王雪 宓曉晴 宋寧

[摘要] 目的 探討PC12細胞高表達野生型(WT)α-突觸核蛋白(α-Syn)對ferroportin(FPN)、鐵調節(jié)蛋白1(IRP1)蛋白表達以及鐵調素mRNA表達的影響。方法 PC12細胞用基礎培養(yǎng)液處理24 h(對照組)或用2 mg/L多西環(huán)素(DOX)處理24 h(DOX處理組)。采用免疫印跡法檢測α-Syn、FPN和IRP1蛋白表達情況,采用實時熒光定量PCR檢測鐵調素mRNA表達情況。結果 2 mg/L DOX可誘導PC12細胞α-Syn高表達(t=5.245,P<0.05)。與對照組相比,DOX處理組細胞鐵調素mRNA表達水平顯著升高(t=4.162,P<0.05),但FPN和IRP1蛋白表達水平?jīng)]有明顯變化(t=0.092、0.268,P>0.05)。結論 α-Syn高表達不影響PC12細胞FPN和IRP1蛋白表達,但可以誘導鐵調素mRNA水平升高。
[關鍵詞]α突觸核蛋白;PC12細胞;轉鐵蛋白;鐵調節(jié)蛋白質類
[中圖分類號]R338.2[文獻標志碼]A[文章編號]2096-5532(2022)03-0341-04
doi:10.11712/jms.2096-5532.2022.58.092
EFFECTS OF α-SYNUCLEIN OVEREXPRESSION ON EXPRESSION OF FERROPORTIN, IRON REGULATORY PROTEIN 1, AND HEPCIDIN IN PC12 CELLS
WANG Xue, MI Xiaoqing, SONG Ning
(Department of Physiology and Pathophysiology, School of Basic Medicine, Medical College of Qingdao University, Qingdao 266071, China)
[ABSTRACT] Objective To investigate the effects of wild-type α-synuclein (α-Syn) overexpression on the protein expression of ferroportin (FPN), iron regulatory protein 1 (IRP1) and the mRNA expression of hepcidin in PC12 cells.MethodsPC12 cells were treated with basic culture medium (control group) or 2 mg/L doxycycline (DOX group) for 24 hours. Western blotting was used to determine the protein expression of α-Syn, FPN, and IRP1. Quantitative real-time PCR was performed to measure the mRNA expression of hepcidin.Results DOX at 2 mg/L induced α-Syn overexpression in PC12 cells (t=5.245,P<0.05). Compared with the control group, the DOX group showed a significantly upregulated hepcidin mRNA level (t=4.162,P<0.05). There were no significant differences in FPN and IRP1 protein expression between the two groups (t=0.092,0.268;P>0.05).Conclusion α-Syn overexpression does not alter the protein expression of FPN and IRP1, but can upregulate the mRNA expression of hepcidin in PC12 cells.
[KEY WORDS] alpha-synuclein; PC12 cell; transferrin; iron-regulatory proteins
