陳志天, 朱永剛, 朱秀華, 王璐, 曹雪麗
基于胰高血糖素樣肽1受體及其下游信號探討有氧運(yùn)動對小鼠心梗模型心功能康復(fù)的影響*
陳志天, 朱永剛△, 朱秀華, 王璐, 曹雪麗
(連云港市第一人民醫(yī)院神經(jīng)康復(fù)科,江蘇 連云港 222002)
探討有氧運(yùn)動訓(xùn)練(AET)對心肌梗死(MI)小鼠的心臟保護(hù)作用,并闡明其作用機(jī)制是否與胰高血糖素樣肽1受體(GLP-1R)激活有關(guān)。在實(shí)驗(yàn)1(研究AET對MI小鼠的心臟保護(hù)作用及對心臟組織中GLP-1R表達(dá)的影響)中,67只小鼠分為3組:假手術(shù)(sham)組(=14)、MI組(=28)和MI+AET組(=25)。MI組和MI+AET組采用結(jié)扎左冠狀動脈前降支建立MI模型,且MI+AET組在模型建立后進(jìn)行為期4周的AET處理。在實(shí)驗(yàn)2[研究敲除(GLP-1R KO)對AET心臟保護(hù)作用的影響]中,將24只小鼠分為4組:野生型(WT)組、GLP-1R KO組、GLP-1R KO+MI組和GLP-1R KO+MI+AET組(均=6)。將GLP-1R KO+MI組和GLP-1R KO+MI+AET組建立MI模型,且GLP-1R KO+MI+AET組在模型建立后進(jìn)行為期4周的AET處理。在實(shí)驗(yàn)3(研究-敲除減弱AET心臟保護(hù)作用的相關(guān)機(jī)制)中,將36只小鼠分為6組:WT、MI組、MI+AET組、GLP-1R KO組、GLP-1R KO+MI組和GLP-1R KO+MI+AET組(均=6)。MI組、MI+AET組、GLP-1R KO+MI組和GLP-1R KO+MI+AET組建立MI模型,且MI+AET組和GLP-1R KO+MI+AET組在模型建立后進(jìn)行為期4周的AET處理。通過超聲心動圖評估小鼠心臟功能;免疫組織化學(xué)檢測心臟組織中GLP-1R表達(dá);TUNEL染色評估心肌細(xì)胞凋亡;DHE熒光檢查心臟組織中活性氧(ROS)水平;試劑盒檢測心肌ATP水平;Western blot檢測心臟組織中AMPK-mTOR-p70S6K通路和氧化磷酸化復(fù)合物的表達(dá)。AET提高了MI后的存活率(<0.01)。與MI組相比,MI+AET組心重與脛骨長比降低了20.4%,左心室射血分?jǐn)?shù)和左心室短軸縮短率均顯著增加(<0.05),并且心肌細(xì)胞凋亡率顯著降低(<0.05)。此外,MI+AET組小鼠的GLP-1R染色面積較MI組顯著增加(<0.01)。與GLP-1R KO+MI組小鼠相比,GLP-1R KO+MI+AET組小鼠TUNEL陽性細(xì)胞核和左室收縮功能均無顯著差異。在接受MI的正常小鼠中,AET顯著促進(jìn)心臟組織中AMPK-mTOR-p70S6K通路的激活,增加線粒體Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ復(fù)合物編碼基因的表達(dá)和ATP含量,并減少ROS產(chǎn)生,而-敲除完全消除了AET誘導(dǎo)的這些改變。AET可能通過改善線粒體代謝、減少氧化應(yīng)激和抑制心肌細(xì)胞凋亡來發(fā)揮對MI小鼠的心臟保護(hù)作用,其作用機(jī)制與GLP-1R-AMPK依賴性機(jī)制調(diào)節(jié)線粒體能量代謝和氧化應(yīng)激有關(guān)。
有氧運(yùn)動;心肌梗死;胰高血糖素樣肽1受體;線粒體
