斯特生態水文過程研究中有巨大優勢[14]。目前針對西南喀斯特地區大氣降雨穩定氫氧同位素組成及其影響因素、季節變化、水汽來源等方面研究取得了一些進展[15—18]。由于該區域優先流普遍發育,降雨過程中雨水穩定氫氧同位素的波動對水文過程的影響很大。因此,次降雨尺度上降雨穩定氫氧同位素的變化特征值得關注,這對指示全球氣候變化背景下的喀斯特地區生態水文循環過程研究意義重大[9],而目前此方面研究還未見報道。基于此,本研究以桂西北典型喀斯特小流域為研究對象,一方面基于2013年至2018年的氣象資料和降雨氫氧同位素數據,分析了研究區多年大氣降雨穩定氫氧同位素的組成特征及其影響因素,并結合HYSPLIT后向軌跡模型解析水汽來源輸送路徑及其權重比例。另一方面,本研究還關注典型大雨—特大暴雨過程穩定氫氧同位素變化特征,以期為小流域尺度生態水文循環過程研究的深入提供一定的科學依據。

1 材料與方法

1.1 研究區概況

研究區位于桂西北環江毛南族自治縣中國科學院喀斯特生態系統觀測研究站木連綜合試驗示范區(108°18′56.9″—108°19′58.4″E,24°43′58″—24°44′48.8″N),該區面積約為146 hm2,海拔高度介于272.0—647.2 m,地形變化明顯,屬于典型的喀斯特峰叢-洼地地貌(圖1)。研究區氣候類型屬典型的亞熱帶濕潤季風氣候,實測年均氣溫19.6 ℃,最低溫出現在1—3月,≥10 ℃的年均有效積溫為6300 ℃,無霜期329 d[18]。多年平均降雨量為1446 mm(圖2),但年內降雨分布極不均勻,超過66%的降雨集中在5—9月。

圖1 研究區及降水采樣點分布Fig.1 Location of precipitation sampling site in study area

圖2 研究區多年(2013—2018年)月均溫度和降雨量 Fig.2 Study area′s climograph based climate data at Huanjiang station form 2011 to 2018

1.2 樣品收集及處理

1.2.1氣象數據監測

降雨量、降雨強度、氣溫等氣象數據通過中國科學院環江喀斯特生態系統觀測研究站氣象站內的標準氣象站獲取,氣象站距離降雨樣品采集點約400 m(圖1)。

1.2.2降雨樣品采集

降雨通過漏斗進入直徑為20 cm的密閉棕色收集瓶,漏斗內放置一個乒乓球防止蒸發[19]。收集過程中注意密封,盡力避免收集的雨水樣與外界空氣進行交換,將蒸發作用的影響降到最低。雨水樣品放入2 mL冷凍管后用Parafilmm密封后置于4 ℃冷藏保存,直至上機分析[19]。降雨樣品的采集分為兩部分,一是對2013年至2018年日尺度降雨樣品采集,共計408個樣品;二是采集2019年6月至2020年9月期間典型次降雨過程樣品,采集頻率根據次降雨強度和時長設定為0.5 h/次—2 h/次,從降雨開始直至次降雨過程結束,共計90個樣品。如表1,本研究中分別選取2019年6月23日次降雨(2019-06-23)、7月8日次降雨(2019-07-08)、9月9日次降雨(2019-09-09)、10月22日次降雨(2019-10-22)以及2020年6月5日次降雨(2020-06-05)、6月6日次降雨(2020-06-06)、6月7日次降雨(2020-06-07)、9月7日次降雨(2020-09-07)共8場典型降雨,降雨量及其相關信息見表1,依據Lai等[20]雨量分級標準進行降雨等級分級,即12小時降雨40 mm為大雨,12小時降雨量80 mm屬于暴雨,12小時降雨量160 mm則為特大暴雨。

表1 典型次降雨基本信息

1.3 樣品收集及處理

所有雨水樣品的穩定氫氧同位素組成在中國科學院亞熱帶農業生態研究所亞熱帶農業生態過程重點實驗室用液態水同位素分析儀(LGR, DLT- 100,美國)進行測定[21],上機前用0.22 μm的針頭過濾器對水樣進行過濾,以去除水樣中的雜質。樣品穩定氫氧同位素值通過下式計算得出:

