999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

有機無機肥配施模式對氮素淋失的影響

2022-03-09 03:17:00孔凡靖陳玉成陳思揚熊海靈朱康文楊志敏
農業工程學報 2022年22期
關鍵詞:影響

滕 穎,孔凡靖,陳玉成,陳思揚,熊海靈,朱康文,楊志敏

有機無機肥配施模式對氮素淋失的影響

滕 穎1,2,孔凡靖1,2,陳玉成1,2,陳思揚1,2,熊海靈3,朱康文4,楊志敏1,2※

(1. 西南大學資源環境學院,重慶 400716;2. 農村清潔工程重慶市工程研究中心,重慶市生態環境農用地土壤污染風險管控重點實驗室,重慶 400716;3. 西南大學電子信息工程學院,重慶 400715;4. 重慶市生態環境科學研究院,重慶 401147)

為了探索農田氮素淋失低風險的有機無機肥配施模式,該研究收集了331個有效農田有機肥化肥配施數據對,分析了施肥總量、施肥結構(有機肥替代比)、施肥時間(基追施)、有機肥種類等因素對氮素淋失的總體影響。結果表明:與單施化肥相比,有機肥配施化肥中氮素總量較低時(N<200 kg/hm2),農田總氮(Total Nitrogen,TN)、硝態氮(NO3--N)淋失分別減少36.77%、65.05%;有機肥替代比高于70%,雖然可減少TN淋失(39.64%),但增加了溶解性有機氮(DON)淋失的風險(15.78%),尤其是動物型有機肥替代化肥使DON淋失增加26.31%;氮肥基施可顯著降低TN、NO3--N淋失(43.58%、70.51%,<0.05)。堿性旱地土壤上有機肥配施化肥可有效抑制TN、NO3--N淋失,但增加了26.63%~42.95%的DON淋失。旱地氮素淋失以NO3--N為主,且淋失系數高于水田,提高有機肥替代比可以大幅降低旱地氮素淋失,但增強了DON淋失。因子重要性分析表明:有機肥替代比對TN淋失影響占主導作用,而施氮水平對NO3--N、DON淋失影響更為重要。因此,低施氮量、高替代比動物型有機肥可有效減少堿性旱地土壤氮素淋失。研究結果可為有機肥配施化肥的農田應用提供依據。

肥料;氮素;淋失;有機肥;DON

0 引 言

氮是作物生長的必需元素,施用氮肥在有效增加作物產量的同時,也帶來了一系列環境負面影響[1]。研究表明:作物吸收的氮素僅占總氮輸出的55%[2],氮肥的大量使用導致土壤活性氮積累,過量氮素會通過地表徑流、地下淋溶、氨揮發、反硝化等途徑損失[3]。大量研究發現:中國旱地氮素損失多為20%~50%,水田則多為30%~70%[4]。其中,氮滲流淋失是農業氮素損失的主要途徑,Guo等[5]研究發現,在玉米生長季節中,氮淋失約占氮素損失的80%。大量氮素隨著降雨或灌溉進入地下水系統后會導致水質惡化、生物多樣性喪失[6-7]。

農田化肥的過量施用是導致氮淋失的一個重要原因[8]。目前,有機肥與化肥配施已成為農業施肥常態[9-11],可顯著增加土壤有機質含量,有效提高農產品產量和品質[12],影響土壤氮素淋失。研究表明:在小麥-玉米輪作系統中,280 kg/hm2(以N計,下同)的施氮總量、30%的豬廄肥替代化肥能夠有效抑制土壤總氮(Total Nitrogen,TN)淋失[13];180 kg/hm2的施氮總量、50%的堆肥替代化肥使得土壤硝態氮(Nitrate Nitrogen,NO3--N)淋失顯著降低[14];但也有研究發現,150 kg/hm2的施氮總量、50%的綠肥替代化肥促進了稻田土壤溶解性有機氮(Dissolved Organic Nitrogen,DON)淋失[15]。盡管前人通過整合分析發現:有機肥(糞便肥、常規商品有機肥)替代比(Substitution Ratio,SR)≤70%時能夠有效抑制蔬菜系統TN淋失[16]。Xia等[17]研究也表明:與單施化肥相比,糞便有機肥配施化肥使得TN淋失顯著降低了28.9%。但這些試驗研究局限于單個作物系統,未考慮施氮水平(Nitrogen Application Level,N)、基追施行為、有機肥種類等施肥行為特征對氮淋失的總體影響。此外,DON作為土壤氮循環中的重要氮庫,是土壤中最活躍的化學氮成分[18]。許多研究發現,DON損失占總氮淋失的3%~56%[19-21],然而,有機肥配施化肥對于DON淋失風險影響并不清楚,使得農業面源污染防控具有不確定性。

為此,本文擬對作物系統中有機肥配施化肥的已有結果進行整合分析,探討施肥總量、施肥結構(有機肥替代比)、施肥時間(基追施)、有機肥種類、土壤pH、土地利用方式的變化對于氮素淋失(TN、NO3--N、DON)的影響大小與方向,核算不同施肥處理在農業生產中TN、NO3--N、DON的淋失系數,分析有機肥配施化肥對于N素淋失影響的不確定性,以期為優化施肥、減少農田氮素淋失風險提供理論依據。

