韓藝瑋, 張致英, 郝美莉, 張曉英
能量代謝紊亂在高原心臟病發生過程中的作用*
韓藝瑋, 張致英, 郝美莉, 張曉英△
(西藏民族大學醫學院,西藏民族大學藏藥檢測技術教育部工程研究中心,陜西 咸陽 712082)
高原心臟?。粍用}型肺動脈高壓;右心室肥厚;能量代謝紊亂;缺氧誘導因子1α;過氧化物酶體增殖物激活受體
高原地區具有海拔高(≥3 000 m以上)、氣壓低、氧分壓低的特點,易導致機體缺氧從而引發一系列急、慢性高原病,如急性肺水腫、高原紅細胞增多癥、缺氧性腦水腫、急慢性高原心臟病(high-altitude heart disease, HAHD)等,給高原地區居民人們的身心健康帶來嚴重危害。其中慢性HAHD發病率高,危害大,不易逆轉,預后差。更重要的是HAHD還會導致心臟、大腦和腎臟的衰竭,從而嚴重縮短壽命,是高海拔地區居民和平原移居人群必須重視的健康問題。
本文從動脈型肺動脈高壓(pulmonary arterial hypertension, PAH)和右心室肥大(right ventricular hypertrophy, RVH)兩個方面重點綜述了能量代謝紊亂及其相關信號分子在HAHD發生、發展中的作用,旨在為HAHD發病機制的研究、疾病預防和治療提供參考資料。
HAHD是指正常人移居高原后,在長期低壓、缺氧環境下,引起肺小動脈功能性和器質性改變,出現缺血性PAH和負荷性RVH,最后導致右心功能不全,至晚期則可出現左室肥厚擴大、全心衰以及心律失常等癥狀。據西藏醫學研究所在4 500~4 700 m高原的調查顯示,大約24.9%高原居民患有缺氧性RVH,明顯RVH者如不能盡快干預最終會發展為HAHD[1]。
1.1PAHPAH是HAHD發生的主要因素,其血流動力學標準為:靜息狀態下,在海平面右心導管測量平均肺動脈壓≥25 mmHg (1 mmHg=0.133 kPa)[2]。肺泡通氣不足是PAH發生的始動因素。低壓低氧的環境會導致肺泡過度通氣,逐漸轉變為相對低通氣和肺泡通氣不足,通氣血流比值失調,導致肺泡和動脈血氧分壓降低,進而造成缺氧通氣反應[3]和缺氧性肺血管收縮[4]。研究顯示,海拔越高,吸入氣氧分壓下降越顯著,PAH的程度也越明顯[5]。其次,慢性持續低氧可導致高原紅細胞增多癥,血液粘滯性增加,肺血容量增多,進一步加劇PAH的形成。
在PAH發生、發展中發揮決定性因素的是肺血管重構[6],即表現為:血管內皮損傷、中膜增厚、周圍血管的肌纖維化和細胞外基質增多等,進而引起肺血管管腔狹窄、血管壁增厚等構象改變,甚至出現閉塞性病變[4, 6]。有報道指出,高原居民表現出RVH及肺血管壓力增高,大多因為長期缺氧引起不可逆轉的肺血管重構[7]。相似的結果也出現在動物模型中:高海拔低氧牛模型中肺血管表現出廣泛的膠原沉積和血管中膜增厚重構[8];PAH小鼠模型出現明顯的肺動脈肌化增加、血管閉塞和血管重塑等改變[9-10]。因此肺血管重構是PAH發生、發展的關鍵因素,導致RVH及右心功能進行性衰竭。
1.2RVH及右心功能不全RVH或右心功能不全作為HAHD的主要特征,同時也是PAH導致心臟后負荷增加的結果,具體表現為:右心室擴張,室間隔增厚,且隨著右心房壓力的不斷增加,下腔靜脈擴張,失去吸氣性塌陷,會伴發一定程度的三尖瓣返流[9]。但也有研究顯示,在HAHD發生的過程中,只出現RVH,并未存在擴張[10],導致不同的結果可能是由于采用的實驗模型以及缺氧的程度和持續時間存在差異,特別是高海拔環境中的混雜因素所致。此外,需要重點關注的是PAH后負荷的長期存在,促使慢性RVH逐漸發展為心力衰竭[11]。其中氧化應激、炎癥反應、心肌纖維化、凋亡、能量代謝紊亂等多種復雜的機制參與其中[12-13],而近年來能量代謝紊亂在HAHD發生過程中的作用逐漸受到重視。
底物利用轉變和線粒體功能障礙可促進肺動脈內皮細胞(pulmonary artery endothelial cells, PAECs)功能障礙和肺動脈平滑肌細胞(pulmonary artery smooth muscle cells, PASMCs)過度增殖,從而引發肺血管重構,導致PAH的發生,進而導致RVH及右心功能不全,而心肌細胞脂肪酸氧化能力的下降進一步加速了HAHD向心衰的進程。