帕金森?。≒D)是一種緩慢進展的神經(jīng)退行性疾病,以運動障礙、肌僵直、靜止性震顫及姿勢反射障礙等為特征性表現(xiàn),其主要病理學特征是黑質致密部多巴胺能神經(jīng)元的丟失以及紋狀體多巴胺釋放減少[1-5]。PD病因涉及遺傳、環(huán)境和衰老等多種因素,但確切病因尚不完全清楚[6]。α-突觸核蛋白(α-Syn)聚集體構成的路易小體廣泛存在于PD受損的多巴胺能神經(jīng)元中,被認為是PD發(fā)病機制的關鍵因素。α-Syn是由140個氨基酸組成的蛋白,以分子伴侶的形式參與多項生理功能,但其聚集體會導致線粒體功能障礙,誘發(fā)內質網(wǎng)應激,破壞內質網(wǎng)-高爾基體轉運等[7-10]。鐵是人體必需的微量元素之一,其缺乏會導致細胞死亡,但過量的鐵也具有細胞毒性[11-16]。鐵會隨著年齡的增加沉積于黑質等腦區(qū),但是這種現(xiàn)象在PD中尤為嚴重。細胞內的鐵通過ferroportin(FPN)從細胞中轉出。FPN是一種跨膜的鐵轉出蛋白,是目前唯一已知的細胞內鐵釋放的通路,主要受鐵調節(jié)蛋白和鐵調素調節(jié)[17]。近年來大量研究表明,細胞內鐵沉積和α-Syn聚集存在緊密的相互作用,共同參與多巴胺能神經(jīng)元損傷,并可能導致PD病理的惡性循環(huán)[18]。α-Syn調控鐵代謝的機制尚未闡明,本實驗旨在探究α-Syn高表達對PC12細胞FPN、鐵調節(jié)蛋白1(IRP1)蛋白表達和鐵調素mRNA水平的影響。
1材料與方法
1.1實驗細胞及主要試劑
PC12細胞由英國劍橋醫(yī)學研究所醫(yī)學遺傳系David C. Rubinsztein教授饋贈。該細胞攜帶人源野生型(WT)α-Syn基因,在NheⅠ/SalⅠ位點將該基因插入pTRE2hyg載體,并在該載體中插入調控轉基因表達的多西環(huán)素(DOX)開關。DMEM高糖培養(yǎng)液、胎牛血清和馬血清均購于美國Gibco公司,DOX購于美國Sigma公司;α-Syn抗體購于美國CST公司,F(xiàn)PN抗體購于以色列Alomonelabs公司,IRP1抗體購于英國Abcam公司,兔抗β-actin購于中國博奧森公司,羊抗兔IgG購于中國愛必信公司;TRIzol和PCR逆轉錄試劑盒購于美國Thermo Fisher公司,SYBR Green購于美國QIAGEN公司,鐵調素引物購于中國Takara公司。
1.2細胞分組與處理
將PC12細胞用完全培養(yǎng)液(DMEM高糖培養(yǎng)液168.9 mL、胎牛血清10.0 mL、馬血清20.0 mL、潮霉素B 0.3 mL、G418 0.8 mL)重懸后,以3×108/L的密度接種于6孔板內,每孔2 mL,當細胞融合達到80%左右時將其分為對照組和DOX處理組,分別用基礎培養(yǎng)液(DMEM高糖培養(yǎng)液)和2 mg/L的DOX處理24 h。共進行3次獨立實驗。
1.3免疫印跡法檢測α-Syn、FPN和IRP1蛋白的表達
藥物處理24 h后,使用RIPA裂解液提取蛋白,應用BCA試劑盒檢測提取蛋白的濃度,按照每孔20 μg計算上樣量,加入Loading Buffer,95 ℃加熱蛋白5 min,將蛋白樣本進行電泳(電壓為80 V和120 V),然后將蛋白轉移至PDVF膜上(電流為300 mA)。用50 g/L的牛血清清蛋白封閉2 h后分別加入α-Syn、FPN、IRP1、β-actin一抗,于4 ℃搖床上孵育過夜。用TBST洗30 min后加入二抗室溫孵育1 h,以TBST洗30 min后應用ECL發(fā)光液顯影。應用Image J軟件進行分析,α-Syn、FPN和IRP1蛋白表達水平以三者與β-actin灰度值之比來表示。
1.4實時熒光定量PCR檢測鐵調素mRNA表達
每1 mL TRIzol試劑裂解的樣品中加入0.2 mL的氯仿室溫孵育2~3 min,于4 ℃下以12 000 r/min離心15 min。取上層水相并加入異丙醇,以上述同樣條件離心10 min,用體積分數(shù)0.75的乙醇清洗后,使用反轉錄試劑盒進行反轉錄合成cDNA。采用SYBR Green染料法定量檢測基因的表達。按照說明書進行PCR體系循環(huán)擴增,使用2-ΔΔCt法計算目的基因相對于內參照基因GAPDH的表達量。PCR引物序列見表1。
1.5統(tǒng)計學處理
應用Prism 5軟件對數(shù)據(jù)進行統(tǒng)計學分析。計量數(shù)據(jù)以x±s表示,組間比較采用t檢驗。P<0.05表示差異有統(tǒng)計學意義。
2結果
2.1DOX對PC12細胞α-Syn表達的影響
對照組和DOX處理組細胞內α-Syn蛋白表達水平分別為1.001±0.331和2.851±0.137(n=6),DOX處理組α-Syn蛋白表達水平是對照組的2.85倍,差異有統(tǒng)計學意義(t=5.245,P<0.05)。