1 材料與方法

1.1 數據采集

通過業界廣泛使用的“中國知網”與“web of science”兩個主要數據庫檢索了截止至2022年1月發表的經同行評議相關論文。在搜索文獻時,以下關鍵詞被使用:化肥(Chemical Fertilizer)、有機肥(Organic Fertilizer)、氮淋失(N Leaching)。納入整合分析中的研究必須滿足以下標準:1)分析的數據應為淋溶液氮含量,而不是土壤氮含量。2)研究應具有單施化肥處理(不施用有機肥),因為這是本文的對照處理,同時也應包括有機肥配施化肥或單施有機肥的處理。3)研究中各個施氮處理間應遵循等總氮量原則,且應明確各處理的重復數。4)沒有種植作物,缺少有機肥種類、土壤性質(包括pH、有機質)等因素的研究應被舍棄。5)至少有一個目標變量(TN、NO3--N、DON)被量化。6)為避免數據重復,在不同文獻中同一研究地點與時間中所觀測到的數據只納入一次。

在提取數據過程中,采用GetData 2.2軟件識別圖片中的數值;由于部分研究沒有報道變量的標準差(Standard Deviation,SD),將給定值的6%~11%作為SD,對應于數據庫中各自給定的SD均值[22],這符合統計學中標準差的一般范圍。基于以上標準,總共篩選出35篇經同行評議文章以及331對相關數據對用于整合分析,其中22篇來自web of science,13篇來自CNKI。

1.2 數據分類

在有機肥配施化肥過程中,評估施肥行為(施氮水平、替代比、基追施行為、有機肥種類)、初始土壤pH、土地利用方式等對土壤氮淋失的影響時,為了滿足最大程度的組內均質化[23],做出以下分類。施氮水平分類[16]:低施氮水平(N<200 kg/hm2)、中施氮水平(200 kg/hm2≤N<400 kg/hm2)、高施氮水平(N≥400 kg/hm2);有機肥替代比分類[16]:低替代比(SR≤30%)、中替代比(30%7.5);土地利用方式分類:旱地和水田。淋失系數是施氮和不施氮的處理氮淋失差除以施氮總量,以百分比表示。

表1 數據統計描述

1.3 數據分析

有機肥配施化肥對變量()的影響通過自然對數進行量化,以表示響應比(ln RR),其計算公式如下[24]:

lnRR=ln(X/X)(1)

式中e與c分別表示變量的處理與對照(單施化肥)的平均值。

為了更好地顯示變量的響應大小,采用計算式((RR-1)×100%)將響應比轉化為百分數形式。其中,正百分比變化表示在有機肥配施化肥條件下目標變量增加,反之亦然。

采用Metawin 2.1軟件進行隨機效應meta分析,加權平均效應值和偏差矯正的95%置信區間是通過bootstrapping過程產生的,其中經過5 000次迭代[16]。如果95%置信區間沒有與0相交,則認為有機肥配施化肥對目標變量()促進或抑制效果顯著。通過分類隨機效應分析比較了施肥行為、土壤pH、土地利用方式對土壤氮淋失影響的效應大小(以值表示)。經卡方檢驗<0.05,則認為各組間變量的效應值均數有顯著差異。同時運用SPSS 23軟件對有機肥配施化肥下氮素淋失(TN、NO3--N、DON)的效應值進行相關性分析;采用Matlab軟件依據隨機森林模型對施肥行為、土壤pH、土地利用方式等對氮素淋失的影響進行重要性分析。

2 結果與分析

2.1 施肥行為對氮淋失的影響

與單施化肥相比,施肥行為對土壤氮淋失有明顯的影響(圖1),其中施氮水平對TN、NO3--N、DON淋失均影響顯著(<0.05)(圖1a)。低施氮水平顯著減少了氮淋失,TN、NO3--N淋失分別減少了36.77%、65.05%,而DON淋失的影響效應值具有異質性。同時在中、高施氮水平下,有機肥配施化肥反而增加了DON淋失,增加比例分別為32.94%、24.43%。可能原因是與單施化肥相比,有機肥的施入增加了土壤有機碳含量,改變土壤C/N,微生物將奪取環境中的氮源[25-26],從而促進土壤氮固持作用,有效抑制NO3--N等無機氮淋失。此外,有機肥自身分解釋放的有機氮增加了土壤DON含量,同時DON在土壤中的遷移性較強[27],隨著施氮水平的增加,土壤吸附能力達到飽和,過量的DON可能隨降雨或灌溉淋失。

有機肥配施化肥均明顯減少了TN、NO3--N淋失(圖 1b),同時有機肥替代比對TN淋失影響顯著(<0.05),高替代比使得TN淋失顯著降低了39.64%,而替代比對NO3--N淋失沒有顯著差異(=0.37)。這與Wei等[28]研究基本一致,當有機肥替代比大于60%時,TN淋失減少了27%。高替代比能夠顯著增加土壤團聚體[29]和總有機碳含量,從而刺激微生物活性,增強土壤氮素固定,有效提高氮素利用率[30]。盡管有機肥替代比對于DON淋失沒有顯著影響,但高替代比使得DON淋失增加了15.78%。這可能是因為高替代比補充了土壤有機碳源[31-32],促進溶解性有機碳和DON的生成。此外,土壤有機質含量迅速增加,從而阻塞了土壤的吸附位點,促進了溶解性有機質的淋失[33]。