(1)

式中:δD和δ18O分別為對應樣品的氫和氧穩定同位素值(‰);R樣品和R標準分別為樣品和國際通用標準物(SMOW,Vienna Standard Mean Ocean Water)中元素的重輕同位素豐度之比,如(18O/16O)。δD值的測試誤差不超過±1‰,δ18O值的測試誤差不超過0.2‰[21]。

通過的氘盈余(d-excess)可以示蹤水汽來源和水汽路徑,全球范圍內大部分樣品的氘盈余平均值接近于10‰[8],其計算公式為:

d-excess(‰)=δD-8δ18O

(2)

1.4 HYSPIT軌跡模型簡介

本文中氣團軌跡模型采用美國海洋大氣研究中心(NOAA, National Oceanic and Atmospheric Administration)空氣資源實驗室(ARL, Air Resources Laboratory)開發的HYSPLIT- 5.0(Hybird Single Paticle Lagrangian Integrated Trajectory Model, http://ready. arl. noaa. gov/HYSPLIT. php),是利用氣象場中的四維數據、歐拉-拉格朗日混合計算模式計算和分析大氣污染物輸送、擴散軌跡的專業模型。模型所使用的氣象資料通過美國國家環境預報中心(NCEP, National Centers for Environmental Prediction)下載。

采用經緯度坐標為24.71° N、108.3° E,用后向軌跡模型追蹤大尺度上水汽輸送路徑,模型運行的起始高度為距地面500 m[7]。由于水汽的平均滯留時間一般不超過72小時[22],因此后向軌跡天數設置為 5日,可覆蓋連續性降雨,也可提高追蹤水汽來源路徑的精確性。以月尺度為標準,分別計算2013年1月至2018年12月到達研究區的氣團的質點運輸軌跡。然后使用模型自帶的聚類分析確定主要水汽補給來源,這種方法將接近的水汽運行軌跡合并后通過平均軌跡來展示,并計算出每組輸送路徑的比例權重[12],聚類方法詳見HYSPLIT官網(https://ready.arl. noaa.gov/documents/Tutorial/html/traj_cluseqn.html)。環江縣位于廣西西北部,夏半年受西南印度季風和東亞季風共同影響,冬半年主要受蒙古-西伯利亞冷氣團或西風環流所攜帶的大陸性氣團的影響[17]。基于此,本研究確定的3個主要水汽補給源分別是印度季風、東亞季風和蒙古-西伯利亞季風。

2 結果與分析

2.1 年尺度和季節尺度同位素特征及水汽來源

2.1.1降雨同位素及其季節性

圖3和表2分別為研究區2013—2018年日尺度降雨穩定氫氧同位素組成(雨量加權平均)及其統計特征值。結果表明,研究區多年降雨同位素的δ18O和δD值變化范圍分別介于-118.88‰—32‰和-15.1‰—1.06‰,平均值則分別為(-6.00±3.58)‰和(-35.90±30.42)‰。氘盈余(d-excess)值介于-9.25‰—33.89‰,平均值為(12.02±6.24)‰。

表2 2013—2018年試驗區降雨δD、δ18O和d-excess季節變化

圖3 研究區2013年至2018年日尺度降雨同位素(δ18O、δD和d-excess)分布特征Fig.3 Daily precipitation isotopes (δ18O, δD, and d-excess) collected from 2013 to 2018

降雨穩定氫氧同位素值表現出極強的季節性。整體而言,夏季δ18O、δD和d-excess值最低,秋季其次,春冬則顯著(P<0.05)高于夏秋兩季(表2)。其中,夏季δ18O、δD顯著(P<0.05)低于秋季,d-excess值則無顯著差異。降雨樣品數量最大在夏季(6—8月),占總樣品量的35.19%,其次是春季,約占30.34%,秋季和冬季分別占25.73%和8.74%。夏季、春季、秋季和冬季降雨量則分別占降雨總量的40%、30%、22%和8%(圖2)。