心肌梗死(myocardial infarction,MI)是一個(gè)嚴(yán)重的全球性問題,其死亡率高并導(dǎo)致嚴(yán)重的心臟損傷[1]。臨床上治療MI最有效的方法是恢復(fù)心肌供血。盡管再灌注技術(shù)已獲得較大改善,但近年來MI后心力衰竭的發(fā)生率不斷增加[2]。越來越多證據(jù)表明,有氧運(yùn)動訓(xùn)練(aerobic exercise training,AET)不僅可以降低心臟病的危險(xiǎn)因素,還可以提供針對包括MI在內(nèi)的各種疾病的直接內(nèi)源性心臟保護(hù)[3-4]。然而,AET對心臟保護(hù)作用的潛在機(jī)制仍不清楚。胰高血糖素樣肽1(glucagon-like peptide-1,GLP-1)是一種腸促胰素激素,由腸道的L細(xì)胞響應(yīng)食物通道生理產(chǎn)生,并有研究顯示其可影響細(xì)胞凋亡、葡萄糖和脂質(zhì)代謝及信號轉(zhuǎn)導(dǎo)等過程[5-6]。目前,已在心肌細(xì)胞和血管內(nèi)皮細(xì)胞中檢測到GLP-1受體(GLP-1 receptor,GLP-1R),并且相關(guān)研究證實(shí)GLP-1R對心血管系統(tǒng)有直接影響[7]。研究顯示,GLP-1R的藥理學(xué)激活可減少糖尿病患者的心血管事件[8]。在缺血性心臟病模型中,GLP-1R激活可以減少梗死面積并保持心室收縮功能正常[9-10]。值得注意的是,大量證據(jù)表明,運(yùn)動訓(xùn)練有助于改善2型糖尿病患者的GLP-1循環(huán)水平,表明AET可能對GLP-1R激活產(chǎn)生影響[11-12]。然而,GLP-1R是否介導(dǎo)AET的心臟保護(hù)作用尚未得到充分研究。在本研究中,我們證明AET對MI小鼠的心臟保護(hù)作用,并涉及GLP-1R-AMPK信號介導(dǎo)的線粒體能量產(chǎn)生的改善和減輕MI誘導(dǎo)的氧化應(yīng)激和心肌細(xì)胞凋亡。
抗GLP-1R單克隆抗體購自Abcam;辣根過氧化物酶標(biāo)記的Ⅱ抗購自北京中杉金橋生物技術(shù)有限公司;原位細(xì)胞死亡檢測試劑盒購自Roche Diagnostics;ATP檢測試劑盒和BCA Bradford蛋白分析試劑盒購自Beyotime;硝化纖維素膜購自Bio-Rad;蛋白酶抑制劑購自Merck;RIPA裂解緩沖液及抗AMPKα、p-AMPKα、mTOR、p-mTOR、p70S6K、p-p70S6K、線粒體氧化磷酸化(oxidative phosphorylation,OXPHOS)復(fù)合物和GAPDH抗體購自Cell Signaling Technology。
Vevo 2100多普勒超聲檢測器購自VisualSonics;CM1950冷凍切片機(jī)購自Leica;Eclipse 55i熒光顯微鏡購自Nikon;Tanon 5200化學(xué)發(fā)光成像系統(tǒng)購自上海天能科技有限公司。
SPF級雄性C57/BL6野生型(wild-type,WT)小鼠(8周,20~22 g)及基因靶向敲除(knockout,KO)小鼠購自北京維通達(dá)生物技術(shù)有限公司,許可證號為SCXK(京)20170011。所有小鼠均在標(biāo)準(zhǔn)化條件下飼養(yǎng)(12 h光/暗循環(huán),溫度22~24 ℃,濕度35%~60%),可自由飲用食物和水。喂養(yǎng)1周后,小鼠隨機(jī)接受MI或假手術(shù)(sham)處理。
3.1MI模型建立與實(shí)驗(yàn)分組采用結(jié)扎左冠狀動脈前降支建立MI模型[13],將小鼠固定在動物手術(shù)臺上,吸入異氟醚麻醉。在去除毛發(fā)和切割胸前區(qū)皮膚后,將第3和第4肋間的肌肉鈍性分離,從肋間擠出心臟,結(jié)扎左冠狀動脈前降支約2 min。然后將心臟植入胸腔,縫合皮膚。術(shù)后第1周結(jié)束時(shí),通過超聲心動圖檢查心臟功能。假手術(shù)小鼠在不結(jié)扎左冠狀動脈前降支的情況下進(jìn)行相同的手術(shù)。在實(shí)驗(yàn)1(研究AET對MI小鼠的心臟保護(hù)作用及對心臟組織中GLP-1R表達(dá)的影響)中,將67只小鼠分為3組:sham組(=14)、MI組(=28)和MI+AET組(=25)。MI組和MI+AET組建立MI模型,并且MI+AET組在模型建立后進(jìn)行為期4周的AET處理。在實(shí)驗(yàn)2(研究敲除對AET心臟保護(hù)作用的影響)中,將24只小鼠分為4組:WT組、GLP-1R KO組、GLP-1R KO+MI組和GLP-1R KO+MI+AET組(均=6)。