王其淼



考題再現
例1 (2020·江蘇·揚州)如圖1,已知點O在四邊形ABCD的邊AB上,且OA = OB = OC = OD = 2,OC平分∠BOD,與BD交于點G,AC分別與BD,OD交于點E,F.
(1)求證:OC[?]AD;
(2)如圖2,若DE = DF,求[AEAF]的值;
(3)當四邊形ABCD的周長取最大值時,求[DEDF]的值.
考點剖析
1.知識點:本題是四邊形綜合題,考查了全等三角形的判定與性質、角平分線的性質、等腰三角形的性質、等腰直角三角形的判定與性質、等邊三角形的判定與性質、相似三角形的判定與性質、勾股定理、直角三角形的性質等知識,熟練運用這些圖形的性質是解題的關鍵.
2.數學方法:構造法.
學情分析
解題思路:(1)由等腰三角形的性質及角平分線的定義證得∠ADO = ∠DOC,則可得出結論;
(2)如圖3,過點E作EM[?]FD交AD的延長線于點M,證得∠M = ∠ADF = 45°,由直角三角形的性質得出EM = [2]DE = [2]DF,由△AME ∽ △ADF,得出[AEAF] = [EMFD] = [2];
(3)設BC = CD = x,CG = m,則OG = 2 - m,由勾股定理得出4 - (2 - m)2 = x2 - m2,解得m = [14]x2,可用x表示四邊形ABCD的周長,根據二次函數的性質可求出x = 2時,四邊形ABCD有最大值,得出∠ADF = ∠DOC = 60°,∠DAE = 30°,由直角三角形的性質可得出答案.
解:(1)∵AO = OD,∴∠OAD = ∠ADO.
∵OC平分∠BOD,∴∠DOC = ∠COB.
又∵∠DOC + ∠COB = ∠OAD + ∠ADO,
∴∠ADO = ∠DOC,∴OC[?]AD.
(2)如圖3,過點E作EM[?]FD交AD的延長線于點M,
設∠DAC = α,∵CO[?]AD,∴∠ACO = ∠DAC = α,
∵AO = OC,∴∠OAC = ∠OCA = α.
∵OA = OD,∴∠ODA = ∠OAD = 2α.
∵DE = DF,∴∠DFE = ∠DEF = 3α.
∵AO = OB = OD,∴∠ADB = 90°,
∴∠DAE + ∠AED = 90°,即4α = 90°,
∴∠ADF = 2α = 45°,∴∠FDE = 45°,
∴∠M = ∠ADF = 45°,∴EM = [2]DE = [2]DF.
∵DF[?]EM,∴△AME ∽ △ADF,
∴[AEAF] = [EMFD] = [2].
(3)∵OD = OB,∠BOC = ∠DOC,OC = OC,
∴△BOC≌△DOC(SAS),∴BC = CD.
設BC = CD = x,CG = m,則OG = 2 - m,
∵OB2 - OG2 = BC2 - CG2,
∴4 - (2 - m)2 = x2 - m2,
解得m = [14]x2,∴OG = 2 - [14]x2,
∵OD = OB,∠DOG = ∠BOG,∴G為BD的中點.
又∵O為AB的中點,∴AD = 2OG = 4 - [12]x2,
∴四邊形ABCD的周長為BC + CD + AD + AB = 2x + 4 - [12]x2 + 4 = - [12]x2 + 2x + 8 = - [12](x - 2)2 + 10,
∵- [12] < 0,∴x = 2時,四邊形ABCD的周長有最大值10,∴BC = 2,
∴△BCO為等邊三角形,∴∠BOC = 60°,
∵OC[?]AD,∴∠DAB = ∠COB = 60°,
∴∠ADF = ∠DOC = 60°,∠DAE = 30°,
∴∠AFD = 90°,∴[DEDA] = [33],DF = [12]DA,
∴[DEDF] = [233].
拓展變形
例2 (2020·山東·德州)問題探究:小紅遇到這樣一個問題:如圖4,△ABC中,AB = 6,AC = 4,AD是中線,求AD的取值范圍. 她的做法是:延長AD到E,使DE = AD,連接BE,證明△BED ≌ △CAD,經過推理和計算使問題得到解決.
請回答:
(1)小紅證明△BED ≌ △CAD的判定定理是:.
(2)AD的取值范圍是.
方法運用:
(3)如圖5,AD是△ABC的中線,在AD上取一點F,連接BF并延長交AC于點E,使AE = EF,求證:BF = AC.
(4)如圖6,在矩形ABCD中,[ABBC] = [12],在BD上取一點F,以BF為斜邊作Rt△BEF,且[EFBE] = [12],點G是DF的中點,連接EG,CG,求證:EG = CG.
(作者單位:遼寧省大連市第九中學)