李佳明, 韓雅琪, 吳桐, 張天賜, 董賢慧
鐵死亡脂質過氧化機制及其與阿爾茨海默病的聯系*
李佳明, 韓雅琪, 吳桐, 張天賜, 董賢慧△
(河北中醫學院,河北省心腦血管病中醫藥防治研究重點實驗室,河北 石家莊 050091)
鐵死亡;脂質過氧化;阿爾茨海默?。欢嗖伙柡椭舅?/p>
阿爾茨海默?。ˋlzheimer disease, AD)是多發于65歲及以上老年人群的中樞神經系統退行性疾病,臨床表現以記憶、語言及其他認知能力衰退為主,主要病理特征為以β-淀粉樣蛋白(amyloid β-protein, Aβ)為核心成分的老年斑及tau蛋白過度磷酸化引起的神經原纖維纏結。在日益增強的老齡化趨勢下,由于AD發病機制尚不明確,臨床缺乏經濟有效的治療方法,AD正為患者及社會醫療保障領域帶來沉重負擔。以脂質過氧化為特征的鐵依賴性細胞死亡方式鐵死亡(ferroptosis)在近期被認為可能參與AD病變過程[1]。已有部分研究證實AD腦中出現鐵死亡關鍵蛋白表達上調,脂質過氧化物含量升高,且鐵死亡抑制劑對AD病變有抑制作用。在鐵死亡過程中,以多不飽和脂肪酸(polyunsaturated fatty acid, PUFA)為主要底物的脂質過氧化現象是細胞損傷及死亡過程的重要參與者,且該現象與AD腦功能障礙存在聯系。本文將綜述鐵死亡脂質過氧化過程與部分調控信號軸,并整理該過程與AD特征性病理過程的關系。
氧化還原穩態失衡是多種病理現象發生的重要機制。生理狀態下,氧化與抗氧化過程呈動態平衡狀態,維持體內功能正常運作。一旦平衡遭到破壞,抗氧化能力下降或氧化過程加劇,極易引發過氧化連鎖反應并導致活性氧積累,造成胞內脂質、蛋白質及核酸等成分被氧化破壞,嚴重影響細胞結構及功能。2012年,Dixon等[2]在前人研究成果的基礎上,將一種顯著區別于細胞凋亡、焦亡、自噬及壞死并能被鐵螯合劑所抑制的調節性細胞死亡方式命名為鐵死亡。鐵死亡形態學特征主要表現為線粒體體積縮小、膜密度增高、嵴顯著減少及細胞膜破裂;生化特征為鐵代謝異常、谷胱甘肽代謝紊亂、活性氧累積及脂質過氧化,其中脂質過氧化是鐵死亡復雜機制網絡中的關鍵一環。鐵死亡中的脂質過氧化是細胞內脂質在過氧化酶或自由基作用下失去氫原子,導致碳鏈氧化、斷裂及縮短,脂質自由基、脂質氫過氧化物及丙二醛(malondialdehyde, MDA)、4-羥基壬烯醛(4-hydroxy-2-nonenal, 4-HNE)等過氧化中間產物生成,最終使脂質氧化降解,破壞細胞膜脂質雙分子層結構的過程[3]。該過程可大致分為含PUFA的磷脂底物合成、自由基引發的過氧化和酶誘導的過氧化3個部分,其中后二者可平行進行,生成磷脂氫過氧化物,引發鐵死亡。
1.1 底物合成過程 在鐵死亡過程中,脂質過氧化多在富含磷脂的膜結構中進行。參與膜磷脂合成的PUFA因其含有多個碳-碳雙鍵及較為脆弱的碳-氫鍵而對過氧化過程尤為敏感,其能在長鏈脂酰輔酶A合成酶4(acyl-CoA synthetase long-chain family member 4, ACSL4)參與下,生成PUFA-CoA,并由溶血磷脂酰基轉移酶3(lysophospholipid acyltransferase 3, LPCAT3)酯化后并入膜磷脂,形成鐵死亡脂質過氧化底物PUFA-PL,開啟下游過氧化反應。
上述過程中,ACSL4已被確認為鐵死亡標志物[4]。有關ACSL4的研究顯示,在多種PUFA中,已探明其對花生四烯酸(arachidonic acid, AA)及腎上腺素酸(adrenic acid, AdA)作用尤為顯著,其與膜磷脂中的磷脂酰乙醇胺(phosphatidylethanolamine, PE)結合后將作為酶促過氧化過程的特異性底物(AA/AdA-PE)[5]。ACSL4對不同種類PUFA的作用是否具有選擇性目前尚無定論。
1.2 自由基介導的過氧化過程 由大量自由基引發的PUFA-PL過氧化級聯反應可分為始動、傳播和終止三個階段。始動階段,胞內未以鐵蛋白或鐵硫簇形式儲存的不穩定鐵與過氧化氫發生芬頓反應(Fenton reaction)和哈伯-韋斯反應(Haber-Weiss reaction),形成以氧為中心的羥基自由基與過氧自由基。傳播階段,上述自由基攻擊PUFA-PL,使其脫去一個氫原子,形成磷脂自由基(PL·);該自由基與氧發生反應,生成磷脂過氧自由基(PLOO·);PLOO·與PUFA-PL中的另一個氫原子結合,生成磷脂氫過氧化物(PUFA-PL-OOH)與另一個PL·,引發過氧化循環。終止階段,在抗氧化系統失常背景下,過氧化底物被耗盡,級聯反應終止,并造成脂質體膜氧化破損及泄漏,嚴重損傷細胞膜[6]。