2.1能量代謝紊亂促進PAH的發生發展肺血管重構作為PAH發生、發展的關鍵因素,與PAECs功能障礙、PASMCs過度增殖和凋亡失衡、炎癥、血管過度收縮等密切相關[14]。其中PAECs功能障礙被認為是PAH病理生理學改變的關鍵起始因素[15],而PASMCs增殖與凋亡失衡是導致PAH的重要病因。
2.1.1底物利用轉變促進PAECs增殖并加速PAH的發展PAECs糖酵解代謝途徑的轉變和過度增殖是PAH發生、發展的病理學基礎。葡萄糖代謝在肺動脈高壓PAECs的能量需求中發揮主要作用,當機體處于持續缺氧環境中時,葡萄糖的有氧代謝將逐漸轉變為無氧糖酵解,PAECs中糖酵解速率較正常PAECs高出約3倍以上[16]。同時伴有丙酮酸脫氫酶激酶(pyruvate dehydrogenase kinases, PDK)的激活,PDK由4種同工酶(PDK1~PDK4)組成,可使線粒體葡萄糖氧化的關鍵酶丙酮酸脫氫酶(pyruvate dehydrogenase, PDH)磷酸化失活[17-18],促使新陳代謝從氧化磷酸化轉向糖酵解[14]。
研究顯示,PAECs中的葡萄糖轉運蛋白1上調[19],6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶3(6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, PFKFB3)升高[20],乳酸積累,從而導致PAECs功能障礙,進而損傷肺組織的結構和功能[21]。過表達的亦可使患有PAH的嚙齒動物和人群肺血管內皮中生長因子和促炎因子分泌增加,這將進一步促進PAECs的過度增殖。
2.1.2活性氧簇(reactive oxygen species, ROS)和PASMCs在PAH形成過程中的影響ROS是一種具有潛在毒性的超氧化物,線粒體復合物I和III是其產生的重要位點[22]。ROS可被超氧化物歧化酶2(superoxide dismutase-2, SOD-2;一種僅存在于線粒體中的酶)轉化為可擴散的第二信使過氧化氫(hydrogen peroxide, H2O2)。而H2O2參與氧敏感的電壓門控K+通道(voltage-gated potassium channels, Kv;例如Kv1.5和Kv2.1)的激活和表達[23-24]。
PASMCs是構成肺動脈壁的主要細胞[25]。在PAH患者和缺氧條件下培養PASMCs,線粒體細胞中ROS的釋放和積累導致高海拔大鼠PASMCs中線粒體膜Kv通道的功能降低[14]和線粒體膜電位去極化,這不僅使細胞內K+濃度升高,抑制促凋亡的胱天蛋白酶,抑制細胞凋亡,而且導致電壓門控L型鈣通道激活,大量的鈣內流促進細胞增殖[23-24, 26]。此外,ROS還可導致細胞色素C氧化酶和SOD水平降低,從而破壞線粒體代謝功能和酶動力學活性,加速PASMCs增殖并抑制細胞凋亡[27]。這種線粒體細胞內ROS的積累導致PASMCs的增殖與凋亡失衡可能與PAECs線粒體ROS產生激活存在一致性,協同促進了PAH的發生發展。
2.2能量代謝紊亂促進RVH及右心功能不全心臟作為高耗能、高耗氧器官,對能量的需求遠高于一般組織器官,而心肌細胞能量代謝紊亂直接或間接促進了HAHD中RVH的發生。
2.2.1能量代謝重構促進HAHD心臟的肥大和衰竭在高原低壓、低氧環境下,機體除了利用增加紅細胞的數量來增加氧氣輸送外,還通過代謝調節來提高組織對氧氣的利用率,如降低心臟磷酸肌酸與三磷酸腺苷(adenosine triphosphate, ATP)比率,抑制脂肪酸氧化和增加心臟葡萄糖攝取利用[28]。但是氧氣利用率的提高并不能完全滿足機體對氧氣的需求,尤其在高原持續低氧暴露下,PDK1在右心室表達明顯增加[29],進一步抑制丙酮酸進入三羧酸循環,從而使代謝向生成乳酸的糖酵解方向進行[30]。而這種長期以糖酵解為主要供能機制的代謝紊亂,使心肌細胞不得不為了維持泵血而進行結構和功能的慢性重塑,最終發展為HAHD。