2.1.2當地大氣降水線及環境因子

由于水在蒸發和凝結過程中的同位素分餾,使大氣降水的δ18O和δD值存在線性關系,這一關系用最小二乘法表示,即為大氣降水線方程。圖4為研究區大氣降水線,方程為δD=8.37δ18O+14.45(n=407),δ18O與δD值有極顯著相關性(R2=0.96,P<0.001)。當地大氣降水線方程的斜率和截距分別為8.37和14.45,與全球大氣降水線方程δD=8δ18O+10相比,研究區降水線方程斜率和截距偏大。由于δD值通常與δ18O呈線性變化[8],在本文其余部分使用δ18O值來反映降雨同位素特征。

圖4 研究區當地大氣降水線(黑色虛線)與全球大氣降水線(黑色實線)對比Fig.4 Comparison of local′s LMWL (black dashed line) using daily precipitation with GMWL (black solid line)

圖5反映的是降雨δ18O值與日均氣溫和降雨量變化的關系,大氣降雨穩定氫氧同位素的變化與產生降雨的物理過程密切相關。δ18O隨氣溫(T)升高表現出減小的趨勢,對兩者進行相關性分析得到:δ18O=0.26-0.27T(n=319),兩者表現出極顯著水平,R2=0.18且P<0.001。通過線性關系發現溫度每升高1 ℃,δ18O值降低0.27‰。δ18O隨降雨量(P)的增大而減小,對兩者進行相關性分析得到:δ18O=-5.29-0.05P(n=379,R2=0.10,P<0.001)。降雨量每增加1 mm,δ18O值降低0.05‰。相對來說,溫度與δ18O的相關性要強于降雨量與δ18O的關系。

圖5 降雨δ18O與日平均氣溫和降雨關系圖(基于2013至2018年采樣數據)Fig.5 δ18O-Temperature/precipitation based study area daily isotope data from 2013 to 2018

2.1.3年尺度和季節尺度水汽來源

基于HYSPLIT模型統計了2013年至2018年間季節尺度水汽來源組成(表3)。整體而言,研究區全年以蒙古-西伯利亞季風為主導,多年平均占比達(53.69±31.45)%。秋季和冬季,蒙古-西伯利亞季風分別占(67.61±21.22)%和(81.06±16.59)%。春季雖然蒙古西伯利亞季風占比超過50%,但東亞季風比例較高,為(37.28±20.15)%。夏季則與其他季節不同,以印度季風為主,達(59.17±22.14)%,蒙古-西伯利亞季風僅占(14.72±20.52)%。

表3 基于HYSPLIT后向軌跡模型模擬研究區不同季節降雨水汽來源組成

具體到每個月份,印度季風年際尺度呈現“倒U形”變化趨勢(圖6),每年10月至次年4月份所占比例極小,變化范圍介于0%—2.83%;5月至9月增大,變化范圍介于16.33—57.67%。蒙古-西伯利亞季風則表現出與印度季風相反的變化趨勢。相對而言,東亞季風變化趨勢較為平緩,全年平均占比為(28.11±20.15)%,變化范圍介于9.67%至44.83%之間,4月最大,12月最小。另外,5月和9月水汽來源組成仍具有明顯的夏季特征,即蒙古-西伯利亞季風相對較弱,東亞和印度季風較強。9月是夏季的結束,蒙古-西伯利亞季風、東亞季風和印度季風占比分別為(44±12.35)%、(39.67±18.71)%和(16.33±20.27)%。5月是春季的結束夏季的開始,蒙古-西伯利亞季風、東亞季風和印度季風占比分別為(48.17±25.78)%、(26.83±22.94)%和(25.00±14.96)%。

圖6 基于2013年至2018年氣象數據,通過HYSPLIT后向軌跡模型模擬月尺度研究區水汽來源組成Fig.6 HYSPLIT back trajectory composition with the water vapor sources under monthly scale from 2018 to 2018

2.2 次降雨過程δ18O動態變化

典型降雨的δ18O加權平均值范圍介于-3.25‰—-9.58‰(表4)。其中 2019-10-22次降雨產生于秋季δ18O加權平均值最大,為-3.25‰,2019-09-09次降雨δ18O加權平均值最小,為-9.58‰。值得注意的是,2019-09-09次降雨是臺風(“玲玲”)活動影響下形成的降雨(http://typhoon.nmc.cn/web.html)。2019-09-09次降雨氘盈余值為4.38‰,低于該地區多年大氣降水氘盈余值(12.02‰,表2),2020-09-07次降雨氘盈余值為18.40‰,高于地區多年大氣降水氘盈余值,其余降雨的氘盈余值與地區多年大氣降水氘盈余值相近。