GLP-1R KO+MI組和GLP-1R KO+MI+AET組建立MI模型,并且GLP-1R KO+MI+AET組在模型建立后進(jìn)行為期4周的AET處理。在實(shí)驗(yàn)3(研究-敲除減弱AET心臟保護(hù)作用的相關(guān)機(jī)制)中,將36只小鼠分為6組:WT、MI組、MI+AET組、GLP-1R KO組、GLP-1R KO+MI組和GLP-1R KO+MI+AET組(均=6)。MI組、MI+AET組、GLP-1R KO+MI組和GLP-1R KO+MI+AET組建立MI模型,且MI+AET組和GLP-1R KO+MI+AET組在模型建立后進(jìn)行為期4周的AET處理。
3.2AET方法參照文獻(xiàn)報(bào)道方法進(jìn)行運(yùn)動訓(xùn)練[13]。在第1周,進(jìn)行適應(yīng)性跑步機(jī)訓(xùn)練。小鼠在第1天以10 m/min的速度訓(xùn)練10 min,每天增加10 min,在第5天以10 m/min的速度訓(xùn)練50 min。然后以10 m/min的速度進(jìn)行為期4周的常規(guī)運(yùn)動訓(xùn)練,每天60 min,每周5 d。
3.3超聲心動圖在AET 4周后的第2天,使用Vevo 2100多普勒超聲檢測器測量心臟功能。將小鼠麻醉并以仰臥位固定在手術(shù)臺上。去除胸部毛發(fā)后,將超聲探頭置于左前胸,獲得二維M型超聲心動圖。至少連續(xù)監(jiān)測和記錄6個(gè)心動周期。測量左心室收縮末期內(nèi)徑(left ventricle inner diameter in systole,LVIDs)、左心室舒張末期內(nèi)徑(left ventricle inner diameter in diastole,LVIDd)和射血分?jǐn)?shù)(left ventricular ejection fraction,LVEF),通過LVIDd和LVIDs計(jì)算縮短分?jǐn)?shù)[left ventricular fractional shortening,LVFS; LVFS(%)=(LVIDd-LVIDs)/LVIDd×100%]。測定后,確保小鼠有足夠的麻醉深度,迅速摘取心臟并固定于10%甲醛中進(jìn)行形態(tài)學(xué)分析,或固定于液氮中進(jìn)行后續(xù)分析。
3.4免疫組織化學(xué)取小鼠心臟組織在4%多聚甲醛中固定過夜。標(biāo)本包埋于石蠟中,切片4 μm。采用標(biāo)準(zhǔn)程序進(jìn)行免疫組化。脫蠟、復(fù)水和封閉后,將載玻片與主要抗GLP-1R(1∶200)單克隆抗體在4 ℃下培養(yǎng)過夜,再與辣根過氧化物酶標(biāo)記的Ⅱ抗(1∶100)和DAB試劑反應(yīng),然后用Mayer蘇木精復(fù)染。在光學(xué)顯微鏡下觀察切片。對于每張切片,隨機(jī)選擇5個(gè)放大倍率為40倍的視野并拍照。用ImageJ軟件分析陽性染色(棕色)。
3.5TUNEL檢測通過TUNEL染色評估心肌細(xì)胞凋亡。心臟用冰冷的磷酸鹽緩沖鹽水洗滌2次,然后在4 ℃下用4%甲醛固定48 h。將固定的心臟切割、洗滌、脫水并浸入石蠟中。根據(jù)原位細(xì)胞死亡檢測試劑盒的說明進(jìn)行TUNEL染色。綠色熒光素染色表明細(xì)胞核凋亡。并在5個(gè)隨機(jī)熒光顯微鏡視圖中計(jì)數(shù)TUNEL陽性細(xì)胞核(綠色細(xì)胞核),并表示為總細(xì)胞群的百分比。
3.6活性氧(reactive oxygen species,ROS)含量的測定參照文獻(xiàn)[14]使用二氫乙啶(dihydroethidium,DHE)熒光檢查心臟組織中的ROS水平。用CM1950冷凍切片機(jī)將心臟組織冷凍切片切成5 μm厚。然后將切片與DHE和MitoSOX紅色線粒體超氧化物指示劑在黑暗中、37 ℃下孵育30 min。用PBS洗滌后,使用Eclipse 55i熒光顯微鏡評估ROS水平。使用Image-Pro Plus 6.0對心臟組織中ROS的乙啶熒光檢測強(qiáng)度進(jìn)行分析。