2.2.2高原低氧通過抑制過氧化物酶體增殖物激活受體α(peroxisome proliferator-activated receptor α, PPARα)、激活PPARγ促進心肌細胞代謝轉變正常情況下,脂肪酸氧化產生的ATP占心臟ATP含量的70%[31]。PPARα是調節細胞能量代謝、脂質代謝和維持心肌能量代謝穩態的關鍵因子,其轉錄調控與高原缺氧的心臟功能存在聯系[32]。缺氧環境會明顯抑制心肌中PPARα的表達[33],導致心肌細胞中脂肪酸攝取和β氧化減少。Murray等[28]和Horscroft等[34]在對喜馬拉雅夏爾巴人和藏族高海拔居住人群的研究中觀察到了類似的結果,下調表達可以降低脂肪酸氧化能力,進而增加氧氣的利用率。但是高原缺氧環境下PPARα持續減少,心臟長期處于應對低氧的高負荷狀態,脂肪酸到糖酵解的代謝轉換可能不足以維持心肌正常的能量代謝和高能磷酸鹽(Ca2+)含量,導致心臟無法維持高收縮性能和射血功能,進而造成心肌細胞的超負荷工作,引起高原性心臟肥大和衰竭[35],更有甚者心肌出現病理性纖維化的表型[36],形成不可逆的HAHD。
研究表明,PPARγ雖是脂肪生成所必需的,但也存在于心血管系統中[37],是高海拔適應的候選因子[38]。Krishnan等[39]和Yu等[40]觀察到缺氧以及肥厚型心肌病的人和小鼠的心室活檢樣本中缺氧誘導因子1α(hypoxia-inducible factor 1α, HIF-1α)和PPARγ的表達都是增加的。
總之,高原心臟中PPARα減少引起的脂肪酸氧化能力降低伴隨著PPARγ的激活,在血流動力學超負荷期間,心臟功能更容易受到損傷和器質性重構[28, 35],逐漸向肥大和衰竭發展。
能量代謝改變是HAHD發生的重要原因之一,而HIF-1α、PPARα和PDK與HAHD的能量代謝調節存在聯系,因此對相關能量代謝信號通路在HAHD發生發展過程中潛在機制的闡述具有重要意義。
3.1HIF-1α促進PAH的發生發展HIF-1α作為應對缺氧的關鍵調節因子,其激活會增加HAHD中PAECs和PASMCs增殖和肺血管重塑,促進PAH的發生發展。
3.1.1HIF-1α參與HAHD中PAECs的糖酵解慢性缺氧刺激下,HIF-1α作為應對缺氧的關鍵調節因子被激活[41],其激活會增加許多糖酵解酶以及PDK的表達,促使氧化代謝不斷向糖酵解轉換[42],導致HAHD中PAECs的過度增殖。具體機制為:HIF-1α不僅通過激活PDK表達,損害氧化代謝,促進糖酵解代謝,而且還可誘導PFKFB3的mRNA和蛋白表達,促進PAECs的糖酵解和過度增殖[43]。
此外,PAECs中白細胞介素33(interleukin-33, IL-33)及其受體ST2的免疫反應性的顯著增加可能會導致PAH。缺氧會誘導PAECs的IL-33/ST2表達升高,激活HIF1α/血管內皮生長因子(vascular endothelial growth factor, VEGF)軸,誘導PAECs的血管生成和增殖,從而導致PAH[44],并可能為PASMCs重塑的啟動提供基礎[45]。這表明炎癥進一步促進了PAECs的過度增殖。
3.1.2HIF-1α促進HAHD中PASMCs的增殖和肺血管重塑在HAHD發病過程中,缺氧導致的HIF-1α激活決定了PASMCs的增殖和肺血管重塑[46]。其中缺氧環境下ROS的積累和釋放以及第二信使H2O2的減少,會導致HIF-1α激活,抑制氧敏感Kv通道的表達,促進PASMCs的增殖與凋亡失衡,導致PAH的發生[14]。線粒體在缺氧性PAH的產生中仍起著關鍵作用。其具體機制為:NADH脫氫酶(泛醌)1α亞復合物4樣2[NADH dehydrogenase (ubiquinone) 1α subcomplex 4 like 2, NDUFA4L2]作為電子傳遞鏈復合物I亞基的一部分,通過調節上游HIF-1α和下游p38-5-脂氧合酶(5-lipoxygenase, 5-LO)信號促進PASMCs的增殖,從而促進肺血管重塑,誘導PAH[47]。
另有研究報道,黏附受體CD146和HIF-1α交叉調節是血管重塑和PAH發病的關鍵因素,PASMCs中CD146-HIF-1α軸的破壞會削弱肺血管重塑,這揭示了血管重塑過程中的缺氧重編程[48]。
