999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

高低肌內脂肪豬背最長肌關鍵基因表達差異分析

2022-07-14 09:47:05譚婭李亮雷宇航黃志洋趙春萍張靜張正群齊婧朱礪史開志
南方農業學報 2022年4期

譚婭 李亮 雷宇航 黃志洋 趙春萍 張靜 張正群 齊婧 朱礪 史開志

摘要:【目的】篩選出高肌內脂肪(Intramuscular fat,IMF)沉積的關鍵基因并進行表達驗證,為揭示豬肌內脂肪沉積的分子調控機制提供理論依據。【方法】根據NCBI-GEO數據庫中高、低肌內脂肪巴克夏群體的轉錄組數據,利用DESeq2進行差異表達基因篩選(|log2 Fold Change|≥1,FDR<0.05),采用Metascape對差異表達基因進行功能富集分析,通過MCODE篩選及鑒定出高肌內脂沉積的關鍵基因,并采用實時熒光定量PCR在地方豬(柯樂豬)和外種豬(杜長大豬)上進行關鍵基因表達量驗證。【結果】從高、低肌內脂肪巴克夏群體6個文庫中共鑒定出7661個基因,高肌內脂肪群體樣本的脂質代謝相關基因總表達量顯著高于低肌內脂肪群體樣本(P<0.05,下同),其中差異表達基因有133個[110個上調(在高肌內脂肪群體高表達),23個下調(在低肌內脂肪群體高表達)]。上調差異表達基因主要富集于膠原蛋白綁定、細胞外基質組裝、脂肪酰輔酶A 生物合成過程、固醇代謝過程和脂質代謝調控過程等GO功能條目,以及脂肪乙酰輔酶A生物合成、ChREBP激活代謝基因、脂肪酸代謝等信號通路上;下調基因主要富集于線粒體組裝、多細胞生物學過程、輔酶綁定和缺氧反應等GO功能條目,以及基于NFKB的TNFA信號、白細胞介素4和白細胞介素13信號和干擾素信號等信號通路上。通過MCODE分析共篩選獲得5個關鍵基因,分別是SLC25A5、FN1、FASN、ACACA和PRKDC基因;挑選SCD、FASN和ACACA基因進行表達量驗證,結果發現這3個基因的相對表達量均表現為柯樂豬高于杜長大豬,其差異達顯著或極顯著(P<0.01)水平,進一步佐證SCD、FASN和ACACA基因在高肌內脂肪豬群體中高表達。【結論】在巴克夏豬高肌內脂肪群體中高表達的SCD、FASN和ACACA基因,在高肌內脂肪的柯樂豬中也呈顯著或極顯著高表達,因此這3個關鍵基因有望作為篩選和培育高肌內脂肪豬品種的分子標記,同時為研究肌內脂肪沉積的分子調控機制提供技術支撐。

關鍵詞: 豬;肌內脂肪;背最長肌;差異表達基因;脂肪沉積

中圖分類號: S828.1? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2022)04-0899-09

Expression difference analysis of hub genes between high and low intramuscular fat content in longissimus dorsi of pigs

TAN Ya1,2,3, LI Liang1,2, LEI Yu-hang2, HUANG Zhi-yang2, ZHAO Chun-ping1,3,? ZHANG Jing1,3, ZHANG Zheng-qun1, QI Jing1,3, ZHU Li2, SHI Kai-zhi1,3*

(1Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou? 550005, China; 2College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan? 611130, China;

3Guizhou Engineering Research Center of Local Pig Protection and Breeding, Guiyang, Guizhou? 550005, China)

