趙靜, 陳茹, 沈桂萍, 張慧豐, 范彥英
LPS誘導的A1型星形膠質細胞的能量代謝特征*
趙靜, 陳茹, 沈桂萍, 張慧豐, 范彥英△
(山西醫科大學基礎醫學院藥理教研室,山西 太原 030001)
探討在脂多糖(lipopolysaccharide, LPS)誘導下,小鼠皮層星形膠質細胞轉化為A1毒性表型的同時,其能量代謝所發生的變化。小鼠皮層星形膠質細胞培養8~9 d后,分為對照(control, CON)組和LPS組;采用CCK-8細胞增殖及毒性檢測試劑盒檢測不同LPS處理濃度及不同處理時間下的細胞活力;通過細胞免疫熒光染色技術檢測膠質細胞原纖維酸性蛋白(glial fibrillary acidic protein, GFAP)的表達來鑒定星形膠質細胞的純度;通過補體C3(complement component 3, C3)與GFAP細胞免疫熒光染色共定位,檢測C3的表達水平;利用RT-qPCR技術檢測C3、鳥苷酸結合蛋白2(guanylate-binding protein 2, GBP2)、S100鈣結合蛋白A10(S100 calcium-binding protein A10, S100A10)、轉谷氨酰胺酶1(transglutaminase 1, TGM1)及白細胞介素1β(interleukin-1β, IL-1β)的mRNA表達變化;采用Western blot技術檢測C3蛋白表達變化。利用Seahorse XFp活細胞生物能量檢測技術檢測細胞線粒體呼吸功能和糖酵解水平的變化。免疫熒光染色結果顯示,GFAP陽性細胞比例達98%以上。CCK-8結果顯示,在不同濃度和不同處理時間下,LPS對星形膠質細胞的活力均無顯著影響;RT-qPCR結果顯示,在LPS劑量為100 μg/L時,C3和GBP2的mRNA表達在24 h均顯著升高(<0.01),而S100A10和TGM1的mRNA表達則無顯著變化。Western blot和免疫熒光染色結果顯示,LPS處理后C3的蛋白表達顯著升高(<0.01);RT-qPCR結果顯示,IL-1β的mRNA表達水平顯著升高(<0.01)。線粒體壓力測定結果顯示,LPS處理后的線粒體呼吸相關指標——氧消耗速率(oxygen consumption rate, OCR)與CON組相比無顯著差異,而糖酵解速率相關指標——細胞外酸化速率(extracellular acidification rate, ECAR)、基礎糖酵解質子流出速率(glycolytic proton efflux rate, glycoPER)、代償性糖酵解、glycoPER百分比及線粒體質子流出速率(mitochondial proton efflux rate, mitoPER)/glycoPER在LPS處理后均顯著下降(<0.01)。LPS可誘導星形膠質細胞向A1表型轉換,無氧酵解水平顯著降低,但對線粒體主導的有氧呼吸無顯著影響。
星形膠質細胞;脂多糖;能量代謝
星形膠質細胞是中樞神經系統中最豐富的細胞類型,它們在維持中樞神經系統穩態和功能方面發揮著一系列不可或缺的作用[1],如為神經元提供能量、調節神經元突觸發生和消除、維持血腦屏障和傳導免疫信號。在感染、急性腦損傷及神經退行性病變中,星形膠質細胞的基因表達、形態和功能均會發生變化,表現為胞體肥大、突起數量和長度的增加等[2],這些變化被稱為星形膠質細胞反應性。近年研究發現,反應性星形膠質細胞可被分為A1型(神經毒性表型)和A2型(神經保護表型)[3]。在阿爾茨海默病(Alzheimer disease, AD)、帕金森病(Parkinson disease, PD)、亨廷頓氏病、單側脊索硬化等疾病中,研究者觀察到腦內星形膠質細胞轉化為A1表型,這種轉化可能是神經元損傷的重要機制[4;5]。與此同時,在這些病理刺激下,星形膠質細胞的能量代謝模式也會發生變化。Ramos-Gonzalez等[5]證實,經Aβ刺激處理后,星形膠質細胞的線粒體功能及ATP生成顯著降低。Xie等[6]在PD患者腦內提取的星形膠質細胞上發現,細胞線粒體呼吸功能降低而糖酵解水平升高。此外,在前動力蛋白2(prokineticin 2, PK2)刺激星形膠質細胞向A2表型轉化的同時,線粒體呼吸功能增強,且ATP生成增多[7]。脂多糖(lipopolysaccharide, LPS)是炎癥模型構建的誘導劑,可以通過誘導促炎介質的生成促進神經炎癥反應。最近研究證實,LPS可以誘導培養的星形膠質細胞向A1表型轉換,表現為A1標志物H2-T23、H2-D1、鳥苷酸結合蛋白2(guanylate-binding protein 2, GBP2)表達的增加[8]。但在此過程中,其能量代謝模式是否發生變化尚不清楚。