3.2PPARα和PDK調節HAHD心臟的能量代謝PPARα和PDK作為調節HAHD心臟能量代謝的關鍵受體和激酶,二者的異常均可引發能量代謝紊亂,從而加速HAHD的發生發展。
3.2.1PPARα介導HAHD心臟能量代謝轉換Narravula等[49]報道,缺氧心肌細胞的調控與PPARα和PPARγ有關,PPARα的下調可能是心肌細胞缺氧期間的適應性反應。反之,PPARγ的激活促進了缺氧大鼠心臟心房鈉尿肽的分泌[40, 50],并將能量代謝的途徑向糖酵解的方向進行重編程[51],而其中PPARα可能是HAHD發生發展的核心受體。
研究表明,微小RNA(microRNA, miRNA, miR)、Krüppel樣因子5(Krüppel-like factor 5, KLF5)等可通過抑制PPARα發揮調控心臟能量代謝的作用[52]。miR-148a與miR-17-5p協同抑制PPARα,降低脂肪酸代謝[53]。miR-21也能有效降低的表達,抑制脂肪酸氧化[54],導致代謝轉換至糖酵解,促進心肌細胞結構和功能的慢性重塑,最終發展為HAHD。此外,Drosatos等[31]報道,KLF5是心臟的正轉錄調節因子,其抑制導致心臟脂肪酸氧化減少和甘油三酯積累增加,從而導致心臟功能障礙。
SIRT3是一種定位于線粒體的NAD+依賴性蛋白質賴氨酸脫乙酰酶,在高海拔地區因線粒體功能變化而降低,進而降低三羧酸循環和ATP的生成[55-56]。SIRT3和PPARα都是HAHD線粒體穩態的關鍵調節因子。體內和體外研究表明,PPARα是SIRT3的上游轉錄調控因子[57]。Zong等[58]通過染色質免疫沉淀和螢光素酶實驗也進一步證明了SIRT3是PPARα的直接下游靶點。總之,PPARα可能通過SIRT3進一步促進了HAHD心臟的能量代謝轉換。
3.2.2HIF-1α通過PDK介導HAHD心衰的發生發展心衰是HAHD發展的最終結果。右心衰患者HIF-1α直接激活編碼PDK1的基因,促使PDH失活,抑制三羧酸循環介導心肌代謝向糖酵解轉變[59],從而損害右心室功能[60]。但并非所有的結論存在一致性,Piao等[60]檢測到心臟亞型PDK2和PDK4的上調,而PDK1和PDK3不變,認為轉錄因子FOXO1介導了PDK4激活,而抑制PDK可改善右心室功能和運動能力。最后,我們總結和梳理了HAHD中與能量代謝紊亂相關的信號通路,詳見圖1。

Figure 1. The signaling pathways of energy metabolism disorder in high-altitude heart disease (HAHD). HAHD is characterized by pulmonary arterial hypertension (PAH) and right ventricular hypertrophy (RVH). As the principal cause of PAH, excessive proliferation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs) based on hypoxia-inducible factor 1α (HIF-1α) is induced by activation of several signaling pathways, such as interleukin-33 (IL-33)/ST2 (IL-33 receptor)-HIF-1α-vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS)-HIF-1α-voltage-gated potassium channels (Kv). Morover, peroxisome proliferator-activated receptor α (PPARα) inhibition and pyruvate dehydrogenase kinase (PDK) activation promote the development of RVH.