表4 典型次降雨δ18O與d-excess值特征

次降雨過程中δD與δ18O值的關系也受降雨類型的影響。與全球δD=8δ18O+10和當地大氣降水線δD=8.37δ18O+14.45相比,除2019-10-22、2020-06-06和2020-09-07次降雨外,斜率均接近當地(8.37)或全球大氣降水線(8.0)。截距則差異明顯,2020-06-07和2020-09-07次降雨高于當地大氣降水線截距(14.45),其余次降雨均小于當地大氣降水線截距。另外,2020-06-06次降雨的斜率和截距遠低于其他次降雨,分別為2.86和-24.61。

典型次降雨過程中δ18O值與降雨類型有關(圖7)。首先,雨量效應——即δ18O值與降雨量呈顯著(P<0.05)負線性關系,僅在持續時間較長的降雨中體現,包括2019-06-23、2019-07-08和2020-06-05次降雨(圖7),3場降雨的持續時間分別為9.5、11和12.5 h。與其他三場降雨相比,雖然2019-10-22次降雨持續時間較長(14 h),但不存在雨量效應(圖7),可能與該次降雨產生于秋季而大陸性季風盛行有關。再者,特大暴雨過程中δ18O值沒有雨量效應(圖7),2020-06-07和2020-09-07次降雨屬均屬特大暴雨(表1),降雨總量分別為115 mm和334 mm,約占區域多年平均降雨量的8.00%和23.30%,平均降雨強度分別為32.86 mm/h和33.40 mm/h。

圖7 典型次降雨過程中δ18O變化Fig.7 The variation of δ18O in typical rainfall event

3 討論

3.1 降雨氫氧穩定同位素特征及其影響因素

我國大氣降雨δD值的變化范圍為-134‰—-17‰,δ18O的范圍為-13.9‰—-3.6‰[13],研究區的δD和δ18O值的變化范圍分別為118.88 ‰—32‰和-15.1‰—1.06‰,與全國大氣降水的δD和δ18O值具有一致性。其次,δD和δ18O值表現出明顯的季節效應,即夏秋季明顯偏負,而春冬季則明顯偏正。

這種季節特征主要受兩個方面的影響,一方面是大尺度上水汽來源的影響,包括水汽的蒸發來源和水汽在輸送過程中同位素發生的變化[12]。一般而言,水汽來源的季節性變化是決定因素。章新平等[23]研究結果表明,在雨季,我國西南地區降水主要源于低緯度海洋,空氣濕度大,而旱季則主要受大陸性氣團影響,再加上西風帶和內陸輸送的空氣濕度小,導致δD和δ18O值較大。HYSPLIT模型聚類分析結果證實了這一點,春冬季以蒙古-西伯利亞大陸性季風為主,夏秋則以濕潤的印度季風和東亞季風為主(圖6)。特別在夏季,濕度大的印度季風主導了該季節降雨的水汽來源,這是導致夏季同位素值偏負的主要原因[23]。另外,季風特性同樣影響氘盈余(d)值。d值能夠敏感的反映出降水水汽來源地洋面濕度變化,當濕度較低時,形成的降雨d值偏大,反之偏小。d值在夏、秋季偏低而旱季春、冬季偏高,該結果與δD和δ18O值結果一致,進一步反映了研究區夏秋季海洋性濕潤水汽為主,冬春季大陸性水汽為主的特點。研究區多年平均氘盈余值(12.02±6.24)‰高于全球平均值(10‰),這與章新平等[23]對整個西南地區降雨水汽來源的研究結果一致。我國氘盈余值分布呈現西高東低、南高北低的分布狀況,西南地區是我國氘盈余的其中一個高值區[24]。

