999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于SOGI-FLL-WPF的磁懸浮多跨轉子不對中振動檢測

2022-06-22 10:47:48關旭東金超武姚潤暉
西南交通大學學報 2022年3期
關鍵詞:振動信號檢測

關旭東 ,周 瑾 ,金超武 ,姚潤暉

(1.常州大學機械與軌道交通學院,江蘇 常州 213164;2.南京航空航天大學直升機傳動技術重點實驗室,江蘇南京 210016;3.南京航空航天大學機電學院,江蘇 南京 210016)

隨著旋轉機械往高速、柔性、大功率方向發展,逐漸出現附帶聯軸器連接的多跨轉子系統,多跨轉子系統存在諸多需要解決的關鍵問題.轉子不對中故障會造成轉子振動位移與基座振動力中出現二倍頻成分,聯軸器的特性也直接影響轉子的運行狀態.當旋轉機械運行中出現由轉子不對中引起的異常,輕則停機、中斷生產過程、降低工作效率,重則產生轉子與機殼間的碰摩或出現失穩現象,導致設備破壞,甚至造成嚴重的事故.

聯軸器與軸承支承組件對轉子系統乃至整個機械設備的動力學特性起到關鍵作用[1].對轉子不對中來說,傳統軸承支承的多跨轉子系統一旦設計加工,較難進行不對中量的在線調整.轉子不對中故障是旋轉機械運行中常見故障之一,研究發現轉子不對中故障占轉子故障的60%以上[2].轉子對中是指兩個或多個轉子通過聯軸器連接后,轉子的軸線重合.對中后的轉子在運行過程中,不會出現轉速的二倍頻成分,這對減小轉子振動及機體振動起到關鍵作用.轉子不對中主要包括聯軸器不對中和軸承不對中,本文主要研究前者,其主要分為平行不對中、偏角不對中及平行與偏角復合不對中3種形式[3].

目前,國內外在傳統多跨轉子不對中的動力學模型建立、故障辨識與振動控制方面,已開展了相關研究工作[4-7].針對多跨轉子系統有限元模型自由度較多問題,研究者提出結合固定界面模態綜合法的降維增量諧波平衡法,從而保證計算精度與效率[8].文獻[9]采用有限元法,發現撓性聯軸器不對中會使轉子位移諧波分量增大.李明等[10]基于油膜軸承多跨轉子實驗臺,分析了聯軸器不對中時轉子運動規律,表現為二倍及多倍頻諧波較多.黃志偉等[11]通過分岔圖、龐加萊截面圖、軸心軌跡圖和時域波形圖等,系統地分析了發電機轉子與水輪機轉子在耦合故障下非線性動力學響應.在多跨轉子故障方面,學者分析了不對中、碰摩、裂紋等故障類型,分別通過離線分析[12]與有限元法[13]辨識故障.在多跨轉子過臨界轉速方面,通過在線控制轉子動力吸振器中電磁鐵的吸合狀態,實現轉子較小的振動水平[14].磁懸浮多跨轉子系統是將傳統軸承支承方式替換為主動磁懸浮軸承(active magnetic bearing, AMB)支承,在磁懸浮多跨轉子不對中方面,王金健等[15]針對多跨轉子多頻傳遞力,提出一種變步長神經網絡算法.Bouaziz等[16]采用Newmark方法對磁懸浮軸承系統進行仿真,研究了磁懸浮多跨轉子不對中的動態特性,結果表明,角度偏差使得二倍和四倍運行速度分量占主導地位,且大小隨磁懸浮軸承中電磁鐵的數量和定子與轉子間的氣隙而變化.Kuppa等[17]采用磁懸浮軸承抑制由于不平衡和不對中產生的過大振動,采用反饋控制器調節磁懸浮軸承的控制電流,提出了一種量化方法評估磁懸浮軸承的動態特性.

本文針對磁懸浮多跨轉子不對中振動檢測問題,提出基于帶預濾波器的二階廣義積分-鎖頻環(second order generalized integrator-frequency locked loop with prefilter,SOGI-FLL-WPF)磁懸浮多跨轉子不對中振動檢測新方法,為磁懸浮多跨轉子不對中振動控制奠定基礎.