本研究在培養的小鼠皮層星形膠質細胞中,利用LPS刺激模型,觀察了星形膠質細胞A1、A2表型的變化,并測定了細胞的線粒體壓力和糖酵解速率,以探究星形膠質細胞A1表型轉換與能量代謝之間的潛在關系。
胎牛血清(fetal bovine serum, FBS)購自CellMax;細胞基礎培養液(Dulbecco's modified Eagle medium, DMEM;含4.5 g/L D-葡萄糖,以及L-谷氨酰胺和丙酮酸鈉)購自Gibco;不含EDTA的胰蛋白酶、青-鏈霉素溶液(100×)、D-Hanks緩沖液和過氧化物酶標記的IgG抗體購自博士德生物工程有限公司;D-多聚賴氨酸購自碧云天生物科技有限公司;L-亮氨酸甲酯鹽酸鹽(L-leucine methyl ester hydrochloride, LME)購自麥克林試劑公司;LPS購自Sigma;Seahorse XF線粒體壓力測定試劑盒、Seahorse XF糖酵解速率測定試劑盒以及XF Calibrant、Seahorse XF DMEM Medium、Seahorse XF 1.0M Glucose Solution、Seahorse XF 100mM Pyruvate Solution和Seahorse XF 200mM Glutamine Solution均購自安捷倫科技有限公司;Cell Counting Kit-8(CCK-8)、羊抗小鼠Alexa Fluor 488抗體和羊抗大鼠Alexa Fluor 594抗體購自翌圣生物科技有限公司;小鼠抗膠質細胞原纖維酸性蛋白(glial fibrillary acidic protein, GFAP)抗體和Alexa Fluor 488偶聯的小鼠抗GFAP單克隆抗體(GA5)均購自Cell Signaling Technology。大鼠抗補體C3(complement component 3, C3)抗體購自Novus;兔抗C3抗體購自Abcam;UNIQ-10柱式RNA抽提試劑盒購自生工生物工程有限公司;RT Ⅲ All-in-one Mix及SYBR Green PCR Mix試劑購自莫納生物科技有限公司。
2.1皮層星形膠質細胞的培養C57BL/6J新生小鼠購自山西醫科大學動物中心[許可證號:SYXK(晉)2019-0007]。新生小鼠按照文獻中的方法[9-10],完整分離腦組織,將其浸泡在冷的D-Hanks緩沖液中,在體視顯微鏡下剝離腦膜和血管,去除海馬,得到腦皮層組織,將組織用手術刀切碎。在37 ℃、5% CO2的條件下用0.25%不含EDTA的胰酶消化15 min,以含10% FBS的DMEM完全培養液終止消化。將細胞吹散后,收集細胞上清,以每瓶1.0×106個細胞的密度均勻接種在以D-多聚賴氨酸包被過的T25細胞培養瓶中,在37 ℃、5% CO2的細胞培養箱中培養,24 h后換液,之后每2~3 d更換培養液。培養8~9 d后,在室溫下以260 r/min的速度搖細胞培養瓶18 h,以去除黏附在星形膠質細胞上的小膠質細胞、神經元及少突膠質細胞,然后棄去原來的培養液,PBS清洗1~2次,向培養液中加入終濃度為50 mmol/L的LME以去除小膠質細胞[11]。45 min后,棄去LME,PBS清洗后,換至完全培養液,繼續培養24 h后可傳代。