除終產物外,上述級聯反應過程中還可形成大量碳氫化合物、醇類及醛類中間產物。其中活性醛MDA及4-HNE具有細胞毒性,能異常修飾胞內磷脂、蛋白質及核酸構象,使細胞多項功能受損[7]。
1.3 酶介導的過氧化過程 脂氧合酶(lipoxygenases, LOXs)家族是開啟鐵死亡中酶促脂質過氧化過程的關鍵,其中15-LOX能與磷脂酰乙醇胺結合蛋白1(phosphatidyl ethanolamine-binding protein 1, PEBP1)結合,特異性將膜上的AA/AdA-PE氧化為AA/AdA-PE-OOH,引發鐵死亡。
除LOXs外,位于內質網的細胞色素P450還原酶(NADPH-cytochrome P450 reductase, POR)與細胞色素b5還原酶(NADH-cytochrome b5 reductase, CYB5R1)可通過電子傳遞形成大量過氧化氫,為自由基介導的過氧化反應啟動提供必要條件[8]。
對該過程的調節可從控制底物合成、靶向過氧化過程關鍵因子及干預過氧化物生成和積聚實現。研究較為深入的有以下3條信號軸,分別通過清除過氧化物、控制過氧化自由基生成及保護過氧化脂質底物干預鐵死亡,見圖1。除此之外,還有多種方式對鐵死亡脂質過氧化調控具有重要意義,將在下文簡述。

Figure 1. Lipid peroxidation process and regulating axes in ferroptosis. The red arrows represent the process of lipid peroxidation. The light brown hollow arrows represent glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis. The orange hollow arrows represent ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10) axis. The green hollow arrows represent GTP cyclohydrolase 1 (GCH1)/tetrahydrobiopterin (BH4) axis. The blue curved hollow arrow indicates that BH4 generate reduced CoQ10. The longitudinal black arrows represent other regulating processes of lipid peroxidation. The light blue letters represent key proteins in peroxidation-regulating processes. AA: arachidonic acid; ACC: acetyl coenzyme A carboxylase; ACSL3: acyl coenzyme A synthetase long-chain family member 3; ACSL4: acyl coenzyme A synthetase long-chain family member 4; AdA: adrenic acid; AMPK: AMP-activated protein kinase; CYB5R1: NADH-cytochrome b5 reductase; GCS: glutamyl cysteine synthetase; GSS: glutathione synthetase; LPCAT3: lysophosphatidylcholine acyltransferase 3; MDM2/X: MDM2/X proto-oncogene; MUFA: monounsaturated fatty acid; PE: phosphatidylethanolamine; PL: phospholipid; POR: cytochrome P450 oxidoreductase; PPARα: peroxisome proliferator-activated receptor α; PUFA: polyunsaturated fatty acid; YAP1: Yes-associated protein 1; 15-LOX: 15-lipoxygenase.