3.7線粒體ATP含量評估使用ATP檢測試劑盒測定心肌ATP水平。取心臟組織進(jìn)行均質(zhì)和離心(12 000×,5 min)后收集上清液,并在96孔板中與工作稀釋液混合。通過使用酶標(biāo)儀評估相對光單位。
3.8Western blot將上述心臟缺血區(qū)組織在含有磷酸酶和蛋白酶抑制劑的RIPA裂解緩沖液裂解30 min,并通過BCA Bradford蛋白分析試劑盒測定蛋白含量。然后將蛋白質(zhì)與負(fù)載緩沖液混合并煮沸10 min。用SDS-PAGE分離等量提取物(50 μg)并轉(zhuǎn)移到硝化纖維素膜。用5%的脫脂奶粉封閉細(xì)胞膜2 h,然后在4 ℃下與抗GLP-1R(1∶1 000)、p-AMPKα (1∶1 000)、AMPKα(1∶1 000)、mTOR(1∶1 000)、p-mTOR(1∶1 000)、p70S6K(1∶1 000)、p-p70S6K(1∶1 000)、線粒體OXPHOS復(fù)合物和GAPDH(1∶1 000)孵育過夜。第2天,用適當(dāng)?shù)睦备^氧化物酶結(jié)合Ⅱ抗(1∶10 000)在室溫下孵育1 h。通過Tanon 5200化學(xué)發(fā)光成像系統(tǒng)觀察免疫復(fù)合物。
數(shù)據(jù)顯示為平均值±標(biāo)準(zhǔn)差(mean±SD)。對于多組比較,使用單因素方差分析,然后使用Bonferroni事后檢驗(yàn)。<0.05認(rèn)為差異具有統(tǒng)計(jì)學(xué)意義。所有統(tǒng)計(jì)分析均使用GraphPad Prism 9.0進(jìn)行。
為了研究AET在缺血后心臟保護(hù)中的作用,對MI小鼠進(jìn)行4周AET。結(jié)果顯示,AET提高了MI后小鼠的存活率(<0.01),見圖1A;與MI組相比,MI+AET組心重與脛骨長比(the ratio of heart weight to tibia length,HW/TL)降低了20.4%(<0.05),見圖1B;LVEF和LVFS均顯著增加(<0.05),見圖1C;TUNEL染色顯示,AET降低了MI誘導(dǎo)的心肌細(xì)胞凋亡(<0.05),見圖1D。

Figure 1.AET protects the heart from MI. A: the survival curve of MI mice; B: the ratio of heart weight (HW) to tibia length (TL) (n=8); C: echocardiographic detection of cardiac function and measurement results of LVEF and LVFS (n=6); D: cardiomyocyte apoptosis detected by TUNEL staining (n=5,scale bar=50 μm). Mean±SD. *P<0.05,**P<0.01 sham group; #P<0.05 vs MI group.
免疫組化分析顯示,與sham組相比,MI組小鼠心臟組織中GLP-1R染色面積顯著減少(<0.01);而MI+AET組GLP-1R染色面積較MI組顯著增加(<0.01),見圖2A。此外,Western blot的結(jié)果與免疫組化一致,見圖2B。

Figure 2.The expression of GLP-1R in the heart tissue of MI mice. A: the expression of GLP-1R in the heart tissue detected by immunohistochemical staining (scale bar=100 μm); B: the GLP-1R expression in the heart tissue detected by Western blot. Mean±SD. n=5. *P<0.05,**P<0.01 vs sham group; ##P<0.01 vs MI group.