2.2細胞免疫熒光染色培養有星形膠質細胞的細胞爬片,經預冷的4%多聚甲醛固定,含0.1% Triton的PBS破膜后,加入10%的牛血清白蛋白封閉45 min,封閉后加小鼠抗GFAP抗體(1∶1 000)于4 ℃孵育過夜,PBS漂洗3次后,與羊抗小鼠Alexa Fluor 594抗體(1∶400)在室溫下孵育2 h,經DAPI染色并封片固定;GFAP與C3免疫熒光染色共定位時,用Alexa Fluor 488偶聯的小鼠抗GFAP單克隆抗體(GA5; 1∶200)和大鼠抗C3抗體(1∶400),在4 ℃下共同孵育過夜,PBS漂洗后與羊抗大鼠Alexa Fluor 594抗體(1∶400)在室溫孵育2 h,DAPI染色封片后,于熒光顯微鏡下觀察并拍照。
2.3CCK-8檢測細胞活力星形膠質細胞按照每孔5 000個細胞接種在預先以100 mg/L多聚賴氨酸包被過的96孔板上,待其匯合度達到80%~90%,分別檢測LPS濃度為100、50及10 μg/L時星形膠質細胞的活力。之后,在LPS濃度為100 μg/L的條件下,分別檢測處理6、12和24 h后星形膠質細胞的活力。待測孔內每100 μl培養液中加入10 μl CCK-8溶液,繼續在細胞培養箱中培養2 h,最后在酶標儀上檢測450 nm處的吸光度。
2.4RT-qPCR檢測mRNA表達按照試劑盒說明書操作提取星形膠質細胞的總RNA,使用RT Ⅲ All-in-one Mix及SYBR Green PCR Mix試劑進行mRNA的逆轉錄及擴增。內參照GAPDH的上游引物序列為5'-GTCGGTGTGAACGGATTTGG-3',下游引物序列為5'-GCTCCTGGAAGATGGTGATGG-3';白細胞介素1β(interleukin-1β, IL-1β)的上游引物序列為5'-CGTGGACCTTCCAGGATGAG-3',下游引物序列為5'-CATCTCGGAGCCTGTAGTGC-3';C3的上游引物序列為5'-GGCTAGACAAGGCTTGTGAGC-3',下游引物序列為5'-CCTGCACCTCATCTGAGCC-3';GBP2的上游引物序列為5'-GGAGGAGCTGTGTGGTGAAT-3',下游引物序列為5'-TTAGACGTGGCCCATTGACT-3';S100鈣結合蛋白A10(S100 calcium binding protein A10,S100A10)的上游引物序列為5'-GTGCTCATGGAACGGGAGT-3',下游引物序列為5'-AAAGCTCTGGAAGCCCACTT-3';轉谷氨酰胺酶1(transglutaminase 1, TGM1)的上游引物序列為5'-CCCTGGATGACAATGGAGTT-3',下游引物序列為5'-GAATAGCCGGTGCGTAGGTA-3'。IL-1β、C3、GBP2、S100A10及TGM1的mRNA水平歸一化為內參照GAPDH的表達,并采用2-ΔΔCt法進行計算。
2.5Western blot檢測蛋白表達將星形膠質細胞用細胞裂解液收集并超聲后,提取總蛋白。總蛋白采用BCA法定量,經8%的聚丙烯酰胺凝膠電泳分離蛋白后,在70 V電壓下轉至聚偏氟乙烯膜上,以5%的脫脂奶粉在室溫下封閉2 h,加入兔抗C3抗體(1∶2000),在4 ℃條件下孵育過夜。次日,TBST洗膜3次,每次5 min,將膜與辣根過氧化物酶標記的山羊抗兔IgG抗體(1∶6 000)在37 ℃條件下孵育1 h,并用ECL超敏化學發光液進行成像,Image Lab測定分析條帶灰度值。
2.6線粒體壓力和糖酵解速率的測定利用Seahorse XFp能量代謝分析儀測定星形膠質細胞在不同處理條件下線粒體壓力和糖酵解速率的變化情況。在線粒體壓力測定中,基礎呼吸的氧氣消耗速率(oxygen consumption rate, OCR)代表細胞在基礎狀態下的能量需求,與ATP產生相關的OCR代表了線粒體滿足細胞能量需求的ATP合成能力。在測量基線OCR后,依次加入1.5 μmol/L oligomycin、4 μmol/L羰基氰-4-(三氟乙氧基)苯腙[carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone, FCCP]和0.5 μmol/L魚藤酮/抗霉素(rotenone/antimycin A, Rot/AA)來檢測基礎呼吸值(細胞基礎狀態下的能量需求)、最大呼吸值、剩余呼吸容量(細胞適應能量變化的能力)及與ATP產生相關的OCR等指標,依此來反映線粒體的呼吸功能。