Abstract:【Objective】To screen the hub genes of high intramuscular fat (IMF) deposition and to verify their expression, so as to provide a theoretical basis for revealing the molecular regulation mechanism of IMF deposition in pigs.【Method】Based on the transcriptome data of Berkshire pigs with high and low IMF in NCBI-GEO database, the differentially expressed genes (DEGs) were screened by DESeq2 (|log2 Fold Change|≥1, FDR< 0.05), the functional enrichment of DEGs were analyzed by Metascape. Meanwhile, MCODE were used to identify the key genes of high IMF deposition, real-time fluorescence quantitative PCR (qRT-PCR) was used to verify the expression of hub genes in indigenous pigs (Kole) and foreign pigs (DLY pigs). 【Result】7661 genes were identified from six libraries of Berkshire pigs with high and low IMF. The total expression of genes related to lipid metabolism in high IMF group was significantly higher than that in low IMF group (P<0.05, the same below). Additionally, the total number of DEGs in two groups was 133 [110 were up-regulated (high expression in high IMF) and 23 were down-regulated (high expression in low IMF)]. The up-regulated DEGs were mainly enriched in GO items such as collagen binding, extracellular matrix assembly, fatty acetyl-coA biosynthesis, sterol metabolism and lipid metabolism regulation, and in signaling pathways such as fatty acetyl-coA biosynthesis, CHREBP activated metabolic genes and fatty acid metabolism. Meanwhile, the down-regulated genes were mainly enriched in GO items such as mitochondrial assembly, multi-multicellular biological processes, coenzyme bin-ding and hypoxia response, and in signaling pathways such as TNFA signaling via NFKB, interleukin-4 and interleukin-13 signaling and signaling by interleukins. Five hub genes, SLC25A5, FN1, FASN, ACACA and PRKDC, were identified by MCODE analysis, and then SCD, FASN and ACACA were selected for expression verification. The results showed that the relative expression of these three genes were significantly higher in Kole pigs than that in DLY pigs (P<0.01), and it was further proved that SCD, FASN and ACACA were highly expressed in high IMF pigs. 【Conclusion】SCD, FASN and ACACA genes that highly expressed in the high IMF group of Berkshire pigs are also significantly or extremely highly expressed in Kole pigs with the high IMF. Therefore, these three hub genes may be used as molecular markers for selecting and breeding pigs with high IMF, and provide technical support for studying the molecular regulation mechanism of IMF deposition.

Key words: pig; intramuscular fat; longissimus dorsi; differentially expressed genes (DEGs); fat deposition

Foundation items: Guizhou Department of Science and Technology Plan Project (QKHZC〔2019〕2278, QKHFQ〔2018〕4007, QKHCG〔2020〕1Y027); Guizhou Academy of Agricultural Sciences and Technology Achievements Transformation Guidance Fund Project (QNKYKJCX〔2022〕01)

0 引言

【研究意義】脂肪是動物體內存儲能量的重要組織,脂質合成及沉積與動物體內營養物質的消化、吸收、代謝和能量周轉存在密切聯系(Yun et al.,2018)。脂肪沉積是豬生長的重要生物學過程,其中肌內脂肪(Intramuscular fat,IMF)是指位于肌纖維與肌束間的脂肪,其含量差異可促使肌肉呈現出不同程度的大理石花紋,同時影響肌肉的嫩度、多汁性、風味及脂肪酸含量等品質性狀(Damian et al.,2016;陳靜等,2021)。因此,肌內脂肪是評價肉品質的重要指標,解析其遺傳機制對科學開展肉質調控具有重要意義。【前人研究進展】隨著對西方豬種(杜洛克、大白豬及長白豬等)瘦肉率的高強度持續選育,外種豬的肌內脂肪已低于2%,但我國地方豬的肌內脂肪一般都高于3%(熊遠著,2000;李鵬和斯日吉楞,2010;張雄等,2019)。長期以來,通過提高肌內脂肪含量以改善豬肉品質是生豬產業面臨的著要問題之一,其分子調控機制也受到廣泛關注。肌內脂肪沉積同時受到動物遺傳背景、飼料、年齡等因素的影響(Katsumata,2011;Bosch et al.,2012;Pena et al.,2016;Malgwi et al.,2022),如通過蛋氨酸和賴氨酸限飼可顯著提高育肥豬的肌內脂肪含量(Palma-Granados et al.,2019;Wu et al.,2019),在飼糧中添加共軛亞油酸可有效提高肌內脂肪含量(Wang et al.,2021),但這些調節因子功能的發揮均是通過影響脂肪生成及脂肪分解過程中的關鍵基因來實現。目前,有關肌內脂肪沉積相關基因的研究報道較少。Cho等(2019)對西方豬種和韓國本地豬種背最長肌的肌內脂肪進行比較,鑒定出豬12號染色體上的MYH3基因是影響肌內脂肪沉積的因果基因,可通過啟動子上6-bp缺失的結構變異而抑制肌源性調節因子結合,進而促進肌內脂肪沉積。Huang等(2021)在我國地方豬、西方豬種及其雜交豬種上進行驗證,得出的研究結果均不支持 MYH3基因6-bp缺失與肌內脂肪間的因果關系,提示12號染色體上QTL的因果突變有待進一步探究。由于肌內脂肪屬于中等偏低的遺傳力性狀(h2=0.2),因此可通過合理的品種選育得到明顯改善與提高。【本研究切入點】分子標記輔助選擇(Marker-assisted selection,MAS)的誕生可實現從分子水平上快速準確地分析個體遺傳組成,從而實現對基因型的直接選擇,極大提高育種效率,最終加快對目的性狀的遺傳選擇進展。雖然目前關于豬肌內脂肪沉積的機制研究較多,但對于外種豬和地方豬的肌內脂肪沉積機制是否具有一致性尚無定論。【擬解決的關鍵問題】利用現有的NCBI-GEO數據庫資源,挖掘高肌內脂肪豬與低肌內脂肪豬的轉錄組差異,明確高、低肌內脂肪沉積的功能基因差異,篩選出高肌內脂肪沉積的關鍵基因并進行表達驗證,以期為揭示豬肌內脂肪沉積的分子調控機制提供理論依據。