2.2α-Syn 高表達對PC12細胞FPN和IRP1蛋白表達的影響
對照組和DOX處理組細胞內FPN蛋白表達水平分別為1.000±0.032和0.993±0.063(n=6),IRP1蛋白表達水平分別為0.998±0.107和0.965±0.042(n=6),DOX處理組細胞內FPN蛋白表達水平是對照組的99.3%,IRP1蛋白表達水平是對照組的96.9%,DOX處理組FPN和IRP1蛋白表達水平與對照組比較沒有明顯變化,差異無顯著意義(t=0.092、0.268,P>0.05)。
2.3α-Syn高表達對PC12細胞鐵調素mRNA水平的影響
對照組和DOX處理組細胞內鐵調素mRNA表達水平分別為1.003±0.044和1.365±0.069(n=5),DOX處理組鐵調素mRNA表達水平較對照組升高36.1%,差異有統(tǒng)計學意義(t=4.162,P<0.05)。
3討論
鐵是維持神經(jīng)結構和功能所必需的微量元素之一。然而,在PD病人的黑質致密部觀察到鐵特異性地沉積,部分多巴胺能神經(jīng)元觀察到鐵水平升高[17,19]。在生理條件下,鐵參與了多巴胺的合成;然而,過量的鐵誘導產生活性氧(ROS),會導致脂質、蛋白質和DNA的不可逆損傷[20]。在黑質致密帶幸存的多巴胺能神經(jīng)元的路易小體中,鐵染色最為明顯,證明鐵與α-Syn的大量共同存在,提示鐵沉積和α-Syn聚集密切相關[21]。已有文獻報道了α-Syn對鐵代謝的影響,例如α-Syn可以結合三價鐵和二價鐵形成α-Syn-鐵絡合物[22]。此外,α-Syn具有鐵還原酶的作用,可催化三價鐵還原為二價鐵,過量的α-Syn導致細胞內鐵水平增加和三價鐵、二價鐵的比例失調[23]。最近有研究表明,在高表達α-Syn的SH-SY5Y細胞和A53T α-Syn轉基因小鼠中,α-Syn可以上調鐵轉入蛋白二價金屬離子轉運體(DMT1)的表達且不依賴鐵反應元件(IRE)/IRP1系統(tǒng),可能與泛素-蛋白酶體的降解異常有關,這可能導致了α-Syn高表達時細胞內鐵沉積[24]。目前,α-Syn對鐵轉出蛋白FPN的表達影響尚不清楚。本實驗觀察到,PC12細胞α-Syn高表達時其FPN表達沒有發(fā)生明顯變化,說明α-Syn高表達時出現(xiàn)的泛素-蛋白酶體降解異常并不足以調控FPN表達變化。
FPN的表達主要受到鐵調節(jié)蛋白和鐵調素的調控。FPN mRNA 5′端非編碼區(qū)含有一個IRE,在細胞內高鐵的情況下,IRE與鐵調節(jié)蛋白的結合減少,因此對FPN mRNA翻譯的抑制減弱,導致FPN蛋白表達增多[25-26]。與鐵調節(jié)蛋白2(IRP2)相比,IRP1與IRE的親和力更高[27]。本文研究結果顯示,PC12細胞內α-Syn高表達對FPN和IRP1蛋白的表達均沒有明顯影響。我們推測,在α-Syn高表達的細胞中,雖然文獻報道DMT1表達上調,但細胞外液中鐵水平較低,并沒有造成細胞內鐵沉積,因此也不會導致IRP1和FPN的表達變化。
鐵調素是一種由肝臟合成和分泌的小多肽,被認為是人體鐵穩(wěn)態(tài)的主要調節(jié)者。鐵調素通過與細胞膜上的鐵轉出蛋白FPN結合誘導其泛素化從而導致FPN內化和降解,以此來控制FPN在膜上的表達和細胞的鐵釋放[28-29]。本研究結果顯示,高表達α-Syn的PC12細胞中鐵調素mRNA水平上調。有文獻報道,α-Syn可激活核因子κB(NF-κB)信號傳導通路釋放白細胞介素6,后者可以通過信號轉導和轉錄激活促進鐵調素的轉錄[30-31]。因此我們推測,鐵調素表達上調與細胞內α-Syn蓄積有關,但具體機制需進一步證實。雖然鐵調素表達上調,但本實驗并沒有觀察到FPN的表達變化,這與鐵調素的作用具有組織細胞特異性的報道相一致,例如在腸細胞中,鐵調素不會改變FPN水平但會降低DMT1的表達[24,32-33]。由于鐵調素分子量只有9 000,很難用常規(guī)免疫印跡方法檢測其蛋白水平,因此其蛋白水平是否發(fā)生變化尚無法確定。此外,DOX處理誘導α-Syn過表達雖然引起了鐵調素mRNA表達水平上調,但其時間(只有24 h)和表達量(約1.5倍)可能并不足以造成α-Syn異常聚集和調控FPN表達變化。
綜上所述,在PC12細胞中,高表達α-Syn 24 h對鐵轉出蛋白FPN和鐵調節(jié)蛋白IRP1表達均無明顯影響,但可顯著上調鐵調素的表達水平。本文結果為α-Syn調控細胞內鐵代謝提供了實驗依據(jù)。
[參考文獻]