另一方面是區域性的地理因素,包含了溫度、降雨量等各因素的綜合作用[25]。Dansgarrd在1964年發現降雨穩定氫氧同位素與溫度呈現顯著負相關關系,即所謂的溫度效應,這種現象普遍存在于中高緯度大陸[26]。然而,到了中國亞熱帶季風氣候區則不存在溫度效應,甚至是“反溫度效應”。本研究中亦得到δ18O值與溫度呈現顯著正相關關系,即反溫度效應。在研究區所在西南喀斯特地區,朱曉燕等[17]和胡可等[18]人也得到的了相同的結果,這種現象是由于亞熱帶季風氣候“雨熱同期”的氣候特征決定[18]。另外,夏季較大的降水量掩蓋了溫度效應,導致明顯的同位素虧損,這是導致反溫度效應的一個主要原因[3]。本研究觀察到降雨量與同位素值呈現顯著負相關關系,即所謂的同位素雨量效應,與我國南方的桃源、惠通、鼎湖山及哀牢山地區的研究結果一致[4]。然而,降雨量對δ18O值的影響不如溫度影響高,章新平等[23]認為,受凝結高度、風速、大氣的穩定度、濕度以及水汽條件等氣象要素的隨機影響,降雨中的同位素離散程度較大,從而導致降雨同位素與雨量的效應相對較弱。綜上所述,由于降雨過程中雨水穩定氫氧同位素值的變化存在較大的不確定性,因此在開展同位素水文學相關研究時,應該關注同位素值在次降雨時間尺度上的變化。

3.2 次降雨過程同位素特征

自1961年Craig[8]建立全球大氣降水線(GMWL)起,很多地區都建立了適用于當地的區域大氣降水線(LWML)。由于雨滴在降落過程中受到不平衡的二次蒸發作用而引起的同位素分餾,降水中穩定氫氧同位素值相應的會因蒸發而偏離全球大氣降水線。空氣相對濕度越高的地區,不平衡蒸發作用越弱,則大氣降水線的斜率和截距越大[12]。與GMWL相比,本研究區的LWML斜率(8.37)和截距(14.45)均偏大,這與我國南方地區LWML的斜率及截距均大于全球大氣降水線的結果一致[12],反映出研究區所處的西南地區濕潤多雨的特點。

然而,具體到典型的次降雨,發現其降水線與當地或全球大氣降水線的斜率和截距均存在不同程度的偏離。一方面,季節性差異會影響次降雨過程的降水線斜率,例如2019-10-22次降雨斜率顯著低于當地大氣降水線,與十月份空氣濕度低,不平衡蒸發作用強有關[12]。另一方面,降雨過程也會影響降水線斜率和截距,雖然2020-06-06次降雨與2019-10-22次降雨的斜率和截距均較小,但影響因素不同。2020-06-06次降雨的斜率低是因為在前一日的云團發生降水后,降水水滴在其到達地面前又發生蒸發所致,導致其斜率和截距接近蒸發線[27]。再者,特大暴雨斜率和截距均高于當地大氣降水線,反映特大暴雨過程中的水汽經歷多次蒸發,導致分子質量小的氫同位素比分子質量大的氧同位素的分餾速度快,導致降水的斜率和截距偏大[28]。

由于典型降雨事件的強度大,溫度對其影響可以忽略,而雨量對其影響則因降雨類型不同而異。研究發現,同位素雨量效應僅反映在持續時間較長(>9.5 h)的典型次降雨過程中,表現為同位素值隨降雨的進行而持續偏負。瑞利分餾方程可以較好的解釋這種變化過程,即開放系統中,反應生成的產物一旦形成后,馬上從系統中分離,所以降雨過程的雨水同位素值逐漸變貧[3]。然而,瑞利分餾模型在假定分餾系數不隨時間變化的理想前提下進行的,但自然界中水在蒸發和凝結的過程中發生的氫氧同位素分餾現象來說,這種理想情況實際上是不存在的[3]。因此,本研究也觀察到一些次降雨不存在這種同位素值持續偏負的現象。降雨強度的變化及空氣濕度的變化會導致雨水下降過程出現蒸發,或者由于水汽來源的不同的云團作用也可能導致這種現象[24]。對于特大暴雨,亦未發現“雨量效應”,與Ansari等[9]研究結果一致,其研究指出這種特大暴雨過程中的雨量效應或溫度效應影響較小,而大氣或者地理因素是主要影響因素[9]。值得注意的是,Fudeyasu等[29]及Xu等[30]研究發現臺風形成的降雨同位素值顯著低于其他類型降雨,本研究中2019-09-09次降雨是由臺風“玲玲”活動影響下形成的降雨,該場次δ18O值低于其他場次降雨,與上述研究結果一致。