在糖酵解速率測試中,測量基線細胞外酸化速率(extracellular acidification rate,ECAR)后,依次加入0.5 μmol/L Rot/AA和50 mmol/L 2-脫氧葡萄糖(2-deoxyglucose, 2-DG),最后一步添加的2-DG能夠通過競爭性結合糖酵解途徑的己糖激酶引起ECAR降低,依此來反映細胞的糖酵解水平降低。通過檢測基礎糖酵解質子流出速率(glycolysis proton efflux rate, glycoPER)、代償性糖酵解、glycoPER百分比、線粒體質子流出速率(mitochondial proton efflux rate, mitoPER)/glycoPER等指標來反映細胞的糖酵解水平,其中glycoPER能夠反映乳酸產生的質子流出速率。星形膠質細胞按照每孔1.5×104個接種在多聚賴氨酸包被過的8孔細胞培養板上進行培養,用LPS處理24 h后,將培養液更換為含10 mmol/L葡萄糖、1 mmol/L丙酮酸和2 mmol/L谷氨酰胺的37 ℃ DMEM無酚紅培養液(pH 7.4),培養1 h后,上機檢測。本實驗測試了所有參數值,且進行了三次重復,數據采用WAVE軟件進行分析。
采用軟件GraphPad Prism 7.0進行數據處理分析。所有實驗數據均采用均數±標準誤(mean±SEM)表示。兩組樣本之間選用Student's檢驗法進行比較,三組或三組以上選用單因素方差分析進行比較分析。以<0.05為差異有統計學意義。
通過細胞免疫熒光染色檢測星形膠質細胞的標志物GFAP,結果顯示培養的皮層膠質細胞中GFAP陽性率達98%以上(圖1),表明星形膠質細胞的純度達98%以上,符合實驗要求。

Figure 1. The measurement of purity of cortical astrocytes. The GFAP expression was measured by immunofluorescence. Scale bar=50 μm.
CCK-8檢測結果顯示,不同濃度和不同處理時間的LPS對細胞的活力均無顯著影響(圖2A、B)。RT-qPCR的結果顯示,LPS處理后A1表型標志物C3和GBP2的表達呈濃度依賴性升高,在LPS濃度為50和100 μg/L時,C3(圖2C)和GBP2(圖2D)的表達均顯著升高(<0.01),A2表型標志物S100A10(圖2E)及TGM1(圖2F)則無顯著變化。與50 μg/L組相比,100 μg/L濃度下A1表型標志物C3和GBP2的表達更高,且Zhang等[8]證實LPS(100 μg/L)可誘導星形膠質細胞向A1表型的轉換,因此本研究確定LPS的處理劑量為100 μg/L。LPS(100 μg/L)處理24 h后,A1表型標志物的mRNA表達最高,其中C3的mRNA表達(圖2G)顯著升高(<0.01),約為CON組的53.40倍,GBP2的mRNA表達(圖2H)亦顯著升高(<0.01),約為CON組的6.19倍,A2表型標志物S100A10(圖2I)和TGM1(圖2J)的表達則無顯著變化。綜合上述結果,我們在后續研究中選擇LPS(100 μg/L)持續刺激24 h誘導星形膠質細胞的表型轉換。

Figure 2. Effects of LPS treatment on phenotypic transformation and viability of primary mouse cortical astrocytes. The astrocytes were treated with different concentrations of LPS for 24 h or 100 μg/L LPS for different time. Cell viability was detected by CCK-8 assay (A and B;n=10). The mRNA expression of C3, GBP2, S100A10 and TGM1 in the astrocytes were detected by RT-qPCR (C to J,n=3). Mean±SEM. **P<0.01 vs CON group.