Western blot證實(shí),GLP-1R KO小鼠心肌中缺乏GLP-1R蛋白(圖3A)。與GLP-1R KO+MI組小鼠相比,GLP-1R KO+MI+AET組小鼠TUNEL陽性細(xì)胞核和左室收縮功能均無顯著差異(圖3B、C)。

Figure 3.GLP-1R knockout (GLP-1R KO) attenuated the cardioprotective effect of AET on MI mice. A: the expression of GLP-1R in the myocardial tissue of GLP-1R KO mice detected by Western blot (n=6); B: the cardiomyocyte apoptosis detected by TUNEL staining (n=5,scale bar=50 μm); C: echocardiographic detection of the cardiac function and the measurement results of LVEF and LVFS (n=6). Mean±SD. *P<0.05,**P<0.01 vs GLP-1R KO group.
在接受MI的正常小鼠中,AET顯著促進(jìn)AMPK-mTOR-p70S6K通路的激活,而敲除完全消除了這種改變(圖4A)。為了測試失活的AMPK信號是否與線粒體能量代謝降低有關(guān),我們分析了OXPHOS復(fù)合物的表達(dá)譜。在AET處理?xiàng)l件下,敲除小鼠MI后心臟組織中線粒體Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ復(fù)合物的表達(dá)顯著降低(圖4B)。在MI后,敲除致AET處理小鼠的線粒體ATP含量顯著降低(圖4C)。此外,AET處理顯著減少M(fèi)I誘導(dǎo)的ROS產(chǎn)生;相反,敲除顯著減弱了AET處理對ROS的效應(yīng),表現(xiàn)為ROS生成加劇(圖4D)。

Figure 4.GLP-1R knockout inactivated AMPK and weakened the regulatory effect of AET on mitochondrial energy metabolism and oxidative stress. A: representative immunoblotting and quantitative analysis of phosphorylated AMPK,mTOR and p70S6K in mouse heart tissues after MI; B: representative immunoblotting and quantitative analysis of mitochondrial oxidative phosphorylation (OXPHOS) complexes I,II,III,IV and V in mouse heart tissues after MI; C: determination of mitochondrial ATP content; D: the levels of reactive oxygen species (ROS) detected by dihydroethidium (DHE) staining (scale bar=50 μm). 1: WT group; 2: MI group,3: MI+AET group; 4: GLP-1R KO group; 5: GLP-1R KO+MI group; 6: GLP-1R KO+MI+AET group. Mean±SD. n=6. *P<0.05 vs 1; #P<0.05 vs 2; △P<0.05 vs 3; ▲P<0.05 vs 4.
MI的發(fā)病率和死亡率都很高,是心臟性猝死的常見原因之一[15]。尋找MI后保護(hù)心臟的有效策略并闡明其潛在機(jī)制具有重要的臨床意義。本研究的目的是調(diào)查AET對MI后心臟保護(hù)的作用及其潛在機(jī)制,并顯示:(1) AET通過激活GLP-1R保護(hù)小鼠心臟免受MI損傷;(2) AET通過激活GLP-1R-AMPK信號改善線粒體能量代謝,抑制心肌細(xì)胞凋亡并減少氧化應(yīng)激??傊狙芯拷Y(jié)果表明,AET通過靶向GLP-1R保護(hù)缺血性心臟。