在作物生長中,施肥時間對TN、NO3--N淋失存在顯著影響(<0.05)(圖1c)。氮肥作基肥一次性施入或以基追施形式在不同時期分次施入均有效抑制TN、NO3--N淋失。且當氮肥全部基施時,TN、NO3--N淋失抑制效果最大,分別減少了43.58%、70.51%。這可能是因為在農業活動中,通常以有機肥作為基肥,無機氮肥作為追肥。同時,有機肥含碳量高,在作物生長初期,有機肥的施入有利于減緩土壤中礦質氮素的累積,從而減少了氮素損失。而氮肥全部作為追肥使得TN、NO3--N淋失的效應值存在較大異質性。氮肥作基肥和追肥分次施入則表現為促進了DON淋失。這可能是因為有機肥施入土壤后,短期內土壤DON含量迅速增加,多次施肥使得DON淋失風險大。

在不同種類有機肥配施下,TN、NO3--N淋失較單施化肥均受到抑制,但組間差異不顯著(圖1d)。土壤氮素礦化速率受C/N控制[34-35],與植物秸稈相比,糞肥C/N低[36],在施入土壤后,氮礦化速率較快,顯著增加氮素利用率[16],從而抑制土壤氮素淋失。有機肥種類對DON淋失變化存在顯著影響(<0.05)。其中,動物型有機肥和其他類型有機肥使DON淋失分別增加了26.31%、26.45%。而植物型有機肥對DON淋失效果具有異質性。研究表明[37]:沼液的施用可以促進DON的淋失,而淋失的主要有機成分是黃腐酸、腐殖酸、可溶性微生物副產物等有機化合物。因此施加動物型有機肥后,腐殖酸類有機物可能會隨降雨淋濾,導致DON淋失增加。

注:1)LE為低水平;ME為中水平;HE為高水平。2)BF+TF為基追施;BF為全部基施;TF為全部追施。3)AB為動物型;PB為植物型;OT為其他。4)n為數據對個數;P為顯著性水平,P<0.05表示各組間變量的效應值均數有顯著差異;TN為總氮;NO3--N為硝態氮;DON為溶解性有機氮,下同。

2.2 土壤pH和土地利用方式對氮淋失的影響

在不同初始土壤pH下,與單施化肥相比,有機肥配施化肥均能減少旱地、水田土壤TN、NO3--N淋失(圖2)。初始土壤pH對TN淋失影響不顯著(=0.33),但對土壤NO3--N淋失存在顯著影響(<0.05)。當土壤pH呈中性時,有機肥配施化肥對NO3--N淋失抑制效果最佳,減少了81.52%。初始土壤pH對DON淋失同樣存在顯著影響(<0.05),初始土壤pH為堿性時,DON淋失增加了42.95%,而在土壤pH呈酸性時,DON淋失存在異質性。土壤酸堿性是影響土壤溶解性有機碳和DON含量的重要因素之一[38-39]。前人也通過整合分析表明[40]:在堿性土壤中,施加有機肥能顯著提高土壤DON含量。其原因可能是在高pH條件下,土壤微生物活性增強,促進土壤有機物發生氨化作用,分解形成DON[27]。同時研究表明:隨著土壤pH升高,鐵鋁氧化物和氫氧化物帶正電荷性降低,對DON的吸附能力減弱[41],使得土壤DON更易淋失。

土地利用方式對TN、NO3--N淋失影響不顯著(=0.56,=0.61)(圖2b),但在旱地中,有機肥配施化肥使DON淋失顯著增加了26.63%(<0.05),而水田土壤DON淋失具有異質性。一方面,旱地主要分布在中國北方地區,其積溫低于水田,有利于土壤DON的積累[40];另一方面,微生物活性在旱地中可能受到抑制,從而減少微生物對DON的利用[42],DON淋失風險增大。而水田土壤含水率高,更多的DON可能隨徑流損失[43]。同時在淹水條件下,厭氧微生物主要通過反硝化、異養硝化、共反硝化和厭氧氨氧化過程促進N2O、N2排放[44-45],造成土壤氮素損失。

2.3 氮淋失系數的變化

在不同施肥處理下,高有機肥替代比(70%

注:沒有收集到pH為6.5~7.5 DON數據。DL為旱地,PF為水田。

表2 不同有機肥替代比下氮淋失系數

注:SR為有機肥替代比。

Note: SR is organic fertilizer replacement ratio.

2.4 不確定性及重要性分析

化肥的大量投入使得農田氮素通過淋失、氣體排放等途徑損失,進而造成環境污染。本研究發現,高替代比的動物型有機肥施入堿性旱地土壤促進了DON的淋失(圖 3),但有效抑制了土壤總氮淋失。然而,高替代比動物型有機肥對于溫室氣體排放的貢獻并不清楚。盡管相關文獻已經報道高有機肥替代化肥會抑制土壤N2O排放,但動物型有機肥抑制效果并不顯著,且種類限于糞便和堆肥[17,46]。而高替代比沼液(高水分,低C/N)對于土壤N2O排放的影響未知。此外,前人研究表明高有機肥替代比顯著抑制氮素利用率和蔬菜產量[16]。因此,高有機肥替代比對于作物-環境系統的影響需要后續試驗進一步權衡。