在此條件下,RT-qPCR結果表明,與CON組相比,在LPS的刺激下IL-1β的mRNA表達(圖3A)顯著升高(<0.01),約為CON組的4.56倍,表明LPS模型已成功建立。Western blot檢測結果顯示,LPS組C3的蛋白表達(圖3B)顯著升高(<0.01),約為CON組的20.99倍。星形膠質細胞GFAP與C3的免疫熒光染色結果表明,LPS誘導后,GFAP陽性的星形膠質細胞中檢測到C3表達的細胞占90%以上,表明星形膠質細胞轉變為A1表型的轉換率達90%以上(圖3C)。

Figure 3. Effects of LPS on expression of IL-1β and C3 in primary mouse cortical astrocytes. The astrocytes were treated with LPS (100 μg/L) for 24 h. The mRNA expression of IL-1β was detected by RT-qPCR (A;n=3). The relative expression of C3 protein was detected by Western blot (B;n=4). The co-localization of C3 and GFAP was detected by immunofluorescence staining (C; scale bar=50 μm). Mean±SEM. **P<0.01 vs CON group.
在線粒體壓力測試中,通過依次加入oligomycin(1.5 μmol/L)、FCCP(4 μmol/L)和Rot/AA(0.5 μmol/L)測量細胞的OCR(圖4A)。測試結果顯示,LPS不能誘導基礎呼吸值(圖4B)、最大呼吸值(圖4C)、與ATP產生相關的OCR(圖4D)和剩余呼吸能力(圖4E)發生顯著變化,表明LPS對星形膠質細胞以線粒體為主的有氧呼吸功能無顯著影響。

Figure 4. Effects of LPS on mitochondrial respiration function of primary mouse cortical astrocytes. The astrocytes were treated with LPS (100 μg/L) for 24 h, and then the oxygen consumption rate (OCR; A), basal respiration (B), maximal respiration (C), ATP generation (D) and spare respiratory capacity (E) were detected by Seahorse XF Cell Mito Stress Test Kit. Mean±SEM. n=6.
在糖酵解速率測試中,在加入2-DG前,LPS能夠顯著降低ECAR,在加入2-DG后,2-DG能夠通過競爭性結合糖酵解途徑的己糖激酶,從而引起ECAR進一步降低(<0.01),見圖5A。測試結果顯示,LPS能夠誘導基礎glycoPER降低,表明LPS能夠顯著降低星形膠質細胞乳酸的產生(<0.01),見圖5B;LPS能夠誘導代償性糖酵解(圖5C)和糖酵解途徑產生的PER百分比(圖5D)顯著降低(均<0.01),表明LPS可使星形膠質細胞糖酵解水平顯著降低;mitoPER/glycoPER比值(圖5E)顯著升高(<0.01),表明經過LPS處理后,星形膠質細胞的代謝方式以有氧糖酵解為主,無氧糖酵解水平顯著降低。

Figure 5. Effects of LPS on the glycolysis rate of primary mouse cortical astrocytes. The astrocytes were treated with LPS (100 μg/L) for 24 h, and then the extracellular acidification rate (ECAR; A), basic glycolytic proton efflux rate (glycoPER; B), compensatory glycolysis (C), percentage of PER produced by glycolysis (D) and the ratio of mitochondrial PER (mitoPER) to glycoPER (E) were measured by Seahorse XF Glycolytic Rate Assay Kit. Mean±SEM. n=6. **P<0.01 vs CON group.