1 磁懸浮多跨轉子系統

磁懸浮多跨轉子平臺如圖1所示,包括徑向磁懸浮軸承、軸向磁懸浮軸承、轉子、聯軸器、電渦流位移傳感器、電機等.聯軸器兩端轉子由磁懸浮軸承支承,兩轉子由聯軸器連接,聯軸器右端磁懸浮軸承不僅起到支承轉子作用,還可充當電磁激振器,為多跨轉子系統提供激振力,從而實現多跨轉子系統的模型辨識.利用磁懸浮軸承系統本身配備的信號采集與控制系統獲得轉子振動響應數據,并結合本文提出的轉子不對中檢測方法,可實現多跨轉子不對中振動的檢測.

圖1 磁懸浮多跨轉子平臺示意Fig.1 Schematic diagram of magnetic suspension multi-span rotors platform

2 剛性轉子四自由度動力學模型

如圖2所示,剛性轉子在空間有6個自由度(degree of freedom, DOF),分別為沿x、y、z軸的3個平動及 3個轉動.圖中:xsa(xsb)為 A 端(B 端)傳感器檢測轉子沿x軸方向的位移;ysa(ysb)為A端(B端)傳感器檢測轉子沿y軸方向的位移;xba(xbb)為A端(B端)磁懸浮軸承處對應轉子沿x軸方向位移;yba(ybb)為A端(B端)磁懸浮軸承處對應轉子沿y軸方向位移;(xc,yc,zc)為轉子質心C在空間的坐標;s1(s2)為 A端(B端)傳感器在z軸方向的坐標值,其中s1< 0;a(b)為 A 端(B 端)磁懸浮軸承在z軸方向的坐標值,a< 0;α、β分別為繞x、y軸的歐拉角;轉子繞z軸旋轉且轉速為Ω.對于磁懸浮軸承轉子系統,電機帶動轉子繞z軸轉動,磁懸浮軸承系統則需要控制其余5個自由度.忽略徑向與軸向的耦合,建立徑向四自由度磁懸浮軸承轉子系統動力學模型.

圖2 四自由度磁懸浮軸承轉子系統動力學模型Fig.2 Dynamic model of 4-DOF magnetic bearing rotor system

根據剛體動量矩定理與動量定理,可推導出轉子的動力學方程為

式中:Jz為轉子繞z軸的轉動慣量;J為轉子繞x、y軸的轉動慣量;m為轉子質量;fax(fbx)為 A端(B端)磁懸浮軸承對轉子在x方向的電磁力;fay(fby)為A端(B端)磁懸浮軸承對轉子在y方向的電磁力.

將式(1)寫成矩陣形式:

式中:M為廣義質量矩陣;G為陀螺矩陣;B和C均為系數矩陣;q為轉子模型質心坐標及歐拉角的合成矢量;qs為位移矢量;u為電磁力矢量.上述矩陣分別表示為

將AMB的電磁力線性化為

式中:Ks和Ki分別為位移剛度系數矩陣和電流剛度系數矩陣;qb為磁懸浮軸承處對應轉子位移矢量;i為電流矢量;kx和ki分別為位移剛度系數和電流剛度系數;iax(ibx)為 A 端(B 端)磁懸浮軸承在x軸方向上的線圈電流,iay(iby)為 A端(B端)磁懸浮軸承在y軸方向上的線圈電流.

因此,可以得到AMB支承的剛性轉子的運動微分方程為

當引入不平衡質量時,轉子的運動方程(式(1))改寫為

式中:mu為不平衡質量;u為轉子的不平衡偏心距,即不平衡質量質心到z軸的垂直距離;zu為不平衡質量質心的z坐標; φ0為不平衡位置角.

3 聯軸器不對中模型

多跨轉子不對中時,聯軸器受力示意如圖3所示.圖中:F為半聯軸器的受力;O1為主動轉子中心線;O2為從動轉子中心線;d為主動轉子與從動轉子間的平行不對中量;過O1向O2N做垂線交于點G.兩轉子由兩個半聯軸器連接,兩轉子以角速度Ω旋轉,經過時間t轉過Ωt角度.以聯軸器上一點N為兩半聯軸器的連接點,轉子旋轉時,O1N受壓,O2N受拉.