氣候條件、耕作方式及栽培類型等對土壤氮淋失也存在一定影響。土壤氮素淋溶往往隨降雨、灌溉發生。研究發現,在蔬菜系統中,水分輸入與土壤NO3--N淋失呈微弱正相關[47]。此外,微生物活性在不同環境溫度下有所差異,升溫可以增加土壤固氮菌和反硝化細菌豐度[48],這可能改變硝化反硝化速率進而影響土壤氮素淋失。有機肥施用方式可能會間接影響土壤氮素淋失。研究發現,沼液噴施對土壤NO3--N含量影響較小,但采用沼液注施時,高替代比的沼液使得表層土壤NO3--N含量顯著提升[49],進而增加了土壤氮素淋失風險;同時,免耕[50]和模板犁耕[51]能夠有效減少土壤氮素淋失。栽培條件往往影響土壤氮素轉化。盡管Liu等[16]研究發現,對于蔬菜系統,有機肥配施化肥均有效抑制露天和溫室土壤TN淋失,但其對于糧食作物系統和DON淋失的影響具有不確定性。由于數據的缺乏,本研究無法評估氣溫、耕作方式對于有機肥配施化肥下土壤氮素淋失的影響。

注:“?”指未知。

對施肥行為、土壤pH、土地利用方式等對TN、NO3--N、DON淋失影響的重要性程度進行分析(圖4),結果表明,有機肥替代比對于TN淋失的影響占主導作用,而施氮水平對NO3--N、DON淋失影響較替代比更為重要。此外,土壤pH也是有機肥化肥配施下DON淋失的主要影響因素,這可能是因為pH升高會顯著增加土壤有機質的溶解度[52]。因此,在農業生產中應針對性采取不同有機肥化肥配施模式,有效降低氮素淋失風險。

注:R2為決定系數。

3 結 論

本文對有機肥化肥配施過程中,施肥行為(施氮水平、替代比、基追施行為、有機肥種類)、初始土壤pH、土地利用方式等因素對氮素淋失的總體影響進行整合分析,主要結論如下:

1)高基施比例與低施氮量(N<200 kg/hm2)能夠顯著抑制氮素淋失,尤其是NO3--N淋失,即少次適量施氮可以有效降低氮淋失風險,但不一定有益于作物產量。

2)高有機肥替代比(大于70%)能夠有效降低水田與旱地氮素淋失總量,顯著抑制堿性旱地土壤NO3--N淋失,但促進了溶解性有機氮(Dissolved Organic Nitrogen,DON)淋失,其中,動物型有機肥的施用對DON淋失促進效果更為顯著。

3)有機肥化肥配施過程中,減少氮淋失應優先控制有機肥替代比、施氮水平。

[1] 周偉,呂騰飛,楊志平,等. 氮肥種類及運籌技術調控土壤氮素損失的研究進展[J]. 應用生態學報,2016,27(9):3051-3058.

Zhou Wei, Lyu Tengfei, Yang Zhiping, et al. Research advances on regulating soil nitrogen loss by the type of nitrogen fertilizer and its application strategy[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 3051-3058. (in Chinese with English abstract)

[2] Liu J G, You L Z, Amini M, et al. A high-resolution assessment on global nitrogen flows in cropland[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(17): 8035-8040.

[3] 史鑫蕊,徐強,胡克林,等. 灌水次數對綠洲春玉米田氮素損失及水氮利用效率的影響[J]. 農業工程學報,2018,34(3):118-126.

Shi Xinrui, Xu Qiang, Hu Kelin, et al. Effect of irrigation times on nitrogen loss, water and nitrogen use efficiencies in oasis spring maize farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 118-126. (in Chinese with English abstract)

[4] 朱兆良. 農田中氮肥的損失與對策[J]. 生態環境學報,2000,9(1):1-6.

Zhu Zhaoliang. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Ecology and Environmental Sciences, 2000, 9(1): 1-6. (in Chinese with English abstract)

[5] Guo S F, Pan J T, Zhai L M, et al. The reactive nitrogen loss and GHG emissions from a maize system after a long-term livestock manure incorporation in the North China Plain[J]. The Science of the Total Environment, 2020, 720: 137558.

[6] Liang H, Lv H, Batchelor W D, et al. Simulating nitrate and DON leaching to optimize water and N management practices for greenhouse vegetable production systems[J]. Agricultural Water Management, 2020, 241: 106377.

[7] Zheng W, Wang S, Liu B, et al. Simulation of the migration and leaching of nitrate nitrogen in the farmland soil profile in a hilly area of Taihang Mountain with the RZWQM model[J]. Environmental Science, 2019, 40(4): 1770-1778.

[8] 商放澤,楊培嶺,李云開,等. 不同施氮水平對深層包氣帶土壤氮素淋溶累積的影響[J]. 農業工程學報,2012,28(7):103-110.

Shang Fangze, Yang Peiling, Li Yunkai, et al. Effects of different chemical nitrogenous fertilizer application rates on soil nitrogen leaching and accumulation in deep vadose zone[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(7): 103-110. (in Chinese with English abstract)

[9] 徐大兵,趙書軍,袁家富,等. 有機肥替代氮化肥對葉菜產量品質和土壤氮淋失的影響[J]. 農業工程學報,2018,34(增刊):13-18.