1 材料與方法

1. 1 試驗動物及樣本采集

供試的地方豬(柯樂豬)和外種豬(杜長大)樣本分別來自貴州優農谷生態產業有限公司柯樂豬原種場和四川省某規模化豬場,各6頭,所有供試豬均按NY/T 65—2004《豬飼養標準》進行飼喂,飼喂至360日齡左右進行屠宰,采集背最長肌(最后肋骨處),液氮保存備用。

1. 2 轉錄組數據來源

轉錄組數據來源于GEO數據庫(登錄號GSE86086),豬品種為巴克夏,共6個樣本,高肌內脂肪群體(n=3)的肌內脂肪含量為(3.80±0.03)%,低肌內脂肪群體(n=3)的含量為(0.47±0.04)%(Lim et al.,2017)。

1. 3 數據分析

采用CPM(Counts per million)法校正基因表達水平,轉錄本表達量統計采用edgeR(Robinson et al.,2010),并根據 CPM 值分析樣本間的相關性。使用DESeq2篩選差異表達基因(Differentially expressed genes,DEGs)(Love et al.,2014;孫瑞萍等,2020),篩選標準為FDR<0.05 且|log2 Fold Change|>1。然后采用Metascape(https://metascape.org/gp/index.html#/main/step1)對差異表達基因進行功能注釋分析,并以超幾何分布(P<0.05)在分子特征數據庫(MSigDB)的KEGG、Reactome、GO和Hallmark等4個數據庫中進行信號通路富集分析。

1. 4 關鍵基因篩選

通過STRING構建差異表達基因編碼蛋白的相互作用網絡(Protein-protein interaction network,PPI),導入Cytoscape 3.9.0進行網絡可視化處理和子模塊篩選,再利用MCODE篩選及鑒定出關鍵基因(張斌等,2021)。

1. 5 基因表達驗證

采用實時熒光定量PCR驗證關鍵基因在地方豬和外種豬背最長肌中的表達情況。在NCBI中搜索關鍵基因的mRNA序列,通過Primer Premier 6.0設計實時熒光定量PCR擴增引物(表1),并以β-actin為內參基因。采用TRIzol法提取樣本總RNA,通過PrimeScriptTM RT reagent Kit with gDNA Eraser試劑盒(TaKaRa)反轉錄合成cDNA后,參照TB Green? PrimeScript? RT-PCR(TaKaRa)說明在CFX-96熒光定量 PCR 儀上進行實時熒光定量PCR檢測,擴增程序:95 ℃預變性 1 min;95 ℃ 5 s,退火30 s,72 ℃ 1 min,進行40個循環。每個樣本設3個重復,通過2-△△Ct法換算目的基因相對表達量。

1. 6 統計分析

采用Excel 2017和GraphPad Prism 7進行統計分析,并以雙尾非配對t檢驗進行差異顯著性分析。

2 結果與分析

2. 1 轉錄組數據特征分析結果

利用edgeR對基因的原始表達量進行CPM值計算,篩選出至少在1個文庫中CPM值大于0.5的基因進行分析,6個文庫共鑒定出7661個基因。對6個樣本[高肌內脂肪樣本(H1、H2和H3),低肌內脂肪樣本(L1、L2和L3)]的基因表達量進行相關分析,結果發現各生物學重復樣本間的相關性均高于不同組間的樣本(圖1-A)。同時,對表達量排名前1000的基因進行聚類分析,結果發現每個組內的3個生物學重復樣本均聚為一支(圖1-B)。