2.1 還原型谷胱甘肽(glutathione, GSH)/谷胱甘肽過氧化物酶4(glutathione peroxidase 4, GPX4)信號軸 GPX4相關代謝過程異常是較早被明確的鐵死亡發生機制,其上游調節路徑涉及谷胱甘肽代謝。GPX4是細胞中脂質過氧化物的主要還原劑,其可在GSH的協助下將PUFA-PL-OOH還原為羥基磷脂,抑制過氧化級聯反應。GSH是機體重要的抗氧化劑,由谷氨酸、半胱氨酸和甘氨酸合成。其中胞內的半胱氨酸主要由胱氨酸-谷氨酸反向轉運體(cystine/glutamate antiporter, system xC-)通過向胞外釋放等量谷氨酸攝入。上述關鍵因素共同組成GSH/GPX4信號軸,通過控制脂質過氧化產物生成干預鐵死亡。
靶向該信號軸中的關鍵因素可實現對鐵死亡脂質過氧化過程的調控。system xC-由輕鏈xCT()與重鏈4F2hc()兩個亞基組成,其中負責氨基酸轉運的xCT對system xC-的活性影響較大,實驗證實靶向可通過限制胱氨酸攝入減緩GSH的合成,影響GPX4對脂質過氧化物的還原能力,干預鐵死亡[9]。GSH合成過程中,谷氨酰半胱氨酸合成酶(glutamyl cysteine synthetase, GCS)與谷胱甘肽合成酶(glutathione synthetase, GSS)作為限速酶發揮作用,靶向GCS與GSS能夠干預GSH合成效率,影響細胞對過氧化反應的敏感度[10]。GPX4已是公認的鐵死亡調節靶點,除直接干預其活性外,通過抑制甲羥戊酸途徑中的代謝產物異戊烯焦磷酸合成,能夠干擾硒代半胱氨酸(selenium cysteine, Sec)-tRNA的成熟,進而抑制依賴Sec-tRNA吸附絲氨酸的硒蛋白GPX4的活性,降低機體對鐵死亡的抵抗力[11]。
2.2 鐵死亡抑制蛋白1(ferroptosis suppressor protein 1, FSP1)/輔酶Q10(coenzyme Q10, CoQ10)信號軸 FSP1于2019年被證實與CoQ10共同組成一條與GPX4途徑平行的鐵死亡調控途徑[12]。該信號軸滿足了機體在GPX4缺失時的抗氧化需求。有證據表明,FSP1在被豆蔻酰化修飾后表現出強大的鐵死亡調控能力,其表達上調可促進NAD(P)H依賴的CoQ10還原,使還原態CoQ10高效捕獲脂質過氧化自由基,打破鐵死亡脂質過氧化級聯反應。靶向FSP1及CoQ10可干預鐵死亡進程。據近期報道,FSP1水平可在癌基因及被抑制時上調,其具體機制與過氧化物酶體增殖物激活受體(peroxisome proliferator-activated receptor, PPAR)亞型PPARα有關[13]。上述兩種癌基因可能成為通過調節FSP1途徑影響鐵死亡脂質過氧化的靶點。甲羥戊酸途徑對于CoQ10的合成至關重要,調控該途徑可控制胞內CoQ10含量,干預脂質過氧化自由基清除過程[14]。
2.3 GTP環水解酶1(GTP cyclohydrolase 1, GCH1)/四氫生物蝶呤(tetrahydrobiopterin, BH4)信號軸 GCH1與BH4代謝過程在近期被證實可調控erastin誘導的鐵死亡脂質過氧化[15]。調節機體氧化應激的重要因子BH4在胞內通過合成與回收途徑生成,其合成途徑由關鍵酶GCH1催化開啟,回收途徑由二氫葉酸還原酶(dihydrofolate reductase, DHFR)介導[16]。據報道,GCH1過表達能夠選擇性保護具有兩條PUFA尾的膜磷脂,防止其發生過氧化;同時BH4可能通過干預苯丙氨酸向酪氨酸的轉化,影響CoQ10前體的合成,從而干預涉及CoQ10的脂質過氧化調控途徑[17]。