圖3 多跨轉子聯軸器受力Fig.3 Stress diagram of coupling in multi-span rotors system

由于d?,則可近似認為,兩半聯軸器的總變形量為

因此,半聯軸器的受力為

式中:K為半聯軸器剛度.

將式(7)所示的力分別投影至水平方向和豎直方向,得出對應分力Fx與Fy分別為

綜上所述,由于聯軸器不對中引起作用于磁懸浮軸承轉子上的徑向力[18]為

由式(10)可知,聯軸器不對中導致頻率為轉子轉速二倍頻的旋轉力,其大小與d成正比.

根據式(5)、(10)建立附帶聯軸器作用的磁懸浮軸承轉子四自由度剛性數學模型.磁懸浮軸承控制器均采用PID控制,功率放大器數學模型由實驗擬合得到,傳感器數學模型視為比例增益.通過上述建立的仿真模型既可以模擬轉子旋轉狀態,又可以對轉子施加聯軸器作用力,仿真參數如表1.

表1 仿真參數Tab.1 Simulation parameters

4 多跨轉子不對中振動檢測方法

磁懸浮多跨轉子不對中振動控制的實施需要以不對中振動檢測為基礎,因此,本文結合二階廣義積分-鎖頻環(second order generalized integratorfrequency locked loop, SOGI-FLL)展開轉子不對中振動檢測方法研究.

4.1 歸一化SOGI-FLL

在SOGI中,通過在一個單位反饋結構中使用雙積分器結構來提取單相輸入信號的基頻分量及其正交成分,如圖4所示,該結構通常也被稱為二階廣義積分正交信號發生器(SOGI-based quadrature signal generator, SOGI-QSG),圖中:v為輸入信號;vs為輸入信號v的同步分量;qvs為vs的正交值;γ0、k為放大器增益;ev為誤差信號;ω0為給定的信號頻率.SOGI-QSG的兩個典型傳遞函數D(s)和Q(s)分別為

圖4 歸一化SOGI-FLL原理Fig.4 Principle of normalized SOGI-FLL

式中:Vs(s)、V(s)和Qvs(s) 分別為vs、v和qvs的象函數;s為復頻率.

對于給定的正弦輸入信號v=Vsin(ω0t+φ),利用圖4中的結構可推導出vs和qvs.因此,SOGIQSG可生成輸入信號的同步信號與正交信號.

由式(11)、(12)可知,D(s)和Q(s)分別為以諧振頻率ω0為中心頻率的帶通濾波器和低通濾波器,且帶通濾波器的帶寬僅由k決定,與中心頻率ω0無關,低通濾波器的增益同樣僅取決于k.通過設置不同的k,獲得D(s)和Q(s)傳遞函數的Bode圖如圖5所示,由圖可知:增益k對兩個濾波器的頻率響應的影響是顯而易見的;輸出vs在ω0處與輸入v不存在相位滯后,且幅值增益為0 dB,即實現了一比一跟蹤;輸出qvs在ω0處與輸入v存在90°相位滯后,且幅值增益為0 dB,即產生了輸入的正交量.

圖5 不同k值下SOGI濾波器的Bode圖Fig.5 Bode diagram of SOGI filter under different k

由輸入信號v至誤差信號ev的傳遞函數E(s)為

式中:Ev(s) 為ev的象函數.

E(s)為通用陷波器的表達形式,本文后續濾除轉速同頻分量時將會采用SOGI的形式.

4.2 SOGI-FLL-WPF頻率估計原理

當待檢測信號中存在直流偏置或諧波干擾時,SOGI-FLL頻率估計方法的抑制干擾能力會變弱,此時,估計信息會有波動甚至出錯.文獻[19]提出將基于SOGI的濾波器作為先前結構的預濾波器,得出了一種簡單的新型結構,該結構被稱為帶預濾波器的SOGI-FLL,即SOGI-FLL-WPF,其控制原理如圖6所示.圖中:v0為預濾波器輸入信號;k0、k1為阻尼系數.