2. 2 脂質代謝相關基因表達分析結果

脂質代謝相關基因集來自MSigDB(https://www. gsea-msigdb.org/gsea/msigdb/index.jsp)的REACTOME_ metabolism of lipids(739個脂質代謝基因)和KEGG_fatty acid metabolism(39個脂肪酸酸代謝基因),共發現有199個脂質代謝相關基因在6個樣本中表達(圖2),其表達模式表現為高肌內脂肪群體樣本的脂質代謝相關基因總表達量顯著高于低肌內脂肪群體樣本(P<0.05,下同)。

2. 3 差異表達基因分析結果

利用DESeq2進行差異表達基因篩選(|log2 Fold Change|≥1,FDR<0.05),共篩選得到133個差異表達基因,其中110個上調、23個下調(圖3-A)。排名前5的上調差異表達基因分別是硬脂酸乙酰輔酶A去飽和酶(Stearoyl-coA desaturase)編碼基因(SCD)、脂肪酸合酶(Fatty acid synthase)編碼基因(FASN)、圍脂滴蛋白1(Perilipin 1)編碼基因(PLIN1)、CGMP依賴性蛋白激酶1(Protein kinase CGMP-dependent 1)編碼基因(PRKG1)和細胞死亡誘導DFFA樣效應蛋白C(Cell death inducing DFFA like effector C)編碼基因(CIDEC);排名前5的下調差異表達基因分別是NCAPD3(Non-SMC condensin II complex subunit D3)基因、ENSSSCG00000014565、C-C基序趨化因子配體2(C-C motif chemokine ligand 2)編碼基因(CCL2)、去乙酰化酶3(Sirtuin 3)編碼基因(SIRT3)和U3小核仁RNA相關蛋白25(UTP25 small subunit processor component)編碼基因(UTP25)。

2. 4 基因功能富集分析結果

利用Metascape對差異表達基因進行功能富集分析,結果顯示133個差異基因共富集到406條功能條目上。其中,上調差異表達基因(在高肌內脂肪群體高表達)主要富集于膠原蛋白綁定(Collagen bin-ding,P=3.98E-10)、細胞外基質組裝(Extracellular matrix organization,P=3.16E-09)、脂肪酰輔酶A生物合成過程(Fatty-acyl-CoA biosynthetic process,P=1.26E-08)、固醇代謝過程(Steroid metabolic process,P=1.58E-06)和脂質代謝調控過程(Regulation of lipid metabolic process,P=1.00E-05)等GO功能條目(圖4-A),以及脂肪乙酰輔酶A生物合成(Fatty acyl-CoA biosynthesis,P=3.16E-08)、ChREBP激活代謝基因(ChREBP activates metabolic gene expression,P=7.94E-07)、脂肪酸代謝(Fatty acid metabolism,P=6.31E-06)等信號通路(圖4-B)上;下調差異表達基因(在低肌內脂肪群體高表達)主要富集于線粒體組裝(Mitochondrion organization,P=2.51E-04)、多細胞生物學過程(Multi-multicellular organism process,P=2.51E-04)、輔酶綁定(Coenzyme binding,P=6.31E-04)和缺氧反應(Response to hypoxia,P=1.00E-03)等GO功能條目(圖4-A),以及基于NFKB的TNFA信號(HALLMARK TNFA SIGNALING VIA NFKB,P=3.98E-06)、白細胞介素4和白細胞介素13信號(Interleukin-4 and interleukin-13 signaling,P=3.16E-05)和干擾素信號(Signaling by interleukins,P=1.99E-03)等信號通路(圖4-B)上。

利用MCODE進行關鍵基因分析,共篩選獲得5個關鍵基因(圖5),分別是溶質載體家族25成員5(Solute carrier family 25 member 5,SLC25A5)、纖連蛋白1(Fibronectin 1)編碼基因(FN1)、脂肪酸合成酶(Fatty acid synthase)編碼基因(FASN)、乙酰輔酶A羧化酶α(Acetyl-CoA carboxylase alpha)編碼基因(ACACA)和DNA依賴性蛋白激酶催化亞基(Protein kinase,DNA-activated,catalytic subunit,PRKDC)。除SLC25A5基因呈下調表達外,其余4個關鍵基因均呈上調表達。