Xu Dabing, Zhao Shujun, Yuan Jiafu, et al. Chemical N fertilizer replaced with organic fertilizer affecting yield and quality of leaf vegetable and N leaching in soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.): 13-18. (in Chinese with English abstract)

[10] 韓佳樂,馮濤,朱志軍,等. 生長模型和15N示蹤評價施肥處理對蘋果樹氮肥利用的影響[J]. 農業工程學報,2021,37(15):96-104.

Han Jiale, Feng Tao, Zhu Zhijun, et al. Evaluating the effects of fertilization treatments on the nitrogen use efficiency of apple trees using allometric model and15N tracer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 96-104. (in Chinese with English abstract)

[11] 李勝君,胡菏,李剛,等. 化肥減量與有機物料添加對華北潮土微生物氮循環功能基因豐度和氮轉化遺傳潛力的影響[J]. 環境科學,2022,43(10):4735-4744.

Li Shengjun, Hu He, Li Gang, et al. Impacts of co-application of chemical fertilizer reduction and organic material amendment on fluvo-aquic soil microbial N-cycling functional gene abundances and N-converting genetic potentials in northern China[J]. Environmental Science, 2022, 43(10): 4735-4744. (in Chinese with English abstract)

[12] Wan L J, Tian Y, He M, et al. Effects of chemical fertilizer combined with organic fertilizer application on soil properties, citrus growth physiology, and yield[J]. Agriculture, 2021, 11(12): 1207.

[13] 胡冬妮,董志新,朱波. 有機肥替代化肥對紫色土坡耕地氮素流失的影響[J]. 中國生態農業學報(中英文),2022,30(3):431-440.

Hu Dongni, Dong Zhixin, Zhu Bo. Impact of substitution of synthetic N fertilizer with organic fertilizers on nitrogen loss from sloping cropland of purple soil[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 431-440. (in Chinese with English abstract)

[14] Tang Q, Cotton A, Wei Z, et al. How does partial substitution of chemical fertiliser with organic forms increase sustainability of agricultural production?[J]. Science of The Total Environment, 2022, 803: 149933.

[15] Song X, Zhang J, Peng C, et al. Replacing nitrogen fertilizer with nitrogen-fixing cyanobacteria reduced nitrogen leaching in red soil paddy fields[J]. Agriculture Ecosystems & Environment, 2021, 312: 107320.

[16] Liu B, Wang X, Ma L, et al. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China's vegetable systems: A meta-analysis[J]. Environmental Pollution, 2021, 269: 116143.

[17] Xia L, Shu K L, Yan X. et al. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance?[J]. Environmental Science & Technology, 2017, 51(13): 7450-7457.

[18] Nasholm T, Ekblad A, Nordin A, et al. Boreal forest plants take up organic nitrogen[J]. Nature, 1998, 392(6679): 914-916.

[19] Barton L, Wan G G Y, Colmer T D. Turfgrass (L. ) sod production on sandy soils II: Effects of irrigation and fertiliser regimes on N leaching[J]. Plant And Soil, 2006, 284(1/2): 147-164.

[20] Kessel C V, Clough T, Groenigen J, et al. Dissolved organic nitrogen: an overlooked pathway of nitrogen loss from agricultural systems?[J]. Journal of Environmental Quality, 2009, 38(2): 393-401.

[21] Huang M X, Tao L, Zhu O Y, et al. Leaching losses of nitrate nitrogen and dissolved organic nitrogen from a yearly two crops system, wheat-maize, under monsoon situations[J]. Nutrient Cycling in Agroecosystems, 2011, 91(1): 77-89.

[22] Skinner C, Gattinger A, Muller A, et al. Greenhouse gas fluxes from agricultural soils under organic and non-organic management-A global meta-analysis[J]. Science of the Total Environment, 2014, 468/469: 553-563.

[23] Cao Y B, Wang X, Bai Z, et al. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: A meta-analysis[J]. Journal of Cleaner Production, 2019, 235: 626-635.

[24] Hedges L V, Gurevitch J, Curtis P. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150-1156.

[25] 葉靜,安藤豐,符建榮,等. 不同有機肥對土壤中的氮素礦化及對化肥氮固持的影響[J]. 浙江農業學報,2008,20(3):176-180.

Ye Jing, Ho Ando, Fu Jianrong, et al. Effects of different organic manures on N mineralization and N retention in the soil[J]. Acta Agriculturae Zhejiangensis, 2008, 20(3): 176-180. (in Chinese with English abstract)

[26] Fan J, Xiao J, Liu D, et al. Effect of application of dairy manure, effluent and inorganic fertilizer on nitrogen leaching in clayey fluvo-aquic soil: A lysimeter study[J]. Science of the Total Environment, 2017, 592: 206-214.

[27] 全智,劉軒昂,劉東. 土壤可溶性有機氮研究進展[J]. 應用生態學報,2022,33(1):277-288.

Quan Zhi, Liu Xuanang, Liu Dong. Research progress on soil soluble organic nitrogen[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 277-288. (in Chinese with English abstract)

[28] Wei Z, Hoffland E, Zhuang M, et al. Organic inputs to reduce nitrogen export via leaching and runoff: A global meta-analysis[J]. Environmental Pollution, 2021, 291: 118176.