圖6 SOGI-FLL-WPF的控制原理Fig.6 Control principal of SOGI-FLL-WPF

兩個SOGI的級聯結構可以解決qvs輸出中的低頻擾動、直流偏置和諧波等擾動問題,其控制思路包括兩個SOGI結構的串聯.第一個用作帶通前置濾波器,第二個是幅值與頻率歸一化的SOGI-FLL,它可以獲取輸入信號的估計頻率.

對2個SOGI級聯的研究可以擴展到n個SOGI的級聯,如圖7所示.對于相同的阻尼因子,n階系統比單個SOGI可獲得更高的諧波衰減和相似的穩定時間.該系統的兩個典型傳遞函數為

圖7 n個SOGI的級聯Fig.7 Cascade diagram of n SOGIs

式中:Vsn(s) 和Qvsn(s) 分別為第n階SOGI系統同步分量vsn和正交分量qvsn的象函數.

減少n階SOGI穩定時間的方法是增大系統的阻尼系數,即增大系數k,但要以降低諧波衰減為代價.可以逐漸適當地增加這些阻尼因子,從而獲得與單個SOGI相同的諧波衰減.在這種情況下,n階SOGI的穩定時間比單個SOGI的穩定時間快.因此,n階SOGI可以實現比單個SOGI更快的瞬態響應,且具有相似的諧波衰減.SOGI級聯的階數越高,對待檢測信號的高階諧波衰減也越大.

5 多跨轉子不對中振動檢測仿真驗證

5.1 多跨轉子不對中振動檢測方法

圖8為基于轉子徑向位移信號的轉子不對中振動檢測原理框圖.由于不平衡質量的存在,轉子在旋轉過程中,其徑向振動位移信號中主要包括轉速同頻分量.當轉子不對中振動發生時,轉速二倍頻的不對中振動信號和轉速同頻信號混疊在一起.基于轉子徑向位移信號的轉子不對中振動檢測方法為:首先,采集轉子徑向位移信號;然后,利用歸一化SOGI-FLL進行轉子轉速估計;接著,將估計的轉速信息反饋給SOGI進行自適應同頻陷波,以濾除徑向位移信號中轉速同頻分量,從而獲得僅受轉子不對中振動影響的位移信號;最后,利用SOGI-FLLWPF對上述濾除轉速同頻干擾后的徑向位移信號進行轉子不對中振動檢測.

圖8 基于徑向位移信號的轉子不對中振動檢測原理Fig.8 Schematic diagram of rotor misalignment vibration detection based on radial displacement signal

5.2 定轉速與變轉速下多跨轉子不對中振動檢測

引入轉子不對中力模型后,仿真計算得到如圖9所示的轉子運行狀態圖.本文磁懸浮軸承系統中位移傳感器檢測電壓為0 ~ 5 V,對應的轉子實際位移為0 ~ 0.25 mm,因此,檢測轉子不對中量與電壓值的對應關系為20 000 V/m.

由圖9可以看出:引入模擬轉子不對中后,轉子的軸心軌跡由圓形變成不規則的圓形,由于轉速二倍頻的存在,導致軸心軌跡趨于“三角形”;轉子兩端的振動位移均處于ISO 14 839[20]定義的限制區域A中.

圖9 轉速為6 000 r/min下轉子運行狀態Fig.9 Running state of rotor at 6 000 r/min

以轉子A端x軸方向為例,采集轉子該方向位移信號并進行快速傅里葉變換(fast Fourier transform,FFT),得到如圖10所示結果.由圖10可以看出:轉子振動位移主要包括兩個頻率信號,其中100 Hz為轉子旋轉頻率,200 Hz則是由于轉子不對中引起的二倍頻信號.

圖10 轉速為6 000 r/min下轉子位移信號頻譜Fig.10 Spectrum for displacement signal of rotor at 6 000 r/min

為了驗證檢測方法的有效性,結合磁懸浮軸承轉子模型并引入轉子不對中量,對轉子振動信號進行實時分析,得到如圖11所示的檢測結果.由圖可以看出:轉子陷波后振動信號僅有二倍頻分量;依據SOGI-FLL實時辨識得到的轉子轉速信號,轉子在第1.00 s時開始旋轉,此后一直在該轉速下運行,轉速辨識與設定轉速誤差幾乎為0,可準確地對轉子轉速進行辨識,該信號為陷波同頻量的依據;轉子位移信號中濾除轉速同頻量后依據SOGI-FLLWPF可準確檢測出轉子不對中振動.

