董忠慈



考題再現
例1 (2020·遼寧·大連)如圖1,△ABC中,點D,E,F分別在邊AB,BC,AC上,BE = CE,點G在線段CD上,CG = CA,GF = DE,∠AFG = ∠CDE.
(1)填空:與∠CAG相等的角是 ;
(2)用等式表示線段AD與BD的數量關系,并證明;
(3)若∠BAC = 90°,∠ABC = 2∠ACD(如圖2),求[ACAB]的值.
考點剖析
本文僅就第(3)問進行探究.
1. 知識點:等腰三角形的判定和性質、平行四邊形的判定和性質、勾股定理、二倍角應用.
2. 思想方法:幾何直觀、運算能力、構造法.
3. 基本圖形:
(1)如圖3,在△ABC中,條件:AB = AC,∠A = α,AB的垂直平分線MN交AC于點D. 結論:∠DBC = 90° - 1.5α.
(2)如圖4,在等邊三角形ABC中,條件:點D在AC上,點E在BC上,AD = CE,AE與BD交于點H,連接CH,若CH⊥BD. 結論:BH = 2AH.
學情分析
思路1:如圖5, 延長BA至點M,使AM = AD,連接CM,證明△BCM為等腰三角形,得到BC = 4a,AB = 3a,利用勾股定理求出AC,即可得到結論.
解法1:如圖5,延長BA至點M,使AM = AD,連接CM,
∵∠BAC = ∠MAC = 90°,
∴AC垂直平分DM,
∴CD = CM,
∴∠ACD = ∠ACM.
設∠ACD = α = ∠ACM,則∠ABC = 2α,∠AMC = 90° - α,
∴∠BCM = 180° - 2α - (90° - α) = 90° - α,
∴BM = BC,即△BCM為等腰三角形.
設AD = a,則AM = a,BD = 2a,
∴BC = BM = 4a,AB = 3a,
∴AC = [BC2-AB2] = [7]a,
∴[ACAB] = [7a3a] = [73].
思路2:如圖6,作AN[?]DE,連接EN,證明平行四邊形ANED是平行四邊形,從而證明△BDE ∽ △NAD,在直角三角形ACD中利用AN = DN,求出CD,最后利用勾股定理得到結論.
解法2:略
勤于積累
思路1要運用“二倍角”解題策略,利用幾何直觀找到思路,進而利用運算得到圖形的特點,最后依靠邏輯推理得出結論.
思路2另辟蹊徑,構造平行四邊形,利用第二問的思路深入研究,進而利用幾何直觀、邏輯推理得出結論.
拓展變形
例2 如圖7,△ABC中,AB = AC,∠BAC = 90°,點D在AC上,點E在BA的延長線上,且CD = AE,過點A作AF⊥CE,垂足為F,過點D作BC的平行線,交AB于點G,交FA的延長線于點H.
(1)在圖中找出與CE相等的線段,并證明;
(2)若GH = kDH,求[AHAF]的值(用含k的代數式表示).
解析:(1)與CE相等的線段是AH.
證明:如圖 8,在AC上截取AM = AE,連接EM,
易證∠AGH = ∠CME = 135°,AG = CM,∠BAH =∠ACE,∴△AGH ≌ △CME,∴AH = CE.
(2)如圖9,連接 BH.
易證△ABH ≌ △CAE,∴BH = AE,∠ABH = ∠CAE = ∠BAC = 90°.
∴BH[?]AC,∵HD[?]BC,∴四邊形BCDH是平行四邊形,∴DH = BC.
易證△ABH ∽ △AFE,∴[AHAE=ABAF],
設AB = AC = a,則BC = [2a].
∴GH = [k]DH = [2ka],∴BH = ka.
∴AH = [a2+k2a2],[AF=AB?AEAH=ka2a2+k2a2],
∴[AHAF=k2+1k].
(遼寧省沈陽市皇姑區教育研究中心)