2. 5 關鍵基因表達驗證結果

綜合Gallardo等(2009)、Yang等(2013)、Crespo-Piazuelo等(2020)的研究結果,且收錄在豬QTLdb與肌內脂肪含量相關的基因數據庫中,挑選出FASN和ACACA基因進行實時熒光定量PCR驗證。此外,由于SCD基因的上調表達倍數變化最大,且其參與脂質代謝調控已在畜禽的相關研究中得到證實(Uemoto et al.,2012;Yokota et al.,2012;Henriquez-Rodriguez et al.,2016),故本研究選取SCD、FASN和ACACA基因進行表達驗證。背最長肌的肌內脂肪表型觀察結果(圖6-A)表明,柯樂豬的肌內脂肪含量顯著高于杜長大豬(8.46% vs 1.19%);實時熒光定量PCR驗證結果(圖6-C)顯示,SCD、FASN和ACACA基因的相對表達量均表現為柯樂豬高于杜長大豬,其差異達顯著或極顯著(P<0.01,下同)水平,與RNA-Seq測序結果(圖6-B)基本一致,即在背最長肌肌內脂肪表型差異明顯的柯樂豬與杜長大豬上SCD、FASN和ACACA基因表達差異極顯著。

3 討論

肌內脂肪是衡量豬肉質性狀的重要指標之一,其含量直接影響肉色、嫩度、大理石紋及滴水損失等,對豬肉的食用價值和營養價值有直接貢獻(Hocquette et al.,2010;Liu et al.,2021)。本研究對高、低肌內脂肪含量巴克夏豬的差異表達基因分析發現,上調基因Top5(在高肌內脂肪組中高表達排名前5)分別為SCD、FASN、PLIN1、PRKG1和CIDEC,其中,SCD和FASN基因在脂肪酸組成中的重要作用已被多項研究證實(Yokota et al.,2012;Maharani et al.,2013)。本研究通過MCODE其挖掘出5個關鍵基因,分別是SLC25A5、FN1、FASN、ACACA和PRKDC基因,綜合前人的相關研究結果(Gallardo et al.,2009;Yang et al.,2013;Crespo-Piazuelo et al.,2020),以及差異表達基因的RNA-Seq測序結果,重點討論SCD、FASN和ACACA基因與豬肉品質的調控關系。

SCD 基因編碼的硬脂酰輔酶A去飽和酶是一種內質網酶,在將飽和脂肪酸(Saturated fatty acids,SFA)轉化為單不飽和脂肪酸(Monounsaturated fatty acids,MUFA)的過程中發揮關鍵作用(Maharani et al.,2013)。MUFA被認為是對人類健康有益的一類脂肪酸,有助于降低低密度脂蛋白膽固醇含量。此外,SCD基因在脂肪組織和骨骼肌中高表達(Voss et al.,2005),是位于豬14號染色體上的脂肪沉積候選基因,其多態性研究已有較多報道。Uemoto等(2012)在SCD基因啟動子區鑒定出2個SNPs(g.-353C>T和g.-233T>C),并證實其單倍型與杜洛克豬群體的脂肪酸組成及脂肪熔點間存在顯著相關性。Maharani等(2013)為了評價SCD基因與950個韓國本地豬×長白豬F2雜交群體脂肪酸組成的關聯性,對SCD基因的6個SNPs(啟動子區的g.-353T>C和g.-233T>C;外顯子區的g.817C>T;3'-UTR區的g.13311C>G、g.14384g>A和g.14424C>T)進行基因型分析,結果發現F2雜交群體SCD基因與脂肪酸組成存在很強的關聯性。Lim等(2015)對巴克夏豬的研究表明,SCD基因3'-UTR區的c*2041T>C多態性會影響脂肪酸組成、脂肪沉積和大理石紋。Henriquez-Rodriguez等(2016)研究表明,對SCD基因T基因型(g.2228T>C)和LEPR基因C基因型(g.1987C>T)的聯合選擇可有效提高杜洛克豬MUFA/SFA比例。

FASN基因編碼脂肪酸合酶,其主要功能是在NADPH存在下催化乙酰輔酶A和丙二酰輔酶A合成棕櫚酸酯(C16:0)和硬脂酸酯(C18:0),進而生成長鏈飽和脂肪酸(Jensen-Urstad and Semenkovich,2012)。Grzes等(2016)研究發現,FASN基因有4個SNPs(c.-2908G>A、c.-2335C>T、c.*42_43insCCCCA和c.*264A>G)與背膘厚相關,其中c.-2335C>T多態性還影響杜洛克胸最長肌膽固醇水平和皮特蘭皮下脂肪組織多不飽和脂肪酸(PUFA)含量。Renaville等(2015)研究證實,FASN基因多態性顯著影響意大利系大豬的肉品質。Zappaterra等(2019)研究報道,FASN基因的c.265T>C多態性能顯著改變意大利系大白豬胸最長肌中硬脂酸、花生四烯酸、γ-亞麻酸和花生四烯酸的含量。PLIN1基因也與脂質功能相關,其編碼蛋白覆蓋在脂肪細胞中的脂滴上,從而保護脂肪細胞,直至被激素敏感的脂肪酶分解,因而在抑制脂肪分解過程中發揮重要作用(Beller et al.,2008;Li et al.,2020)。本研究結果表明,脂質代謝相關基因表達總量表現為高肌內脂肪群體樣本顯著高于低肌內脂肪群體樣本,且上調差異表達基因(在高肌內脂肪群體高表達)主要富集在脂質代謝相關的GO功能條目及信號通路上;利用MCODE進行關鍵基因分析,共篩選獲得5個關鍵基因(SLC25A5、FN1、FASN、ACACA和PRKDC),但至今尚無SLC25A5、FN1和PRKDC基因參與脂質代謝的研究報道,因此有待進一步探究其是否在脂質代謝過程發揮重要作用。