圖11 轉速為6 000 r/min下轉子不對中振動檢測結果Fig.11 Misalignment vibration detection results of rotor at 6 000 r/min

針對圖11(a)中轉子位移信號進行頻譜分析得到如圖12所示的結果,通過對比可以看出:轉子陷波后轉速同頻量被完全濾除,此時轉子位移信號中僅存在轉子轉速二倍頻分量.

圖12 濾波前后轉子振動位移頻譜對比Fig.12 Spectrum comparison of rotor vibration displacement before and after filtering

為了進一步驗證升速過程中轉子不對中檢測效果,設定轉子升速由100 Hz開始以6 Hz/s逐漸升速至112 Hz,得到如圖13所示的變轉速下轉子不對中檢測結果.由圖可知:在轉子升速過程中,本文提出的基于SOGI-FLL-WPF的磁懸浮多跨轉子不對中振動檢測方法仍然具有較好的效果.

圖13 升速過程中轉子不對中振動檢測結果Fig.13 Misalignment vibration detection results during rotor acceleration

6 多跨轉子不對中振動檢測實驗驗證

為了驗證本文提出的磁懸浮多跨轉子不對中振動檢測方法的效果,采用磁懸浮四自由度多跨轉子實驗臺進行轉子不對中振動檢測實驗驗證.實驗臺如圖14所示,將電機底座通過墊片抬高使電機轉子與磁懸浮軸承轉子具有一定的不對中量.磁懸浮轉子懸浮并通過電機使其旋轉至1 200 r/min.此時多跨轉子處于不對中的工作狀態,采集轉子振動位移信號并進行不對中振動檢測檢測,得到如圖15所示檢測結果.

圖14 磁懸浮四自由度多跨轉子實驗臺Fig.14 Test rig of magnetic suspended 4-DOF multi-span rotors

在圖15中分別給出了采用歸一化SOGI-FLL和歸一化SOGI-FLL-WPF進行轉子不對中振動檢測的對比效果.在第1.00 s時刻,辨識轉子轉速模塊啟動后約0.05 s可以獲得轉子轉速頻率約為20 Hz,與設定轉子轉速頻率一致.通過對比可以看出:采用歸一化SOGI-FLL-WPF可以獲得更好的檢測效果,在打開檢測開關后約0.10 s檢測結果便趨于穩定狀態,不對中振動的頻率約為40 Hz,即轉子轉速的二倍頻,不對中振動的幅值約為0.03 V.

針對圖15(a)中轉子位移信號進行頻譜分析得到如圖16所示的結果,通過對比可以看出:轉子陷波后轉速同頻量幾乎被完全濾除,此時轉子位移信號中僅存在較大的轉子轉速二倍頻分量及其他較小的轉子轉速倍頻分量.

圖15 磁懸浮多跨轉子不對中振動檢測結果Fig.15 Detection results for misalignment vibration of magnetic multi-span rotors

圖16 濾波前后轉子振動位移頻譜對比Fig.16 Spectrum comparison of rotor vibration displacement before and after filtering

在轉子不對中狀態下,將其運行狀態繪制于圖17中.由圖可明顯看出:轉子運行的軸心軌跡變得不規則,說明振動位移信號中已經包含了由轉子不對中引起的轉速二倍頻信號.

圖17 轉子不對中狀態下的運行狀態Fig.17 Operation state of rotor under misalignment

7 結 論

1) 依據轉子徑向振動位移信號,利用SOGIFLL可實現轉子轉速辨識,為轉速同頻量陷波提供前提條件.

2) 結合轉子轉速辨識結果,并利用SOGI對轉子徑向位移信號進行轉速同頻陷波,然后采用SOGI-FLL-WPF對陷波后位移信號進行不對中振動檢測.通過模擬定轉速和變轉速兩種工況驗證了本文提出磁懸浮多跨轉子不對中振動檢測方法的可行性.