2.4 涉及底物合成及關鍵因子活性的其他調節方式 除上述調節信號軸外,不易發生過氧化的外源性單不飽和脂肪酸(monounsaturated fatty acid, MUFA)被長鏈脂酰輔酶A合成酶3(acyl-CoA synthetase long-chain family member 3, ACSL3)激活后,可抑制PUFA并入膜磷脂并減少脂質過氧化自由基生成[18]。PUFA氘化后在多種方式誘導的鐵死亡中顯示出較強的過氧化保護作用[19]。乙酰輔酶A羧化酶(acetyl-CoA carboxylase, ACC)可誘導細胞內總游離脂肪酸的積累,增加PUFA含量,為脂質過氧化提供充足底物[20]。AMP活化蛋白激酶(AMP-activated protein kinase, AMPK)在缺乏葡萄糖時被激活,可啟動能量壓力保護程序,阻斷PUFA的異常合成,抑制鐵死亡[21]。參與細胞增殖調控的Hippo-Yes相關蛋白1(Yes-associated protein 1,YAP1)信號通路在近期研究中被證實與鐵死亡存在聯系,實驗證明高密度排列的細胞對鐵死亡的抵抗力上升,其機制可能與YAP1蛋白靶向ACSL4活性有關[22]。對上述調節方式進一步探究有望完善鐵死亡脂質過氧化調控體系。
脂質是腦的重要組分,占大腦干重的40%~75%,髓鞘中可達80%,在能量代謝、信號傳導等方面發揮重要作用[23]。AD腦中高自由基水平環境易誘導脂質過氧化發生[24]。已有研究顯示,AD患者海馬總游離脂肪酸水平顯著降低,ACSL4水平顯著升高,在多個腦區可檢測到高濃度的游離MDA及4-HNE[25],且GPX4表達下調,為AD腦內確有鐵死亡脂質過氧化發生提供了證據。除此之外,AD多種標志性病理產物生成及積聚涉及鐵死亡脂質過氧化過程。該過程可能為AD發病的潛在機制。
3.1 鐵死亡脂質過氧化過程參與病理性Aβ積聚 腦內出現異常折疊并聚集的Aβ是AD標志性病理變化之一。目前多數觀點認為病理性Aβ由腦內神經元或外周器官細胞膜上的β-淀粉樣蛋白前體(amyloid β-protein precursor, APP)經β-和γ-分泌酶連續水解而成,其中非腦內形成的Aβ可通過血液循環進入腦組織[26]。Aβ在腦中以單體、寡聚體和纖絲體三種形式存在,其中Aβ寡聚體對AD影響顯著[27]。據報道,其能使實驗大鼠海馬的長時程增強受損,并異常激活小膠質細胞促炎表型和補體系統,誘發神經炎癥和突觸丟失[28]。
Aβ與鐵死亡脂質過氧化過程具有潛在聯系。實驗顯示,腦內富含Aβ寡聚體的區域4-HNE等脂質過氧化物水平顯著升高,提示Aβ富集可能涉及脂質過氧化[29]。Aβ寡聚體能夠嵌入脂質雙分子層,影響自由基合成過程中膜磷脂的脫氫效率,控制鐵死亡脂質過氧化非酶促過程的開啟[30]。影響FSP1表達的關鍵因子PPARα在近期被證實可降低部分APP表型的表達,抑制β-分泌酶1活性,減少Aβ寡聚體釋放[31]。CoQ10作為鐵死亡脂質過氧化通路中重要的抗氧化劑,已被證實可降低AD模型小鼠大腦皮層和海馬中的Aβ水平[32]。可知AD重要病理產物Aβ與鐵死亡脂質過氧化過程間可能相互影響,具體作用機制尚需研究。
3.2 鐵死亡脂質過氧化過程參與tau蛋白過度磷酸化 微管相關蛋白tau過度磷酸化并引發神經原纖維纏結是AD重要的病理標志。已知tau蛋白具有大量易被磷酸化的絲氨酸/蘇氨酸及酪氨酸殘基[33]。當促進其磷酸化的蛋白激酶與抑制該過程的磷酸酶活性失衡時,將使tau蛋白過度磷酸化,暴露內部微管結合域,增強tau蛋白聚集能力并誘導神經原纖維纏結形成[34]。修飾、聚集后的tau蛋白可引起微管變形退化,使神經細胞物質及信息轉運功能受損,嚴重時可導致其功能喪失[35]。
異常磷酸化的tau蛋白與鐵死亡脂質過氧化過程存在一定關聯。據報道,老年AD模型小鼠腦內膜質筏中能夠觀測到磷酸化tau蛋白沉積[36],且部分PUFA能促進tau蛋白構象改變及聚合[37],提示脂質可能參與tau蛋白病變。磷酸化tau蛋白已被證實能夠與細胞膜脂質雙分子層結合,并與膜磷脂相互作用形成具有細胞毒性的tau-磷脂復合物,但二者間具體作用機制未明[38]。研究顯示,鐵死亡脂質過氧化過程關鍵調控因子AMPK表達上調除能夠抑制磷脂合成外,對磷酸化tau蛋白同樣有抑制作用[39],二者間可能存在聯系,其機理是否與tau-磷脂復合物相關需進一步探索。
3.3 載脂蛋白E(apolipoprotein E, ApoE)通過鐵死亡脂質過氧化過程參與AD進展 AD風險因素ApoE是調節中樞神經系統脂質代謝的關鍵蛋白,參與膽固醇跨細胞運輸。已有證據表明ApoE通過抑制膽固醇合成途徑的關鍵酶,積累大量膽固醇合成前體乙酰輔酶A。而乙酰輔酶A同樣作為PUFA合成前體發揮作用[40]。ApoE上調可能加速胞內PUFA積累,為脂質過氧化及鐵死亡發生提供適宜環境。神經膠質細胞功能異常被認為是AD淀粉樣蛋白積累及突觸缺失的原因之一。近期研究顯示隨年齡增長,神經膠質細胞內出現大量脂滴積聚,且其修剪突觸功能可受等位基因調控。可知神經膠質細胞內出現脂質代謝異常,其機制可能同樣涉及ApoE[41]。