盡管星形膠質細胞在AD、PD等病理過程中發生的能量代謝變化已被研究,但在LPS刺激模型下,星形膠質細胞的能量代謝模式是否會發生變化尚不清楚。本研究證實,在LPS誘導星型膠質細胞向A1毒性表型轉化的同時,線粒體呼吸功能并未發生顯著變化,而糖酵解功能顯著降低,提示星形膠質細胞的糖酵解活性對LPS炎性刺激更為敏感。星形膠質細胞被認為是一種“糖酵解”細胞,會消耗大量的葡萄糖并產生乳酸,具有很高的有氧糖酵解能力[12]。星形膠質細胞糖酵解活性的降低會導致其為自身提供能量的不足并減少乳酸釋放,而乳酸作為神經元的主要能量來源,是維持神經元活動所必須的[12],對谷氨酸引起的神經元興奮性毒性損傷有抑制作用。本課題組研究發現LPS處理的星形膠質細胞無氧糖酵解水平降低,乳酸產生減少,因此我們推測,糖酵解活性的降低可能是LPS誘導A1型星形膠質細胞損傷神經元的機制之一。
已有研究證實,在同樣可誘導星形膠質細胞向A1型轉化的Aβ刺激AD的模型中,星形膠質細胞存活率顯著降低,同時線粒體呼吸功能被抑制,線粒體產生的ATP顯著減少[6, 13]。相似地,從PD患者腦內提取的星形膠質細胞(A1型)與正常細胞相比,線粒體呼吸功能也顯著下降,但無氧糖酵解活性顯著增強[5]。上述研究與本研究觀察到的A1型星形膠質細胞的線粒體呼吸功能不變而糖酵解活性降低的現象并不一致。由于本研究中LPS處理對細胞存活率并無顯著影響,我們推測,在不同模型中,A1型星形膠質細胞線粒體呼吸和糖酵解功能的不同變化可能與不同模型所致的細胞損傷程度的差異有關。A1型星形膠質細胞的能量代謝在不同模型中可能具有異質性。
此外,Voloboueva等[14]證實,LPS(1 mg/L)處理BV2細胞3 h后,M1促炎表型顯著增加,基礎OCR值和ATP生成等表征線粒體能量代謝的指標均顯著低于對照組,而ECAR表征的糖酵解代謝增強[15]。Namwanje等[16]發現,LPS可使樹突細胞的代謝模式從高效的氧化磷酸化轉向糖酵解。以上結果與本研究中星形膠質細胞在LPS刺激后所發生的糖酵解活性降低的結果相反,提示LPS刺激不同的細胞,其所發生的能量代謝模式的變化存在差異,這可能在一定程度影響了這些細胞在炎癥反應中所發揮的不同作用。
綜上所述,LPS誘導的A1型星形膠質細胞的能量代謝特征為線粒體呼吸功能不變而糖酵解活性降低。這種能量代謝模式的變化進一步補充了A1型星形膠質細胞產生神經元毒性作用的機制。該研究為利用LPS模型探討星形膠質細胞活性及功能變化提供了新的指標。
[1] Miller SJ. Astrocyte heterogeneity in the adult central nervous system[J]. Front Cell Neurosci, 2018, 12:401.
[2] Fan YY, Huo J. A1/A2 astrocytes in central nervous system injuries and diseases: angels or devils?[J]. Neurochem Int, 2021, 148:105080.
[3] Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis[J]. J Neurosci, 2012, 32(18):6391-6410.
[4] Goetzl EJ, Schwartz JB, Abner EL, et al. High complement levels in astrocyte-derived exosomes of Alzheimer disease[J]. Ann Neurol, 2018, 83(3):544-552.
[5] Ramos-Gonzalez P, Mato S, Chara JC, et al. Astrocytic atrophy as a pathological feature of Parkinson's disease with LRRK2 mutation[J]. NPJ Parkinsons Dis, 2021, 7(1):31.
[6] Xie Y, Zheng J, Li S, et al. GLP-1 improves the neuronal supportive ability of astrocytes in Alzheimer's disease by regulating mitochondrial dysfunction via the cAMP/PKA pathway[J]. Biochem Pharmacol, 2021, 188:114578.
[7] Neal M, Luo J, Harischandra D S, et al. Prokineticin-2 promotes chemotaxis and alternative A2 reactivity of astrocytes[J]. Glia, 2018, 66(10):2137-2157.
[8] Zhang HY, Wang Y, He Y, et al. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment[J]. J Neuroinflammation, 2020, 17(1):200.
[9]喬圓,廖雁,南方,等. 組胺對星形膠質細胞Egr-1表達的調節作用[J]. 中國病理生理雜志, 2016, 32(4):680-685.
Qiao Y, Liao Y, Nan F, et al. Effects of histamine on mRNA expression of Egr-1 in astrocytes[J]. Chin J Pathophysiol, 2016, 32(4):680-685.