ACACA基因編碼的乙酰輔酶A羧化酶α是一種含有生物素的活性酶,能催化乙酰輔酶A羧化成丙二酰輔酶A,是脂肪酸合成的限速酶。Gallardo等(2009)研究表明,豬ACACA基因編碼區(CDS)存在2個SNPs(c.4899G>A和c.5196T>C),且這2個SNPs與胴體瘦肉含量、肌內脂肪含量及血清高密度脂蛋白膽固醇濃度密切相關。Stachowiak等(2013)對波蘭豬群體ACACA基因的分析結果表明,3'-UTR區2個SNPs(c.*99T>A 和 c.*195C>A)的突變會影響背膘厚和瘦肉率。本研究基于巴克夏豬的高、低肌內脂肪群體進行肌內脂肪數據分析,篩選出高肌內脂肪的關鍵基因有SCD、FASN和ACACA;在高肌內脂肪的柯樂豬和低肌內脂肪的杜長大豬群體內也發現這3個基因的表達趨勢與在外種豬巴克夏體內的一致。因此,SCD、FASN和ACACA基因可作為篩選和培育高肌內脂肪豬品種的分子標記,同時為研究肌內脂肪沉積的分子調控機制提供技術支撐。

4 結論

在巴克夏豬高肌內脂肪群體中高表達的SCD、FASN和ACACA基因,在高肌內脂肪的柯樂豬中也呈顯著或極顯著高表達,因此這3個關鍵基因可作為篩選和培育高肌內脂肪豬品種的分子標記,同時為研究肌內脂肪沉積的分子調控機制提供技術支撐。

參考文獻:

陳靜,尤瑞國,劉慧敏,楊國慶. 2021. 檸檬醛對小鼠生長性能、肌內脂肪含量及脂肪酸代謝酶的影響[J]. 河南農業大學學報,55(4):721-726. [Chen J,You R G,Liu H M,Yang G Q. 2021. Effects of citral on growth performance,intramuscular fat content and fatty acid metabolizing enzymes in mice[J]. Journal of Henan Agricultural University,55(4):721-726.] doi:10.16445/j.cnki.1000-2340.2021 0531.001.

李鵬,斯日古楞. 2010. 營養調控影響豬肌內脂肪沉積的研究進展[J]. 飼料廣角,(22):34-35. [Li P,Siriguleng. 2010. Research advances on influence of nutrition regulation in porcine intramuscular fat deposition[J]. Feed China,(22):34-35.] doi:10.3969/j.issn.1002-8358.2010.22.012.

孫瑞萍,王峰,晁哲,劉海隆,鄭心力,劉圈煒,黃麗麗,邢漫萍,魏立民. 2020. 1月齡五指山豬與長白豬骨骼肌mi-RNA轉錄組比較[J]. 江蘇農業學報,36(3):620-625. [Sun R P,Wang F,Chao Z,Liu H L,Zheng X L,Liu Q W,Huang L L,Xing M P,Wei L M. 2020. Comparative analysis on miRNA transcriptomes of skeletal muscle between one-month-old Wuzhishan pig and Landrace[J]. Jiangsu Journal of Agricultural Sciences,36(3):620-625.] doi:10.3969/j.issn.1000-4440.2020.03.013.

熊遠著. 2000. 瘦肉豬育種的發展及展望[J]. 中國工程科學,2(9):42-46. [Xiong Y Z. 2000. Development and prospects of lean-type swine breeding[J]. Engineering Science,2(9):42-46.] doi:10.3969/j.issn.1009-1742.2000.09.007

張斌,楊昕霞,袁志輝. 2021. 水稻響應熱脅迫核心基因的篩選與鑒定[J]. 江蘇農業學報,37(4):817-822. [Zhang B,Yang X X,Yuan Z H. 2021. Screening and identification of core genes responding to heat stress in rice[J]. Jiangsu Journal of Agricultural Sciences,37(4):817-822.] doi:10. 3969/j.issn.1000-4440.2021.04.001.