針對Aβ的藥物aducanumab、gantenerumab、BAN2401及小分子口服藥物ALZ-801已于2021年上市。此類藥物雖可清除AD腦中的Aβ寡聚體,但具體療效尚缺乏有效臨床數據支持[42]。AD發病機制復雜,單一靶點干預難以取得滿意療效。多靶點干預鐵死亡脂質過氧化過程治療AD是值得探索的方向,已有部分研究取得進展。新型脂酸-煙酸二聚體N2L可減少多種脂質過氧化物生成[43];四羥基二苯乙烯苷(tetrahydroxy stilbene glycoside, TSG)能激活GSH/GPX4信號軸,增強抗氧化系統活性[44];非西?。╢isetin)衍生物CMS121可清除4-HNE等過氧化中間產物,緩解認知能力下降[45]。中藥復方天麻鉤藤飲可通過干預15-LOX,降低機體對神經退行性疾病的易感性[46];中藥復方開心散能通過調節AA代謝和鞘脂代謝減緩脂質過氧化程度,改善認知能力[47]。從上述研究進展可知,通過鐵死亡脂質過氧化過程干預AD可行,調控過氧化關鍵途徑是AD藥物研發的有效思路。
淀粉樣蛋白級聯假說已在AD發病機制領域占據重要地位多年,但靶向該假說關鍵病理產物的藥物療效模糊。隨著鐵死亡研究不斷深化,越來越多證據表明AD發生發展涉及鐵死亡與氧化應激。鐵死亡作為以脂質過氧化物為執行者的細胞死亡方式,其脂質過氧化過程被多項研究證實參與AD腦內病變。鐵死亡脂質過氧化過程是極具潛力的AD發病機制研究方向,但目前對該過程認知仍不夠明確,難以確定發生過氧化的具體脂質類型,以及酶促與非酶促過氧化之間是否存在關聯、是否有其他關鍵酶參與等。隨著腦脂質組學及對鐵死亡認知的發展,完善AD病變與鐵死亡脂質過氧化機制之間的具體聯系,建立AD調控網絡是未來明確AD發病機制、研制特效藥物的新方向。
[1] Ashraf A, Jeandriens J, Parkes HG, et al. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer's disease: evidence of ferroptosis[J]. Redox Biol, 2020, 32:101494.
[2] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072.
[3] Ayala A, Mu?oz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal[J]. Oxid Med Cell Longev, 2014, 2014:360438.
[4] Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1):91-98.
[5] Kagan VE,Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1):81-90.
[6] Hadian K, Stockwell BR. SnapShot: ferroptosis[J]. Cell, 2020,181(5):1188.
[7] Kiyuna LA, Albuquerque RPE, Chen CH, et al. Targeting mitochondrial dysfunction and oxidative stress in heart failure: challenges and opportunities[J]. Free Radic Biol Med, 2018, 129:155-168.
[8] Yan B, Ai Y, Sun Q, et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J]. Mol Cell, 2021, 81(2):355-369.