AET可以使心臟適應(yīng)某些病理生理狀況的變化,從而有效降低心血管事件的風(fēng)險(xiǎn)[16-17]?;贏ET的心臟保護(hù)已被證明對許多心血管疾病有效,包括心肌缺血再灌注損傷、心肌纖維化、MI和心力衰竭[18-19]。AET可以減輕自主神經(jīng)系統(tǒng)功能障礙,降低左室功能,改善MI心功能[20]。此外,AET可以通過抑制ROS、促炎細(xì)胞因子、基質(zhì)金屬蛋白酶的增加和抗氧化活性來減弱MI后的心臟重塑[21]。然而,目前關(guān)于AET心臟保護(hù)作用的潛在機(jī)制仍然不清楚。在這項(xiàng)研究中,我們顯示AET可增強(qiáng)GLP-1R蛋白表達(dá)。先前研究已證實(shí),GLP-1R可能在缺血性心肌損傷的修復(fù)和MI后重構(gòu)中發(fā)揮作用[22-23]。本研究擴(kuò)展了先前研究結(jié)果,證實(shí)了GLP-1RKO通過AMPK依賴性機(jī)制加重心肌細(xì)胞死亡、惡化心臟功能和減少M(fèi)I心肌中的線粒體能量代謝,從而消除AET處理誘導(dǎo)的心臟保護(hù)作用。這些觀察表明,AET處理通過GLP-1R-AMPK依賴性機(jī)制調(diào)節(jié)線粒體能量代謝,在挽救心肌細(xì)胞命運(yùn)和維持心臟功能方面起著至關(guān)重要的作用。
MI誘導(dǎo)的DNA損傷和超氧化物產(chǎn)生是心肌細(xì)胞死亡的主要原因,并且與線粒體損傷有因果關(guān)系[24-25]。因此,我們研究了AET處理在MI期間線粒體能量代謝和氧化應(yīng)激調(diào)節(jié)中的作用。結(jié)果顯示,AET顯著增加了OXPHOS復(fù)合物的表達(dá)譜,并減少了超氧化物的產(chǎn)生,從而改善了氧化應(yīng)激引起的心肌損傷。敲除顯著減弱了上述AET理對線粒體能量代謝和氧化應(yīng)激的影響,如線粒體Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ復(fù)合物表達(dá)減少,ROS產(chǎn)生增加。這些結(jié)果表明,AET可抑制MI期間氧化誘導(dǎo)的心臟損傷,并且GLP-1R激活是該過程所必需的。
綜上所述,AET是一種通過改善線粒體代謝、減少氧化應(yīng)激和抑制心肌細(xì)胞凋亡來對抗MI損傷的心臟保護(hù)策略,其作用機(jī)制與GLP-1R-AMPK依賴性機(jī)制調(diào)節(jié)線粒體能量代謝和氧化應(yīng)激有關(guān)。因此,AET代表了一種治療MI的潛在有吸引力的策略。
[1] Ando T,Yoshihisa A,Kimishima Y,et al. Prognostic impacts of nutritional status on long-term outcome in patients with acute myocardial infarction[J]. Eur J Prev Cardiol,2020,27(19):2229-2231.
[2] ElKazzi M,Rayner BS,Chami B,et al. Neutrophil-mediated cardiac damage after acute myocardial infarction: significance of defining a new target cell type for developing cardioprotective drugs[J]. Antioxid Redox Signal,2020,33(10):689-712.
[3]王友華,馬美,田振軍. 心肌梗死后的心功能改善:有氧運(yùn)動干預(yù)發(fā)揮效應(yīng)新視角[J]. 中國運(yùn)動醫(yī)學(xué)雜志,2019,38(7):624-629.
Wang YH,Ma M,Tian ZJ. Improvement of cardiac function after myocardial infarction: a new perspective on the effects of aerobic exercise intervention[J]. Chin J Sports Med,2019,38(7):624-629.
[4] Moraes-Silva IC,Rodrigues B,Coelho-Junior HJ,et al. Myocardial infarction and exercise training: evidence from basic science[J]. Adv Exp Med Biol,2017,999:139-153.
[5]吳靈靈,孫李丹. 胰高血糖素樣肽-1及其類似物對細(xì)胞氧化應(yīng)激的研究進(jìn)展[J]. 中國藥科大學(xué)學(xué)報(bào),2020,51(1):117-123.
Wu LL,Sun LD. Research progress of glucagon-like peptide-1 and its analogues on cell oxidative stress[J]. J Chin Pharm Univ,2020,51(1):117-123.
[6]楊柳,余鵬,張靜,等. 胰升血糖素樣肽1受體激動劑心血管獲益的研究進(jìn)展[J]. 中國糖尿病雜志,2019,27(12):946-948.