[1]ELKOUZI A, VEDAM-MAI V, EISINGER R S, et al. Emerging therapies in Parkinson disease-repurposed drugs and new approaches[J].? Nature Reviews Neurology, 2019,15(4):204-223.
[2]CONNOLLY B S, LANG A E. Pharmacological treatment of Parkinson disease: a review[J].? JAMA, 2014,311(16):1670-1683.
[3]DEUSCHL G, BEGHI E, FAZEKAS F, et al. The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017[J].? The Lancet Public Health, 2020,5(10):e551-e567.
[4]DORSEY E R, SHERER T, OKUN M S, et al. The emerging evidence of the parkinson pandemic[J].? Journal of Parkinsons Disease, 2018,8(s1):S3-S8.
[5]POEWE W, SEPPI K, TANNER C M, et al. Parkinson di-sease[J].? Nature Reviews Disease Primers, 2017,3:17013.
[6]PRZEDBORSKI S. The two-century journey of Parkinson di-sease research[J].? Nature Reviews Neuroscience, 2017,18(4):251-259.
[7]ELIEZER D, KUTLUAY E, BUSSELL R Jr, et al. Conformational properties of alpha-synuclein in its free and lipid-associated states[J].? Journal of Molecular Biology, 2001,307(4):1061-1073.
[8]UDA K, FUKUSHIMA H, MASLIAH E, et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease[J].? PNAS, 1993,90(23):11282-11286.
[9]BENGOA-VERGNIORY N, ROBERTS R F, WADE-MARTINS R, et al. Alpha-synuclein oligomers: a new hope[J].? Acta Neuropathologica, 2017,134(6):819-838.
[10]ROCHA E M, DE MIRANDA B, SANDERS L H. Alpha-synuclein: pathology, mitochondrial dysfunction and neuro-inflammation in Parkinsons disease[J].? Neurobiology ofDisease, 2018,109:249-257.
[11]BARBOSA J H, SANTOS A C, TUMAS V, et al. Quanti-fying brain iron deposition in patients with Parkinsons disease using quantitative susceptibility mapping, R2 and R2[J].? Magnetic Resonance Imaging, 2015,33(5):559-565.
[12]DU G W, LIU T, LEWIS M M, et al. Quantitative susceptibility mapping of the midbrain in Parkinsons disease[J].? Movement Disorders, 2016,31(3):317-324.
[13]GRAHAM J M, PALEY M N, GRüNEWALD R A, et al. Brain iron deposition in Parkinsons disease imaged using the PRIME magnetic resonance sequence[J].? Brain: a Journal of Neurology, 2000,123(Pt 12):2423-2431.