[29] 榮勤雷,李若楠,黃紹文,等. 不同施肥模式下設施菜田土壤團聚體養分和微生物量特征[J]. 植物營養與肥料學報,2019,25(7):1084-1096.

Rong Qinlei, Li Ruonan, Huang Shaowen, et al. Characteristics of nutrients and microbial biomass in soil aggregates under different fertilization modes in greenhouse vegetable production[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1084-1096. (in Chinese with English abstract)

[30] 安祥瑞,江尚燾,謝昶琰,等. 減施化肥配施有機肥對荔枝園土壤微生物區系的影響[J]. 應用生態學報,2022,33(4):1099-1108.

An Xiangrui, Jiang Shangtao, Xie Changyan, et al. Effects of reducing chemical fertilizers combined with organic fertilizers on soil microbial flora in litchi orchards[J]. Chinese Journal of Applied Ecology, 2022, 33(4): 1099-1108. (in Chinese with English abstract)

[31] 周斌,喬木,王周瓊. 長期定位施肥對灰漠土農田土壤質量的影響[J]. 中國生態農業學報,2007,15(2):33-36.

Zhou Bin, Qiao Mu, Wang Zhouqiong. Effects of a long-term located fertilization on soil quality of grey desert soil[J]. Chinese Journal of Eco-Agriculture, 2007, 15(2): 33-36. (in Chinese with English abstract)

[32] 趙玉皓,張艷杰,李貴春,等. 長期不同施肥下褐土有機碳儲量及活性碳組分[J]. 生態學雜志,2016,35(7):1826-1833.

Zhao Yuhao, Zhang Yanjie, Li Guichun, et al. Soil organic carbon stock and active carbon fractions under four kinds of long-term fertilization[J]. Chinese Journal of Ecology, 2016, 35(7): 1826-1833. (in Chinese with English abstract)

[33] Murphy D V, Macdonald A J, Stockdale E A, et al. Soluble organic nitrogen in agricultural soils[J]. Biology & Fertility of Soils, 2000, 30(5/6): 374-387.

[34] Bhogal A, Williams J R, Nicholson F A, et al. Mineralization of organic nitrogen from farm manure applications[J]. Soil Use & Management, 2016, 32: 32-43.

[35] 田飛飛,紀鴻飛,王樂云,等. 施肥類型和水熱變化對農田土壤氮素礦化及可溶性有機氮動態變化的影響[J]. 環境科學,2018,39(10):4717-4726.

Tian Feifei, Ji Hongfei, Wang Leyun, et al. Effects of various combinations of fertilizer, soil moisture, and temperature on nitrogen mineralization and soluble organic nitrogen in agricultural soil[J]. Environmental Science, 2018, 39(10): 4717-4726. (in Chinese with English abstract)

[36] Wang J, Zhu B, Zhang J B, et al. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China[J]. Soil Biology & Biochemistry, 2015, 91: 222-231.

[37] Zeng W, Qiu J, Wang D, et al. Ultrafiltration concentrated biogas slurry can reduce the organic pollution of groundwater in fertigation[J]. Science of the Total Environment, 2021, 810: 151294.

[38] 田靜,郭景恒,陳海清,等. 土地利用方式對土壤溶解性有機碳組成的影響[J]. 土壤學報,2011,48(2):338-346.

Tian Jing, Guo Jingheng, Chen Haiqing, et al. Effect of land use on composition of soil dissolved organic carbon[J]. Acta Pedologica Sinica, 2011, 48(2): 338-346. (in Chinese with English abstract)

[39] Anderson C, Peterson M, Curtin D. Base cations, K+and Ca2+, have contrasting effects on soil carbon, nitrogen and denitrification dynamics as pH rises[J]. Soil Biology and Biochemistry, 2017, 113: 99-107.

[40] 李亞林,張旭博,任鳳玲,等. 長期施肥對中國農田土壤溶解性有機碳氮含量影響的整合分析[J]. 中國農業科學,2020,53(6):1224-1233.

Li Yalin, Zhang Xubo, Ren Fengling, et al. A meta-analysis of long-term fertilization impact on soil dissolved organic carbon and nitrogen across Chinese cropland[J]. Scientia Agricultura Sinica, 2020, 53(6): 1224-1233. (in Chinese with English abstract)

[41] Kaiser K, Guggenberger G, Haumaier L, et al. Dissolved organic matter sorption on subsoils and minerals studied by 13C-NMR and DRIFT spectroscopy[J]. European Journal of Soil Science, 2010, 48(2): 301-310.

[42] Lundguist E J, Jackson L E, Scow K M, et al. Changes in microbial biomass and community composition, and soil carbon and nitrogen pools after incorporation of rye into three California agricultural soils[J]. Soil Biology & Biochemistry, 1999, 31(2): 221-236.

[43] Nie S, Zhao L, Lei X, et al. Dissolved organic nitrogen distribution in differently fertilized paddy soil profiles: Implications for its potential loss[J]. Agriculture, Ecosystems & Environment, 2018, 262: 58-64.

[44] 李靳,康榮華,于浩明,等. 土壤水分對土壤產生氣態氮的厭氧微生物過程的影響[J]. 應用生態學報,2021,32(6):1989-1997.