[9] Qiang Z, Dong H, Xia Y, et al. Nrf2 and STAT3 alleviates ferroptosis-mediated IIR-ALI by regulating SLC7A11[J]. Oxid Med Cell Longev, 2020, 2020:5146982.
[10] Ikawa T, Sato M,Oh-Hashi K, et al. Oxindole-curcumin hybrid compound enhances the transcription of γ-glutamylcysteine ligase[J]. Eur J Pharmacol, 2021, 896:173898.
[11] Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer[J]. Cancer Cell, 2019, 35(6):830-849.
[12] Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784):693-698.
[13] Venkatesh D, O'Brien NA, Zandkarimi F, et al. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling[J]. Genes Dev, 2020, 34(7/8):526-543.
[14] Zaleski AL, Taylor BA, Thompson PD. Coenzyme Q10 as treatment for statin-associated muscle symptoms: a good idea, but…[J]. Adv Nutr, 2018, 9(4):519S-523S.
[15] Hu Q, Wei W, Wu D, et al. Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis[J]. Front Cell Dev Biol, 2022, 10:810327.
[16] Lee I, Kim S, Nagar H, et al. CR6-interacting factor 1 deficiency reduces endothelial nitric oxide synthase activity by inhibiting biosynthesis of tetrahydrobiopterin[J]. Sci Rep, 2020, 10(1):842.
[17] Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6(1):41-53.
[18] Magtanong L, Ko PJ, To M, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state[J]. Cell Chem Biol, 2019, 26(3):420-432.
[19] Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci U S A, 2016, 113(34):E4966-E4975.
[20] Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5):280-296.
[21] Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2):225-234.
[22] Qin Y, Pei Z, Feng Z, et al. Oncogenic activation of YAP signaling sensitizes ferroptosis of hepatocellular carcinoma via ALOXE3-mediated lipid peroxidation accumulation[J]. Front Cell Dev Biol, 2021, 9:751593.
[23] Gonzalez-Riano C, Garcia A, Barbas C. Metabolomics studies in brain tissue: a review[J]. J Pharm Biomed Anal, 2016, 130:141-168.
[24] Niki E. Lipid oxidation that is, and is not, inhibited by vitamin E: consideration about physiological functions of vitamin E[J]. Free Radic Biol Med, 2021, 176:1-15.
[25] Dare LR, Garcia A, Soares CB, et al. The reversal of memory deficits in an Alzheimer's disease model using physical and cognitive exercise[J]. Front Behav Neurosci, 2020, 14:152.
[26] Wang J, Gu BJ, Masters CL, et al. A systemic view of Alzheimer disease-insights from amyloid-β metabolism beyond the brain[J]. Nat Rev Neurol, 2017, 13(10):612-623.
[27] Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years[J]. EMBO Mol Med, 2016, 8(6):595-608.
[28] 張赫,鄭焱. β淀粉樣蛋白級聯假說相關的阿爾茨海默病發病機制及防治策略研究進展[J]. 中國醫學科學院學報, 2019, 41(5):702-708.
Zhang H, Zheng Y. β Amyloid hypothesis in Alzheimer's disease: pathogenesis, prevention, and management[J]. Acta Acad Med Sin, 2019, 41(5):702-708.
[29] Butterfield DA, Boyd-Kimball D. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer's disease[J]. J Alzheimers Dis, 2018, 62(3):1345-1367.
[30] García-Vi?uales S, Sciacca MFM, Lanza V, et al. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's disease: risk factors and therapeutic opportunities[J]. Chem Phys Lipids, 2021,236:105072.
[31] Zhang H, Gao Y, Qiao PF, et al. PPAR-α agonist regulates amyloid-β generation via inhibiting BACE-1 activity in human neuroblastoma SH-SY5Y cells transfected with APPswe gene[J]. Mol Cell Biochem, 2015, 408(1/2):37-46.
[32] Plascencia-Villa G, Perry G. Preventive and therapeutic strategies in Alzheimer's disease: focus on oxidative stress, redox metals, and ferroptosis[J]. Antioxid Redox Signal, 2021, 34(8):591-610.
[33] Wegmann S, Biernat J, Mandelkow E. A current view on tau protein phosphorylation in Alzheimer's disease[J]. Curr Opin Neurobiol, 2021, 69:131-138.
[34] 周艷,儲丹丹. 阿爾茨海默病中tau蛋白的病理改變與治療策略[J]. 南通大學學報(醫學版), 2021, 41(3):245-250.