張雄,尚以順,史開志,張勇,黃波,韓雪,王婧. 2019. 從江香豬胴體及肉品質性狀研究[J]. 家畜生態學報,40(1):36-40. [Zhang X,Shang Y S,Shi K Z,Zhang Y,Huang B,Han X,Wang J. 2019. Study on carcass performance and meat quality of Congjiang pigs[J]. Acta Ecologae Animalis Domastici,40(1):36-40.] doi:10.3969/j.issn.1673-1182.2019.01.007.

Beller M,Sztalryd C,Southall N,Bell M,J?ckle H,Auld D S,Oliver B. 2008. COPI complex is a regulator of lipid homeostasis[J]. PLoS Biology,6(11):e292. doi:10.1371/journal.pbio.0060292.

Bosch L,Tor M,Reixach J,Estany J. 2012. Age-related changes in intramuscular and subcutaneous fat content and fatty acid composition in growing pigs using longitudinal data[J]. Meat Science,91(3):358-363. doi:10.1016/j.meatsci.2012.02.019.

Cho I C,Park H B,Ahn J S,Han S H,Lee J B,Lim H T,Yoo C K,Jung E J,Kim D H,Sun W S,Ramayo-Caldas Y,Kim S G,Kang Y J,Kim Y K,Shin H S,Seong P N,Hwang I S,Park B Y,Hwang S,Lee S S,Ryu Y C,Lee J H,Ko M S,Lee K,Andersson G,Pérez-Enciso M,Lee J W. 2019. A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs[J]. PLoS Genetics,15(10):e1008279.? doi:10.1371/journal.pgen.1008279.

Crespo-Piazuelo D,Criado-Mesas L,Revilla M,Castelló A,Noguera J L,Fernández A I,Ballester M,Folch J M. 2020. Identification of strong candidate genes for backfat and intramuscular fatty acid composition in three crosses based on the Iberian pig[J]. Scientific Reports,10(1):13962. doi:10.1038/s41598-020-70894-2.

Damian F,Seon-Tea J,Robyn W. 2016. Consumer acceptability of intramuscular fat[J]. Korean Journal for Food Scien-ce of Animal Resources,36(6):699-708. doi:10.5851/kosfa.2016.36.6.699.

Gallardo D,Quintanilla R,Varona L,Díaz I,Ramírez O,Pena R N,Amills M. 2009. Polymorphism of the pig acetyl-coenzyme A carboxylase alpha gene is associated with fatty acid composition in a Duroc commercial line[J]. Animal Genetics,40(4):410-417. doi:10.1111/j.1365-2052.2009. 01854.x.

Grzes M,Sadkowski S,Rzewuska K,Szydlowski M,Switonski M. 2016. Pig fatness in relation to FASN and INSIG2 genes polymorphism and their transcript level[J]. Mole-cular Biology Reports,43(5):381-389. doi:10.1007/s11033- 016-3969-z.

Henriquez-Rodriguez E,Bosch L,Tor M,Pena R N,Estany J. 2016. The effect of SCD and LEPR genetic polymorphisms on fat content and composition is maintained throughout fattening in Duroc pigs[J]. Meat Science,121:33-39. doi: 10.1016/j.meatsci.2016.05.012.

Hocquette J F,Gondret F,Baéza E,Médale F,Jurie C,Pe-thick D W. 2010. Intramuscular fat content in meat-produ-cing animals:Development,genetic and nutritional control,and identification of putative markers[J]. Animal:An International Journal of Animal Bioscience,4(2):303-319. doi:10.1017/S1751731109991091.

Huang C,Zhong L P,Zou X X,Huang Y Z,Cai L P,Ma J W. 2021. Evidence against the causal relationship between a putative cis-regulatory variant of MYH3 and intramuscular fat content in pigs[J]. Frontiers in Veterinary Science,8:672852. doi:10.3389/fvets.2021.672852.

Jensen-Urstad A P L,Semenkovich C F. 2012. Fatty acid synthase and liver triglyceride metabolism:Housekeeper or messenger[J]. Biochimica et Biophysica Acta,1821(5):747-753. doi:10.1016/j.bbalip.2011.09.017.