Li Jin, Kang Ronghua, Yu Haoming, et al. Effects of soil moisture on microbial processes of soil nitrogen gases production under anaerobic conditions[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 1989-1997. (in Chinese with English abstract)

[45] Liu H, Ding Y, Zhang Q, et al. Heterotrophic nitrification and denitrification are the main sources of nitrous oxide in two paddy soils[J]. Plant and Soil, 2018, 445(1/2): 39-53.

[46] Zhou M, Zhu B, Wang S, et al. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: A global meta-analysis[J]. Global Change Biology, 2017, 23(10): 4068-4083.

[47] Wang X Z, Zou C Q, Gao X P, et al. Nitrate leaching from open-field and greenhouse vegetable systems in China: A meta-analysis[J]. Environmental Science and Pollution Research, 2018, 25(31): 31007-31016.

[48] 馬秀艷,蔣磊,宋艷宇,等. 溫度和水分變化對凍土區泥炭地土壤氮循環功能基因豐度的影響[J]. 生態學報,2021,41(17):6707-6717.

Ma Xiuyan, Jinag Lei, Song Yanyu, et al. Effects of temperature and moisture changes on functional gene abundance of soil nitrogen cycle in permafrost peatland[J]. Acta Ecologica Sinica, 2021, 41(17): 6707-6717. (in Chinese with English abstract)

[49] 劉聰,鄭瑤琪,劉爽,等. 秋閑期沼液施用對黑土區土壤氮素損失的影響[J]. 農業環境科學學報,2021,40(11):2528-2536.

Liu Cong, Zheng Yaoqi, Liu Shuang, et al. Effects of biogas slurry application on nitrogen loss soil in black soil area during the autumn fallow period[J]. Journal of Agro-Environment Science, 2021, 40(11): 2528-2536. (in Chinese with English abstract)

[50] Zhang Y, Xie D, Ni J, et al. Conservation tillage practices reduce nitrogen losses in the sloping upland of the Three Gorges Reservoir area: No-till is better than mulch-till[J]. Agriculture Ecosystems & Environment, 2020, 300: 107003.

[51] 王維剛,史海濱,李仙岳,等. SWAT模擬耕作方式與鹽分對區域土壤氮運移及作物產量影響[J]. 農業工程學報,2022,38(3):55-65.

Wang Weigang, Shi Haibin, Li Xianyue, et al. Effects of tillage modes and soil salinity on regional nitrate nitrogen transport and crop yields using a SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(3): 55-65. (in Chinese with English abstract)

[52] Cookson W R, osman M, Marschner P, et al. Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature[J]. Soil Biology & Biochemistry, 2007, 39(3): 744-756.

Meta-analysis of the effects of combined application of organic and chemical fertilizers on soil nitrogen leaching

Teng Ying1,2, Kong Fanjing1,2, Chen Yucheng1,2, Chen Siyang1,2, Xiong Hailing3, Zhu Kangwen4, Yang Zhimin1,2※

(1.,,400716,; 2.,,400716,; 3.,,400715; 4.-,401147,)

Nitrogen is one of the most essential elements for crop growth. Nitrogen fertilizer has been widely applied to increase crop yields. At the same time, a large number of negative impacts have posed a great threat to the ecological environment in recent years. Among them, nitrogen leaching can be attributed to the excessive application of chemical fertilizers in farmland. Fortunately, the combined application of organic and chemical fertilizers can be expected to effectively reduce soil nitrogen leaching in normal fertilization during agricultural production at present. Therefore, this study aims to explore the combination application mode of organic and chemical fertilizers with a low risk of nitrogen leaching in farmland. The search terms were selected as chemical fertilizer, organic fertilizer, and nitrogen leaching using the two databases of China National Knowledge Infrastructure (CNKI) and Web of Science. The peer-reviewed and published papers were then obtained up to January 2022. Finally, a total of 35 papers (22 papers from Web of Science, 13 papers from CNKI) and 331 effective data pairs were collected after screening for the combination application of organic and chemical fertilizers in farmland. The target variables were taken as the total nitrogen (TN), nitrate nitrogen (NO3--N), and dissolved organic nitrogen (DON), while the chemical fertilizer was the control. After that, Metawin 2.1 software was used to determine the overall effects of the total amount of fertilization, fertilization structure (organic fertilizer substitution ratio), fertilization time (basic topdressing), and the types of organic fertilizers on the nitrogen leaching, where the chemical fertilizer was as the control. The results showed that there was a significant influence of the above fertilization behavior on nitrogen leaching. Once the total amount of nitrogen was less than 200 kg/hm2, the leaching of TN and NO3--N in farmland decreased by 36.77% and 65.05%, respectively. When the substitution ratio of organic fertilizers was higher than 70%, the TN leaching was reduced by 39.64%, whereas the risk of dissolved DON leaching increased by 15.78%. Especially, there was a 26.31% increase in DON leaching in the application of animal-based organic fertilizers combined with chemical fertilizers. Correspondingly, the application of nitrogen fertilizer significantly reduced the leaching of TN and NO3--N by 43.58% and 70.51%(<0.05), respectively. A certain impact was also found in the soil pH and land use patterns on nitrogen leaching. For example, the combined application of organic and chemical fertilizers on the alkaline dryland soil effectively inhibited the leaching of TN and NO3--N, whereas, there was an increase in the leaching of DON by 26.63%-42.95%. Nitrogen leaching in dryland was dominated by the NO3--N leaching. By contrast, the emission factor (EF) was higher than that in the paddy field. The increasing replacement ratio of organic fertilizers can be expected to greatly reduce the soil nitrogen leaching in dryland, but to enhance the DON leaching. In addition, the Matlab software was used to analyze the importance of factors using the random forest model. Specifically, the replacement ratio of organic fertilizer demonstrated a dominant effect on TN leaching. There was also the more important effect of the nitrogen application level on the NO3--N and DON leaching. Therefore, the low level of nitrogen application and the high substitution ratio of animal-based organic fertilizers can be used to effectively reduce the soil nitrogen leaching loss in the alkaline dryland, compared with the chemical fertilizers only. The finding can provide the practical basis for the combined application of organic and chemical fertilizers in farmland.