[14]GUAN X J, BAI X Q, ZHOU C, et al. Serum ceruloplasmin depletion is associated with magnetic resonance evidence of widespread accumulation of brain iron in Parkinsons disease[J].? Journal of Magnetic Resonance Imaging: JMRI, 2021,54(4):1098-1106.
[15]APOSTOLAKIS S, KYPRAIOU A M. Iron in neurodegenerative disorders: being in the wrong place at the wrong time[J]? Reviews in the Neurosciences, 2017,28(8):893-911.
[16]WARD R J, ZUCCA F A, DUYN J H, et al. The role of iron in brain ageing and neurodegenerative disorders[J].? The Lancet Neurology, 2014,13(10):1045-1060.
[17]JIANG H, WANG J, ROGERS J, et al. Brain iron metabolism dysfunction in Parkinsons disease[J].? Molecular Neurobiology, 2017,54(4):3078-3101.
[18]CHEN B B, WEN X M, JIANG H, et al. Interactions between iron and α-synuclein pathology in Parkinsons disease[J].? Free Radical Biology & Medicine, 2019,141:253-260.
[19]OAKLEY A E, COLLINGWOOD J F, DOBSON J, et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease[J].? Neurology, 2007,68(21):1820-1825.
[20]DIXON S J, STOCKWELL B R. The role of iron and reactive oxygen species in cell death[J].? Nature Chemical Biology, 2014,10(1):9-17.
[21]CASTELLANI R J, SIEDLAK S L, PERRY G, et al. Sequestration of iron by Lewy bodies in Parkinsons disease[J].? Acta Neuropathologica, 2000,100(2):111-114.
[22]ORTEGA R, CARMONA A, ROUDEAU S, et al. α-Synuclein over-expression induces increased iron accumulation and redistribution in iron-exposed neurons[J].? Molecular Neuro-biology, 2016,53(3):1925-1934.
[23]BROWN D R. α-Synuclein as a ferrireductase[J].? Biochemical Society Transactions, 2013,41(6):1513-1517.
[24]BI M X, DU X X, JIAO Q, et al. α-Synuclein regulates iron homeostasis via preventing Parkin-mediated DMT1 ubiquitylation in Parkinsons disease models[J].? ACS Chemical Neuroscience, 2020,11(11):1682-1691.
[25]LYMBOUSSAKI A, PIGNATTI E, MONTOSI G, et al. The role of the iron responsive element in the control of ferropor-tin1/IREG1/MTP1 gene expression[J].? Journal of Hepatology, 2003,39(5):710-715.
[26]MLECZKO-SANECKA K, SILVESTRI L. Cell-type-specific insights into iron regulatory processes[J].? American Journal of Hematology, 2021,96(1):110-127.
[27]ANDERSON C P, SHEN M, EISENSTEIN R S, et al. Mammalian iron metabolism and its control by iron regulatory proteins[J].? Biochimica et Biophysica Acta, 2012,1823(9):1468-1483.
[28]QIAO B, SUGIANTO P, FUNG E, et al. Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination[J].? Cell Metabolism, 2012,15(6):918-924.
[29]LINK C, KNOPF J D, MARQUES O, et al. The role of cellular iron deficiency in controlling iron export[J].? Biochimica et Biophysica Acta General Subjects, 2021,1865(3):129829.
[30]FILLEBEEN C, WILKINSON N, CHARLEBOIS E, et al. Hepcidin-mediated hypoferremic response to acute inflammation requires a threshold of Bmp6/Hjv/Smad signaling[J].? Blood, 2018,132(17):1829-1841.
[31]HOOD M I, SKAAR E P. Nutritional immunity: transition metals at the pathogen-host interface[J].? Nature Reviews Microbiology, 2012,10(8):525-537.
[32]CUI J T, GUO X L, LI Q J, et al. Hepcidin-to-ferritin ratio is decreased in astrocytes with extracellular alpha-synuclein and iron exposure[J].? Frontiers in Cellular Neuroscience, 2020,14:47.
[33]DAVIES P, MOUALLA D, BROWN D R. Alpha-synuclein is a cellular ferrireductase[J].? PLoS One, 2011,6(1):e15814.
(本文編輯馬偉平)