Zhou Y, Chu DD. Pathological changes and therapeutic strategies of tau protein in Alzheimer's disease[J]. J Nantong Univ (Med Sci), 2021, 41(3):245-250.
[35] DeVos SL, Miller RL, Schoch KM, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy[J]. Sci Transl Med, 2017, 9(374):eaag0481.
[36] Kawarabayashi T, Shoji M, Younkin LH, et al. Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer's disease[J]. J Neurosci, 2004, 24(15):3801-3809.
[37] King ME, Gamblin TC, Kuret J, et al. Differential assembly of human tau isoforms in the presence of arachidonic acid[J]. J Neurochem, 2000, 74(4):1749-1757.
[38] Bok E, Leem E, Lee BR, et al. Role of the lipid membrane and membrane proteins in tau pathology[J]. Front Cell Dev Biol, 2021, 9:653815.
[39] Wang L, Li N, Shi FX, et al. Upregulation of AMPK ameliorates Alzheimer's disease-like tau pathology and memory impairment[J]. Mol Neurobiol, 2020, 57(8):3349-3361.
[40] Li X, Zhang J, Li D, et al. Astrocytic ApoE reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory[J]. Neuron, 2021, 109(6):957-970.
[41] Bartels T, De Schepper S, Hong S. Microglia modulate neurodegeneration in Alzheimer's and Parkinson's diseases[J]. Science, 2020, 370(6512):66-69.
[42] Tolar M, Abushakra S, Hey JA, et al. Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer's disease with potential for near term approval[J]. Alzheimers Res Ther, 2020, 12(1):95.
[43] Peng W, Zhu Z, Yang Y, et al. N2L, a novel lipoic acid-niacin dimer, attenuates ferroptosis and decreases lipid peroxidation in HT22 cells[J]. Brain Res Bull, 2021, 174:250-259.
[44] Gao Y, Li J, Wu Q, et al. Tetrahydroxy stilbene glycoside ameliorates Alzheimer's disease in APP/PS1 mice via glutathione peroxidase related ferroptosis[J]. Int Immunopharmacol, 2021, 99:108002.
[45] Ates G, Goldberg J, Currais A, et al. CMS121, a fatty acid synthase inhibitor, protects against excess lipid peroxidation and inflammation and alleviates cognitive loss in a transgenic mouse model of Alzheimer's disease[J]. Redox Biol, 2020, 36:101648.
[46] Jiang Y, Guo Y, Lu D, et al. Tianma gouteng granules decreases the susceptibility of Parkinson’s disease by inhibiting ALOX15-mediated lipid peroxidation[J]. J Ethnopharmacol, 2020, 256:112824.
[47] Gao H, Zhang A, Yu J, et al. High-throughput lipidomics characterize key lipid molecules as potential therapeutic targets of Kaixinsan protects against Alzheimer's disease in APP/PS1 transgenic mice[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1092:286-295.
Lipid peroxidation in ferroptosis and its relationship with Alzheimer disease
LI Jia-ming, HAN Ya-qi, WU Tong, ZHANG Tian-ci, DONG Xian-hui△
(,,050091,)
Lipid peroxidation is one of the commonest pathological processes of Alzheimer disease (AD) and a key player in a novel form of regulated cell death named ferroptosis. The products of lipid peroxidation are considered as executors of ferroptosis. Recent studies reveal that signature proteins of ferroptosis and products of lipid peroxidation accumulate in AD brains. Peroxidation process also involves amyloid β-protein deposition and pathological hyperphosphorylation of tau protein. Therefore, lipid peroxidation mechanism of ferroptosis might play a role in AD progression. This review summarizes the recent progress in lipid peroxidation mechanism and its regulated axis of ferroptosis, collating evidences of the relationship between lipid peroxidation and characteristic pathological processes of AD.
Ferroptosis; Lipid peroxidation; Alzheimer disease; Polyunsaturated fatty acid
R749.1+6; R363
A
10.3969/j.issn.1000-4718.2022.06.023
1000-4718(2022)06-1142-06
2022-03-21
2022-05-09
國家自然科學基金資助項目(No. 81803935);河北省自然科學基金資助項目(No. H2019423095);河北省中醫藥管理局課題(No. 2022085);河北省衛健委重點科技研究計劃(No. 20200129)
Tel: 0311-89926252; E-mail: dongxianhuitj@126.com
(責任編輯:宋延君,羅森)