基于上述對HAHD發生發展的機制探討,相關激動劑和抑制劑的研究開始趨向于通過調節能量代謝來改善HAHD。
4.1PDK抑制劑二氯乙酸鹽(dichloroacetate, DCA)作為PDK的抑制劑,可激活線粒體酶PDH(葡萄糖氧化的守門酶),逆轉慢性缺氧性PAH,提高線粒體功能。這種表觀遺傳的線粒體代謝途徑是一個潛在的抗纖維化治療靶點[61]。線粒體異常中的Kv通道功能障礙的逆轉也可以通過PDK抑制劑DCA與肺血管重塑的消退相關聯來實現[14]。重要的是,DCA可抑制FOXO1誘導的PDK4上調并恢復心輸出量,從而減輕PVH[60]。
4.2PPARα/γ激動劑PPARα和PPARγ激動劑已被宣稱可用于治療代謝性疾病和心血管疾?。?2-63],其中PPARα是治療血脂異常和相關心血管并發癥的理想靶點[64]。神奇的是PPARγ激動劑吡格列酮的口服治療完全逆轉了實驗性大鼠的PAH和血管重塑,有效改善了心室的結構和功能,抑制了右心衰[65]。但是它們對心肌的直接作用也有可能導致心臟功能惡化[66]。所以研發比現有PPARα/γ激動劑更高激動活性和選擇性的激動劑,可作為治療HAHD患者的潛在藥物。
綜上所述,HIF-1α通過增加PDK和PFKFB3的表達促進PAECs的糖酵解和過度增殖;通過抑制Kv通道和增加NDUFA4L2的表達導致PASMCs的增殖與凋亡失衡,進一步促進PAH的發生發展。PPARα作為HAHD發生發展的核心受體,可通過miRNA、KLF5和SIRT3等調節因子調控心臟能量代謝向糖酵解的方向進行重編程,而由HIF-1α和FOXO1激活的PDK更是加速了HAHD心衰的發生。上述研究表明阻斷能量代謝紊亂中的相關通路可作為開發治療HAHD藥物的重要基石,其中具有高選擇性和敏感性的新型PDK抑制劑和PPARs激動劑有可能成為具有前景的治療HAHD的新藥物。
[1] Xie ZZ, Liu FY, Wang SJ, et al. Preventive and therapeutic effects of nitrendipine on hypoxic right ventricular hypertrophy[J]. Acta Pharmacol Sin, 1996, 17(4):337-340.
[2] Soria R, Egger M, Scherrer U, et al. Pulmonary arterial pressure at rest and during exercise in chronic mountain sickness: a meta-analysis[J]. Eur Respir J, 2019, 53(6):1802040.
[3] Wagner PD, Wagner HE, Groves BM, et al. Hemoglobin P50during a simulated ascent of Mt. Everest, Operation Everest II[J]. High Alt Med Biol, 2007, 8(1):32-42.
[4] Grünig E, Mereles D, Hildebrandt W, et al. Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema[J]. J Am Coll Cardiol, 2000, 35(4):980-987.
[5] Ma TT, Wang Y, Zhou XL, et al. Research on rat models of hypobaric hypoxia-induced pulmonary hypertension[J]. Eur Rev Med Pharmacol Sci, 2015, 19(19):3723-3730.
[6] Oswald-Mammosser M, Weitzenblum E, Quoix E, et al. Prognostic factors in COPD patients receiving long-term oxygen therapy. Importance of pulmonary artery pressure[J]. Chest, 1995, 107(5):1193-1198.
[7] Hakim TS, Michel RP, Minami H, et al. Site of pulmonary hypoxic vasoconstriction studied with arterial and venous occlusion[J]. J Appl Physiol Respir Environ Exerc Physiol, 1983, 54(5):1298-1302.