Yang L,Yu P,Zhang J,et al. Research progress on cardiovascular benefits of glucagon-like peptide 1 receptor agonists[J]. Chin J Diabetes,2019,27(12):946-948.
[7] Baggio LL,Ussher JR,McLean BA,et al. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice[J]. Mol Metab,2017,6(11):1339-1349.
[8] Nauck MA,Meier JJ,Cavender MA,et al. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors[J]. Circulation,2017,136(9):849-870.
[9] Li R,Shan Y,Gao L,et al. The Glp-1 analog liraglutide protects against angiotensin II and pressure overload-induced cardiac hypertrophy via PI3K/Akt1 and AMPKa signaling[J]. Front Pharmacol,2019,10:537.
[10] Nguyen TD,Shingu Y,Amorim PA,et al. GLP-1 improves diastolic function and survival in heart failure with preserved ejection fraction[J]. J Cardiovasc Transl Res,2018,11(3):259-267.
[11] Lee SS,Yoo JH,So YS. Effect of the low-versus high-intensity exercise training on endoplasmic reticulum stress and GLP-1 in adolescents with type 2 diabetes mellitus[J]. J Phys Ther Sci,2015,27(10):3063-3068.
[12] Chen C,Huang Y,Zeng Y,et al. Targeting the DPP-4-GLP-1 pathway improves exercise tolerance in heart failure patients: a systematic review and meta-analysis[J]. BMC Cardiovasc Disord,2019,19(1):311-320.
[13] Qin R,Murakoshi N,Xu DZ,et al. Exercise training reduces ventricular arrhythmias through restoring calcium handling and sympathetic tone in myocardial infarction mice[J]. Physiol Rep,2019,7(4):e13972.
[14] 李燕,馮健,謝發(fā)江,等. 柚皮素通過調(diào)控AMPK/Nrf2/HO-1信號通路減輕糖尿病小鼠心肌損傷[J]. 中國病理生理雜志,2020,36(1):38-46.
Li Y,F(xiàn)eng J,Xie FJ,et al. Naringenin reduces myocardial injury in diabetic mice by regulating AMPK/Nrf2/HO-1 signaling pathway[J]. Chin J Pathophysiol,2020,36(1):38-46.
[15] 陳衛(wèi)省,顧穎,肖雨塵,等. 2007-2018年住院ST段抬高型心肌梗死和非ST段抬高型心肌梗死患者比例及院內(nèi)死亡率變化趨勢[J]. 第二軍醫(yī)大學(xué)學(xué)報(bào),2020,41(10):6-14.
Chen WS,Gu Y,Xiao YC,et al. The proportion of hospitalized patients with ST-elevation myocardial infarction and non-ST-elevation myocardial infarction and the trend of in-hospital mortality from 2007 to 2018[J]. J Second Mil Med Univ,2020,41(10):6-14.
[16]郅季炘. 有氧運(yùn)動聯(lián)合抗阻訓(xùn)練對男性肥胖青少年心血管危險(xiǎn)因素的影響[J]. 中華物理醫(yī)學(xué)與康復(fù)雜志,2019,41(6):447-452.
Zhi JX. The effect of aerobic exercise combined with resistance training on cardiovascular risk factors in male obese adolescents[J]. Chin J Phys Med Rehabil,2019,41(6):447-452.
[17] da Costa Ghignatti PV,Nogueira LJ,Lehnen AM,et al. Cardioprotective effects of exercise training on doxorubicin-induced cardiomyopathy: a systematic review with meta-analysis of preclinical studies[J]. Sci Rep,2021,11(1):6630.
[18] Guo Y,Chen J,Qiu H. Novel mechanisms of exercise-induced cardioprotective factors in myocardial infarction[J]. Front Physiol,2020,11:199.
[19] Jeremic N,Weber GJ,Theilen NT,et al. Cardioprotective effects of high-intensity interval training are mediated through microRNA regulation of mitochondrial and oxidative stress pathways[J]. J Cell Physiol,2020,235(6):5229-5240.
[20] Besnier F,Labrunee M,Pathak A,et al. Exercise training-induced modification in autonomic nervous system: an update for cardiac patients[J]. Ann Phys Rehabil Med,2017,60(1):27-35.