4 結論

基于2013年至2018年長時間序列的日尺度降雨穩定氫氧同位素值,建立了當地的大氣降水線,為δD=8.37δ18O+14.45(n=407)。研究區多年降雨δD和δ18O值存在明顯的季節效應,夏秋季δD和δ18O值偏負,春冬季δD和δ18O值偏正,水汽源季節性差異是導致δD和δ18O值差異的主要原因。季風氣候影響下,降雨δ18O值存在同位素值隨溫度的升高而減小的反溫度效應,年際尺度降雨δ18O值存在顯著的雨量效應(P<0.05)。典型次降雨過程中,僅持續時間>9.5 h的降雨存在雨量效應,但也受到季節性的影響。此外,特大暴雨事件不存在雨量效應,與大氣或地理因素的影響有關。

猜你喜歡
大氣研究
大氣的呵護
軍事文摘(2023年10期)2023-06-09 09:15:06
FMS與YBT相關性的實證研究
太赫茲大氣臨邊探測儀遙感中高層大氣風仿真
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
EMA伺服控制系統研究
新版C-NCAP側面碰撞假人損傷研究
大氣古樸揮灑自如
大氣、水之后,土十條來了
新農業(2016年18期)2016-08-16 03:28:27
主站蜘蛛池模板: 91人妻日韩人妻无码专区精品| 71pao成人国产永久免费视频| 亚洲中文字幕久久精品无码一区| 日韩国产一区二区三区无码| 2020精品极品国产色在线观看| 欧美a在线视频| 男女男免费视频网站国产| 久视频免费精品6| 久久精品国产999大香线焦| 91久久夜色精品| 伊人天堂网| 欧美综合在线观看| 欧美天天干| 国产综合网站| 19国产精品麻豆免费观看| 久久久国产精品无码专区| 亚洲手机在线| 亚洲欧美日韩久久精品| 亚洲最大福利网站| 日韩第一页在线| 亚洲天堂777| 亚洲男人的天堂视频| 男人天堂伊人网| 色婷婷成人网| 亚洲第一av网站| 一级毛片在线播放| 久久国产香蕉| 99久久成人国产精品免费| 无码国产偷倩在线播放老年人| 欧美a在线看| 狠狠操夜夜爽| 91精品日韩人妻无码久久| 亚洲一区色| 黄网站欧美内射| 成人国产精品网站在线看 | 国产一二视频| 国产第八页| 欧美a在线视频| 国产无码精品在线播放| 一本久道热中字伊人| 97国产一区二区精品久久呦| 亚洲大尺码专区影院| 久久不卡国产精品无码| 欧美三级视频在线播放| 国产一区二区三区在线观看免费| 亚洲成A人V欧美综合天堂| 亚洲天堂网2014| 亚洲女同欧美在线| 伊人色在线视频| 人人艹人人爽| 国产丝袜第一页| 国产69囗曝护士吞精在线视频| 国产一二三区视频| 91香蕉视频下载网站| 亚洲视频免费在线看| 婷婷激情五月网| 国产在线97| 日韩资源站| 国产网站黄| 国产在线八区| 91久久精品国产| 日韩欧美在线观看| 国产一级毛片网站| 国产精品成人啪精品视频| 99视频在线免费观看| 青草视频在线观看国产| 真实国产精品vr专区| 手机在线免费不卡一区二| 67194在线午夜亚洲| 亚洲第一天堂无码专区| 91在线一9|永久视频在线| 麻豆精品视频在线原创| 无码福利日韩神码福利片| 欧美福利在线观看| 久久婷婷六月| 国产成a人片在线播放| 亚洲高清在线天堂精品| 欧美在线视频不卡第一页| JIZZ亚洲国产| 日本一区二区三区精品视频| 日韩第九页| 手机成人午夜在线视频|