[10] Mccann MS, Fernandez HR, Flowers SA, et al. Polychlorinated biphenyls induce oxidative stress and metabolic responses in astrocytes[J]. Neurotoxicology, 2021, 86:59-68.
[11] Hamby ME, Uliasz TF, Hewett SJ, et al. Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes[J]. J Neurosci Methods, 2006, 150(1):128-137.
[12] Takahashi S. Neuroprotective function of high glycolytic activity in astrocytes: common roles in stroke and neurodegenerative diseases[J]. Int J Mol Sci, 2021, 22(12):6568.
[13] Phatnani H, Maniatis T. Astrocytes in neurodegenerative disease[J]. Cold Spring Harb Perspect Biol, 2015, 7(6):a020628.
[14] Voloboueva LA, Emery JF, Sun X, et al. Inflammatory response of microglial BV-2 cells includes a glycolytic shift and is modulated by mitochondrial glucose-regulated protein 75/mortalin[J]. FEBS Lett, 2013, 587(6):756-762.
[15] Kucic N, Racki V, Sverko R, et al. Immunometabolic modulatory role of naltrexone in BV-2 microglia cells[J]. Int J Mol Sci, 2021, 22(16):8429.
[16] Namwanje M, Bisunke B, Rousselle TV, et al. Rapamycin alternatively modifies mitochondrial dynamics in dendritic cells to reduce kidney ischemic reperfusion injury[J]. Int J Mol Sci, 2021, 22(10):5386.
Characteristics of energy metabolism in lipopolysaccharide-induced A1-type astrocytes
ZHAO Jing, CHEN Ru, SHEN Gui-ping, ZHANG Hui-feng, FAN Yan-ying△
(,,030001,)
To investigate the change of energy metabolism during transformation of mouse cortical astrocytes to the A1 toxic phenotype induced by lipopolysaccharide (LPS).Primary mouse cortical astrocytes were divided into control (CON) group and LPS group after cultured for 8 to 9 d. Cell Counting Kit-8 (CCK-8) was used to detect the cell viability. The expression of glial fibrillary acidic protein (GFAP) was detected by immunofluorescence. The expression of complement component 3 (C3) was detected by co-staining with GFAP. The mRNA levels of C3, guanylate-binding protein 2 (GBP2), S100 calcium-binding protein A10 (S100A10), transglutaminase 1 (TGM1) and interleukin-1β (IL-1β) after LPS treatment were detected by RT-qPCR. The expression of C3 protein was assessed by Western blot. The levels of cellular mitochondrial respiratory function and glycolysis were detected by Seahorse XFp live-cell bioenergy detection technology.Immunofluorescence staining showed that the percentage of GFAP reached more than 98%. Treatment with LPS did not change the viability of astrocytes. The mRNA levels of C3 and GBP2 were significantly increased at 24 h after treatment with LPS at the concentration of 100 μg/L (<0.01), while the expression of S100A10 and TGM1 did not change. Both Western blot and immunofluorescence staining showed C3 was significantly increased after treated with LPS (<0.01). The results of RT-qPCR showed that the mRNA level of IL-1β was significantly increased (<0.01). Mitochondrial pressure measurement showed that there was no significant difference in oxygen consumption rate (OCR), an indicator of mitochondrial respiration, between control group and LPS group. Glycolysis rate-related indicators such as extracellular acidification rate (ECAR), basal glycolytic proton efflux rate (glycoPER), compensatory glycolysis, the percentage of glycoPER, and mitochondial proton efflux rate (mitoPER)/glycoPER were decreased significantly after LPS treatment (<0.01).LPS induces the transformation of astrocytes to A1 phenotype and reduces the level of anaerobic glycolysis, but did not change the mitochondrial aerobic respiration.
Astrocytes; Lipopolysaccharides; Energy metabolism
R741.02; R363.2
A
10.3969/j.issn.1000-4718.2022.06.002
1000-4718(2022)06-0970-08
2022-01-20
2022-03-16
國家自然科學基金資助項目(No. 81872854; No. 81202520)
Tel: 0351-4135172; E-mail: fyanying6@hotmail.com
(責任編輯:盧萍,羅森)