[8] Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness[J]. Circulation, 2007, 115(9):1132-1146.
[9] Naeije R. Physiological adaptation of the cardiovascular system to high altitude[J]. Prog Cardiovasc Dis, 2010, 52(6):456-466.
[10] Pratali L, Allemann Y, Rimoldi SF, et al. RV contractility and exercise-induced pulmonary hypertension in chronic mountain sickness: a stress echocardiographic and tissue Doppler imaging study[J]. JACC Cardiovasc Imaging, 2013, 6(12):1287-1297.
[11] Li X, Zhang Q, Nasser MI, et al. Oxygen homeostasis and cardiovascular disease: a role for HIF?[J]. Biomed Pharmacother, 2020, 128:110338.
[12] Dewachter L, Dewachter C. Inflammation in right ventricular failure: does it matter?[J]. Front Physiol, 2018, 9:1056.
[13] Tham YK, Bernardo BC, Ooi JY, et al. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets[J]. Arch Toxicol, 2015, 89(9):1401-1438.
[14] Bonnet S, Michelakis ED, Porter CJ, et al. An abnormal mitochondrial-hypoxia inducible factor-1α-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension[J]. Circulation, 2006, 113(22):2630-2641.
[15] Eddahibi S, Morrell N, d'Ortho MP, et al. Pathobiology of pulmonary arterial hypertension[J]. Eur Respir J, 2002, 20(6):1559-1572.
[16] Xu W, Koeck T, Lara AR, et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells[J]. Proc Natl Acad Sci U S A, 2007, 104(4):1342-1347.
[17] Plecitá-Hlavatá L, Tauber J, Li M, et al. Constitutive reprogramming of fibroblast mitochondrial metabolism in pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2016, 55(1):47-57.
[18] Michelakis ED, Gurtu V, Webster L, et al. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients[J]. Sci Transl Med, 2017, 9(413):eaao4583.
[19] Marsboom G, Wietholt C, Haney CR, et al. Lung 1?F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2012, 185(6):670-679.
[20] Cao Y, Zhang X, Wang L, et al. PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension[J]. Proc Natl Acad Sci U S A, 2019, 116(27):13394-13403.
[21] Mulukutla BC, Yongky A, Le T, et al. Regulation of glucose metabolism-aperspective from cell bioprocessing[J]. Trends Biotechnol, 2016, 34(8):638-651.
[22] Michelakis ED, Hampl V, Nsair A, et al. Diversity in mitochondrial function explains differences in vascular oxygen sensing[J]. Circ Res, 2002, 90(12):1307-1315.
[23] Archer SL, Wu XC, Thébaud B, et al. Preferential expression and function of voltage-gated, O2-sensitive K+channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells[J]. Circ Res, 2004, 95(3):308-318.
[24] Archer SL, Souil E, Dinh-Xuan AT, et al. Molecular identification of the role of voltage-gated K+channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes[J]. J Clin Invest, 1998, 101(11):2319-2330.
[25] Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension[J]. J Clin Invest, 2012, 122(12):4306-4313.
[26] Prathapan A, Varghese MV, Abhilash S, et al. Polyphenol rich ethanolic extract fromL. mitigates angiotensin II induced cardiac hypertrophy and fibrosis in rats[J]. Biomed Pharmacother, 2017, 87:427-436.
[27] Wu D, Dasgupta A, Read AD, et al. Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer[J]. Free Radic Biol Med, 2021, 170:150-178.
[28] Murray AJ,Montgomery HE, Feelisch M, et al. Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications[J]. Biochem Soc Trans, 2018, 46(3):599-607.
[29] Adrogue JV, Sharma S, Ngumbela K, et al. Acclimatization to chronic hypobaric hypoxia is associated with a differential transcriptional profile between the right and left ventricle[J]. Mol Cell Biochem, 2005, 278(1/2):71-78.
[30] Murray AJ. Energy metabolism and the high-altitude environment[J]. Exp Physiol, 2016, 101(1):23-27.
[31] Drosatos K, Pollak NM, Pol CJ, et al. Cardiac myocyte KLF5 regulatesexpression and cardiac function[J]. Circ Res, 2016, 118(2):241-253.