fertilizers; nitrogen; leaching; organic fertilizer; DON

10.11975/j.issn.1002-6819.2022.22.009

S146;S157

A

1002-6819(2022)-22-0081-08

滕穎,孔凡靖,陳玉成,等. 有機無機肥配施模式對氮素淋失的影響[J]. 農業工程學報,2022,38(22):81-88.doi:10.11975/j.issn.1002-6819.2022.22.009 http://www.tcsae.org

Teng Ying, Kong Fanjing, Chen Yucheng, et al. Meta-analysis of the effects of combined application of organic and chemical fertilizers on soil nitrogen leaching[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(22): 81-88. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.22.009 http://www.tcsae.org

2022-05-10

2022-09-10

重慶市技術創新與應用發展示范專項重點研發項目(cstc2019jscx-gksbX0103);重慶榮昌農牧高新技術產業研發專項(cstc2020ngzx0010);重慶市自然科學基金面上項目(CSTB2022NSCQ-MSX0538)

滕穎,研究方向為農業面源污染控制。Email:1351594843@qq.com

楊志敏,副教授,研究方向為農業面源污染控制。Email:bear@swu.edu.cn

猜你喜歡
影響
是什么影響了滑動摩擦力的大小
哪些顧慮影響擔當?
當代陜西(2021年2期)2021-03-29 07:41:24
影響大師
沒錯,痛經有時也會影響懷孕
媽媽寶寶(2017年3期)2017-02-21 01:22:28
擴鏈劑聯用對PETG擴鏈反應與流變性能的影響
中國塑料(2016年3期)2016-06-15 20:30:00
基于Simulink的跟蹤干擾對跳頻通信的影響
如何影響他人
APRIL siRNA對SW480裸鼠移植瘤的影響
對你有重要影響的人
主站蜘蛛池模板: 99这里只有精品免费视频| 波多野结衣一区二区三区四区视频| 国产精品青青| 九九热精品视频在线| 精品人妻一区二区三区蜜桃AⅤ| 国产精品美女自慰喷水| 亚洲日本一本dvd高清| 国产精品护士| 一级做a爰片久久免费| 亚洲精品无码专区在线观看| 在线精品自拍| 亚洲最大综合网| 久久综合丝袜日本网| 亚洲精品卡2卡3卡4卡5卡区| 日韩123欧美字幕| 美女视频黄频a免费高清不卡| 国产在线日本| 国产在线拍偷自揄拍精品| www.亚洲一区| 国产va欧美va在线观看| 丁香五月婷婷激情基地| 热99re99首页精品亚洲五月天| AV不卡在线永久免费观看| 中文成人无码国产亚洲| 东京热一区二区三区无码视频| 亚洲婷婷在线视频| 毛片网站免费在线观看| 99九九成人免费视频精品| 精品国产一二三区| 国产成人禁片在线观看| 欧美国产精品不卡在线观看| 久久精品这里只有精99品| 国产迷奸在线看| 91欧洲国产日韩在线人成| 99热国产这里只有精品9九| 精品国产一区二区三区在线观看| 精品欧美日韩国产日漫一区不卡| 中文字幕在线永久在线视频2020| 伊人久久大香线蕉综合影视| 久久久久中文字幕精品视频| 亚洲色精品国产一区二区三区| 国产第一页屁屁影院| 欧美精品1区| 亚洲综合18p| 久久人体视频| 自拍偷拍欧美日韩| 欧美成人综合在线| 国产女人水多毛片18| av一区二区三区在线观看| 国产欧美视频综合二区| 第一区免费在线观看| 一级爱做片免费观看久久 | 无码日韩人妻精品久久蜜桃| 91久久精品日日躁夜夜躁欧美| 国产迷奸在线看| 日日噜噜夜夜狠狠视频| 国产毛片久久国产| 国产精品尤物铁牛tv| 88av在线播放| 国产熟女一级毛片| 毛片在线播放网址| 免费观看国产小粉嫩喷水| 国产在线观看一区二区三区| 黄色国产在线| 亚洲欧洲日产无码AV| 国产日韩精品一区在线不卡| 免费人成在线观看成人片| 97一区二区在线播放| 国产精品成人一区二区不卡| 国产精品免费入口视频| 国产精品成人免费综合| 91在线日韩在线播放| 高清国产在线| 国产黄网永久免费| 亚洲天堂777| 中国国语毛片免费观看视频| 三上悠亚在线精品二区| 色偷偷一区二区三区| av尤物免费在线观看| 亚洲伊人电影| 免费国产一级 片内射老| 欧美第一页在线|