3) 通過實驗驗證了本文提出的磁懸浮多跨轉子不對中振動檢測方法的效果,實驗結果表明,采用本文提出的檢測方法,在打開檢測開關后約0.10 s檢測結果便趨于穩定狀態,由轉子不對中引起的轉速二倍頻振動信號可被快速辨識出幅值和頻率.

今后可以針對磁懸浮多跨轉子偏角不對中、平行與偏角復合不對中進行不對中振動的檢測研究,提出一套識別不同類型多跨轉子不對中振動的檢測方法,為后續磁懸浮多跨轉子不對中振動控制奠定基礎.

致謝:常州大學科技計劃項目(ZMF21020019)、直升機傳動技術重點實驗室基金(HTL-A-20K03)的資助.

猜你喜歡
振動信號檢測
振動的思考
科學大眾(2023年17期)2023-10-26 07:39:14
“不等式”檢測題
“一元一次不等式”檢測題
“一元一次不等式組”檢測題
信號
鴨綠江(2021年35期)2021-04-19 12:24:18
完形填空二則
振動與頻率
天天愛科學(2020年6期)2020-09-10 07:22:44
基于FPGA的多功能信號發生器的設計
電子制作(2018年11期)2018-08-04 03:25:42
中立型Emden-Fowler微分方程的振動性
小波變換在PCB缺陷檢測中的應用
主站蜘蛛池模板: 中文字幕中文字字幕码一二区| 国产情侣一区二区三区| 国产成人AV男人的天堂| 72种姿势欧美久久久大黄蕉| 国外欧美一区另类中文字幕| 97国产在线播放| 久久国产黑丝袜视频| 国产一级视频在线观看网站| 亚洲无码高清视频在线观看| 一区二区三区高清视频国产女人| 激情综合网激情综合| 992Tv视频国产精品| 自拍偷拍欧美日韩| 日韩在线视频网| 在线日本国产成人免费的| 一级片免费网站| 午夜视频日本| 国产一级无码不卡视频| 中文字幕首页系列人妻| 色综合a怡红院怡红院首页| 日本日韩欧美| 亚洲精品动漫| 亚洲国产无码有码| 色婷婷成人| 国产一区二区三区免费观看| 无码网站免费观看| 免费看a毛片| 亚洲国产AV无码综合原创| 怡红院美国分院一区二区| 男女男免费视频网站国产| 香蕉伊思人视频| 欧美精品成人一区二区在线观看| 国产全黄a一级毛片| 欧美成人亚洲综合精品欧美激情| 欧美日韩第二页| 爆乳熟妇一区二区三区| 白浆视频在线观看| 国产成人精品一区二区免费看京| 999国内精品久久免费视频| 一级成人a做片免费| 国产国产人在线成免费视频狼人色| 国产精品自在拍首页视频8 | 免费高清自慰一区二区三区| 青青青草国产| 国产精品亚洲а∨天堂免下载| 丁香六月综合网| 国产亚洲欧美在线中文bt天堂| 99热国产在线精品99| 久久国产香蕉| 天堂成人在线视频| 亚洲欧美综合另类图片小说区| AV老司机AV天堂| 日本不卡在线视频| 青青热久免费精品视频6| 六月婷婷精品视频在线观看| 亚洲天堂首页| 欧美激情,国产精品| 亚洲经典在线中文字幕| 欧洲成人在线观看| 亚洲αv毛片| 欧美爱爱网| 日韩久久精品无码aV| swag国产精品| 真人高潮娇喘嗯啊在线观看| 欧美福利在线观看| 在线观看无码av免费不卡网站| 免费毛片全部不收费的| 国产福利一区视频| 亚洲伊人天堂| 欧美亚洲国产精品久久蜜芽| 亚洲无码不卡网| 91小视频在线观看| 99精品一区二区免费视频| 激情综合婷婷丁香五月尤物| 精品夜恋影院亚洲欧洲| 九九精品在线观看| 超碰免费91| 91久草视频| 亚洲中文无码av永久伊人| 六月婷婷激情综合| 国产a网站| 亚洲第一区欧美国产综合|