[32] Yang J, Liu C, Jihang Z, et al.genetic variants increase the risk for cardiac pumping function reductions following acute high-altitude exposure: a self-controlled study[J]. Mol Genet Genomic Med, 2019, 7(10):e00919.
[33] Yan J, Song K, Bai Z, et al. WY14643 improves left ventricular myocardial mitochondrial and systolic functions in obese rats under chronic persistent hypoxia via the PPARα pathway[J]. Life Sci, 2021, 266:118888.
[34] Horscroft JA, Kotwica AO, Laner V, et al. Metabolic basis to Sherpa altitude adaptation[J]. Proc Natl Acad Sci U S A, 2017, 114(24):6382-6387.
[35] Luptak I, Balschi JA,Xing Y, et al. Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-α-null hearts can be rescued by increasing glucose transport and utilization[J]. Circulation, 2005, 112(15):2339-2346.
[36] Watanabe K, Fujii H, Takahashi T, et al. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor α associated with age-dependent cardiac toxicity[J]. J Biol Chem, 2000, 275(29):22293-22299.
[37] Duan SZ, Ivashchenko CY, Russell MW, et al. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-γ both induce cardiac hypertrophy in mice[J]. Circ Res, 2005, 97(4):372-379.
[38] Liu XL, Zhang FL, Zhou ZY, et al. Analysis of two sequence variants in peroxisome proliferator activated receptor γ gene in Tajik population at high altitudes and Han population at low altitudes in China[J]. Mol Biol Rep, 2010, 37(1):179-184.
[39] Krishnan J, Suter M, Windak R, et al. Activation of a HIF1α-PPARγ axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy[J]. Cell Metab, 2009, 9(6):512-524.
[40] Yu L, Li W, Park BM, et al. Hypoxia augments NaHS-induced ANP secretion via KATPchannel, HIF-1α and PPAR-γ pathway[J]. Peptides, 2019, 121:170123.
[41] Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress[J]. Mol Cell, 2010, 40(2):294-309.
[42] Cerychova R, Pavlinkova G. HIF-1, metabolism, and diabetes in the embryonic and adult heart[J]. Front Endocrinol (Lausanne), 2018, 9:460.
[43] Wei L, Zhang L, Yang L, et al. Protective effect of mesenchymal stem cells on isolated islets survival and against hypoxia associated with the HIF-1α/PFKFB3 pathway[J]. Cell Transplant, 2022, 31:9636897211073127.
[44] Liu J, Wang W, Wang L, et al. IL-33 initiates vascular remodelling in hypoxic pulmonary hypertension by up-regulating HIF-1α and VEGF expression in vascular endothelial cells[J]. EBioMedicine, 2018, 33:196-210.
[45] Kumar R, Graham B. IL-33-HIF1α axis inhypoxic pulmonary hypertension[J]. EBioMedicine, 2018, 33:8-9.
[46] Wilkins MR, Ghofrani HA, Weissmann N, et al. Pathophysiology and treatment of high-altitude pulmonary vascular disease[J]. Circulation, 2015, 131(6):582-590.
[47] Liu Y, Nie X, Zhu J, et al. NDUFA4L2 in smooth muscle promotes vascular remodeling in hypoxic pulmonary arterial hypertension[J]. J Cell Mol Med, 2021, 25(2):1221-1237.
[48] Luo Y, Teng X, Zhang L, et al. CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension[J]. Nat Commun, 2019, 10(1):3551.
[49] Narravula S, Colgan S. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor α expression during hypoxia[J]. J Immunol, 2001, 166(12):7543-7548.
[50] Li X, Zhang Y, Zhang B, et al. HIF-1α-L-PGDS-PPARγ regulates hypoxia-induced ANP secretion in beating rat atria[J]. Prostaglandins Other Lipid Mediat, 2018, 134:38-46.
[51] Feng J, Dai W, Mao Y, et al. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis[J]. J Exp Clin Cancer Res, 2020, 39(1):24.
[52] Madrazo JA, Kelly DP. The PPAR trio: regulators of myocardial energy metabolism in health and disease[J]. J Mol Cell Cardiol, 2008, 44(6):968-975.
[53] Chen Z, Luo J, Sun S, et al. miR-148a and miR-17-5p synergistically regulate milk TAG synthesis viaandin goat mammary epithelial cells[J]. RNA Biol, 2017, 14(3):326-338.