[21] Donniacuo M,Urbanek K,Nebbioso A,et al. Cardioprotective effect of a moderate and prolonged exercise training involves sirtuin pathway[J]. Life Sci,2019,222:140-147.
[22] 王東娟,李恒棟,謝小玲,等. 胰高血糖素樣肽1通過Keap1-Nrf2信號通路減輕糖尿病大鼠心肌微血管損傷[J]. 中國病理生理雜志,2019,35(12):2143-2149.
Wang DJ,Li HD,Xie XL,et al. Glucagon-like peptide 1 reduces myocardial microvascular injury in diabetic rats through Keap1-Nrf2 signaling pathway[J]. Chin J Pathophysiol,2019,35(12):2143-2149.
[23] St?hle M,Kyt? V,Kiugel M,et al. Glucagon-like peptide-1 receptor expression after myocardial infarction: imaging study using68Ga-NODAGA-exendin-4 positron emission tomography[J]. J Nucl Cardiol,2020,27(6):2386-2397.
[24] Umbria M,Ramos A,Aluja MP,et al. The role of control region mitochondrial DNA mutations in cardiovascular disease: stroke and myocardial infarction[J]. Sci Rep,2020,10(1):2766.
[25] Li F,Yang Y,Xue C,et al. Zinc finger protein ZBTB20 protects against cardiac remodelling post-myocardial infarction via ROS-TNFα/ASK1/JNK pathway regulation[J]. J Cell Mol Med,2020,24(22):13383-13396.
Aerobic exercise induces cardiac rehabilitation in myocardial infarction mice through GLP-1R-AMPK signaling pathway
CHEN Zhi-tian,ZHU Yong-gang△,ZHU Xiu-hua,WANG Lu,CAO Xue-li
(,,222002,)
To explore the cardioprotective effect of aerobic exercise training (AET) on myocardial infarction (MI) mice,and to clarify whether its mechanism is related to the activation of glucagon-like peptide-1 receptor (GLP-1R).The MI model was established by ligating the anterior descending branch of the left coronary artery in both wild-type and-knockout (GLP-1R KO) mice,and then subjected to 4-week AET. Echocardiography was used to evaluate mouse cardiac function,and immunohistochemistry was used to detect GLP-1R expression in the heart tissue. TUNEL staining was used to evaluate myocardial cell apoptosis. DHE fluorescence was used to detect ROS levels in heart tissue. Kit was used to detect myocardial ATP levels. Western blot was used to detect the expression profile of AMPK-mTOR-p70S6K signaling pathway and oxidative phosphorylation complexes in heart tissues.AET improved the post-MI survival rate (<0.01). Compared with MI group,the ratio of heart weight to tibia length in MI+AET group was reduced by 20.4%,left ventricular ejection fraction and left ventricular fractional shortening were significantly increased (<0.05),and cardiomyocyte apoptosis was reduced (<0.05). In addition,the staining area of GLP-1R in MI+AET group was significantly higher than that in MI group (<0.01). Neither the TUNEL-positive nuclei,nor the left ventricular systolic function were significantly different between GLP-1R KO+MI group and GLP-1R KO+MI+AET group. In normal mice subjected to MI,AET significantly promoted the activation of AMPK-mTOR-p70S6K signaling pathway in cardiac tissues,increased the expression of mitochondrion-encoded genes in complexes I,II,III,IV and V,and ATP content,but reduced ROS production. In contrast,-deficiency completely eliminated the cardioprotective effects of AET.AET is a cardioprotective strategy against MI injury by improving mitochondrial metabolism,reducing oxidative stress and inhibiting cardiomyocyte apoptosis. Its mechanism is related to mitochondrial energy metabolism and oxidative stress via GLP-1R-AMPK-dependent mechanism.
Aerobic exercise training; Myocardial infarction; Glucagon-like peptide-1 receptor; Mitochondria
542.2+2; R363.2
A
10.3969/j.issn.1000-4718.2022.02.006
1000-4718(2022)02-0230-08
2021-10-13
2021-11-18
[基金項(xiàng)目]江蘇省衛(wèi)生健康委醫(yī)學(xué)科研項(xiàng)目(No. 20200257)
Tel: 18652411621; E-mail: lnxl1995@163.com
(責(zé)任編輯:盧萍,羅森)