[54] Chung KW, Lee EK, Lee MK, et al. Impairment of PPARα and the fatty acid oxidation pathway aggravates renal fibrosis duringaging[J]. J Am Soc Nephrol, 2018, 29(4):1223-1237.
[55] Murray AJ, Horscroft JA. Mitochondrial function at extreme high altitude[J]. J Physiol, 2016, 594(5):1137-1149.
[56] Dikalova AE, Pandey A, Xiao L, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress[J]. Circ Res, 2020, 126(4):439-452.
[57] Chen X, Wang Q, Shao M, et al. Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway[J]. Biomed Pharmacother, 2019, 120:109487.
[58] Zong X, Cheng K, Yin G, et al. SIRT3 is a downstream target of PPAR-α implicated in high glucose-induced cardiomyocyte injury in AC16 cells[J]. Exp Ther Med, 2020, 20(2):1261-1268.
[59] Piao L, Fang YH, Cadete VJ, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle[J]. J Mol Med (Berl), 2010, 88(1):47-60.
[60] Piao L, Sidhu VK, Fang YH, et al. FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate[J]. J Mol Med (Berl), 2013, 91(3):333-346.
[61] Tian L, Wu D, Dasgupta A, et al. Epigenetic metabolic reprogramming of right ventricular fibroblasts in pulmonary arterial hypertension: a pyruvate dehydrogenase kinase-dependent shift in mitochondrial metabolism promotes right ventricular fibrosis[J]. Circ Res, 2020, 126(12):1723-1745.
[62] Han L, Shen WJ, Bittner S, et al. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ[J]. Future Cardiol, 2017, 13(3):279-296.
[63] Takada I, Makishima M. Peroxisome proliferator-activated receptor agonists and antagonists: a patent review (2014-present)[J]. Expert Opin Ther Pat, 2020, 30(1):1-13.
[64] Han L, Shen WJ, Bittner S, et al. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α[J]. Future Cardiol, 2017, 13(3):259-278.
[65] Legchenko E, Chouvarine P, Borchert P, et al. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation[J]. Sci Transl Med, 2018, 10(438):eaao0303.
[66] Son NH, Park TS, Yamashita H, et al. Cardiomyocyte expression of PPARγ leads to cardiac dysfunction in mice[J]. J Clin Invest, 2007, 117(10):2791-2801.
Role of energy metabolism disorder in development of high-altitude heart disease
HAN Yi-wei, ZHANG Zhi-ying, HAO Mei-li, ZHANG Xiao-ying△
(,,,,712082,)
High-altitude heart disease (HAHD) is a chronic progressive disease characterized by pulmonary arterial hypertension (PAH) and right ventricular hypertrophy (RVH) or right heart dysfunction caused by low pressure and hypoxia. As the main pathological feature of HAHD, RVH can be caused by oxidative stress, inflammation, fibrosis, energy metabolism disorder and other mechanisms. Energy metabolism disorder, as one of the pathogenic factors of PAH and RVH, has attracted much attention in recent years. As transcriptional regulatory factors affecting energy metabolism, hypoxia-inducible factor 1α (HIF-1α) and peroxisome proliferator-activated receptor α (PPARα) are involved in the regulation of PDK, PFKFB3, Kv, NDUFA4L2, miRNAs, KLF5, SIRT3, FOXO1 and other factors to promote the development of HAHD. In this paper, we review the research progress of the role of HIF-1α and PPARα/γ in HAHD.
High-altitude heart disease; Pulmonary arterial hypertension; Right ventricular hypertrophy; Energy metabolism disorder; Hypoxia-inducible factor 1α; Peroxisome proliferator-activated receptors
R541.9; R363.2
A
10.3969/j.issn.1000-4718.2022.06.022
1000-4718(2022)06-1135-07
2021-10-29
2022-05-07
西藏自治區自然科學基金項目[No. XZ2018ZR G-85(Z)];陜西省教育廳專項科學研究計劃(No. 19JK0890);西藏民族大學重大項目培育計劃(No. 18MDZ03; No. 20MDT03);西藏自治區自然科學基金資助項目(No. XZ202001ZR0089G)
Tel: 029-33755247; E-mail: melani1983@126.com
(責任編輯:宋延君,羅森)