Katsumata M. 2011. Promotion of intramuscular fat accumulation in porcine muscle by nutritional regulation[J]. Animal Science Journal,82(1):17-25. doi:10.1111/j.1740-0929.2010.00844.x.

Li S J,Raza S H A,Zhao C P,Cheng G,Zan L S. 2020. Overexpression of PLIN1 promotes lipid metabolism in bovine adipocytes[J]. Animals:An Open Access Journal from MDPI,10(11):E1944. doi:10.3390/ani10111944.

Lim K S,Kim J M,Lee E A,Choe J H,Hong K C. 2015. A candidate single nucleotide polymorphism in the 3' untranslated region of stearoyl-CoA desaturase gene for fatness quality and the gene expression in Berkshire pigs[J]. Asian-Australasian Journal of Animal Sciences,28(2):151-157. doi:10.5713/ajas.14.0529.

Lim K S,Lee K T,Park J E,Chung W H,Jang G W,Choi B H,Hong K C,Kim T H. 2017. Identification of differentially expressed genes in longissimus muscle of pigs with high and low intramuscular fat content using RNA sequen-cing[J]. Animal Genetics,48(2):166-174. doi:10.1111/age.12518.

Liu J Q,Li J,Chen W T,Xie X T,Chu X G,Valencak T G,Wang Y Z,Shan T Z. 2021. Comprehensive evaluation of the metabolic effects of porcine CRTC3 overexpression on subcutaneous adipocytes with metabolomic and transcriptomic analyses[J]. Journal of Animal Science and Biotechnology,12(1):19. doi:10.1186/s40104-021-00546-6.

Love M I,Huber W,Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2[J]. Genome Biology,15(12):550. doi:10.1186/s13059-014-0550-8.

Maharani D,Park H B,Lee J B,Yoo C K,Lim H T,Han S H,Lee S S,Ko M S,Cho I C,Lee J H. 2013. Association of the gene encoding stearoyl-CoA desaturase (SCD) with fatty acid composition in an intercross population between Landrace and Korean native pigs[J]. Molecular Biology Reports,40(1):73-80. doi:10.1007/s11033-012-2014-0.

Malgwi I H,Halas V,Grünvald P,Schiavon S,Jócsák I. 2022. Genes related to fat metabolism in pigs and intramuscular fat content of Pork:A focus on nutrigenetics and nutrigenomics[J]. Animals:An Open Access Journal from MDPI,12(2):150. doi:10.3390/ani12020150.

Palma-Granados P,Seiquer I,Benítez R,óvilo C,Nieto R. 2019. Effects of lysine deficiency on carcass composition and activity and gene expression of lipogenic enzymes in muscles and backfat adipose tissue of fatty and lean piglets[J]. Animal:An International Journal of Animal Bioscience,13(10):2406-2418. doi:10.1017/S17517311190 00673.

Pena R N,Ros-Freixedes R,Tor M,Estany J. 2016. Genetic marker discovery in complex traits:A field example on fat content and composition in pigs[J]. International Journal of Molecular Sciences,17(12):E2100. doi:10.3390/ijms17122100.

Renaville B,Bacciu N,Lanzoni M,Corazzin M,Piasentier E. 2015. Polymorphism of fat metabolism genes as candidate markers for meat quality and production traits in heavy pigs[J]. Meat Science,110:220-223. doi:10.1016/j.meatsci.2015.07.014.

Robinson M D,McCarthy D J,Smyth G K. 2010. edgeR:A Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics (Oxford,England),26(1):139-140. doi:10.1093/bioinforma-tics/btp616.

Stachowiak M,Nowacka-Woszuk J,Szydlowski M,Switonski M. 2013. The ACACA and SREBF1 genes are promising markers for pig carcass and performance traits, but not for fatty acid content in the longissimus dorsi muscle and adipose tissue[J]. Meat Science,95(1):64-71. doi:10.1016/ j.meatsci.2013.04.021.

Uemoto Y,Nakano H,Kikuchi T,Sato S,Ishida M,Shibata T,Kadowaki H,Kobayashi E,Suzuki K. 2012. Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population[J]. Animal Genetics,43(2):225-228. doi:10.1111/j.1365-2052.2011.02236.x.

Voss M D,Beha A,Tennagels N,Tschank G,Herling A W,Quint M,Gerl M,Metz-Weidmann C,Haun G,Korn M. 2005. Gene expression profiling in skeletal muscle of Zucker diabetic fatty rats:Implications for a role of stea-royl-CoA desaturase 1 in insulin resistance[J]. Diabetologia,48(12):2622-2630. doi:10.1007/s00125-005-0025-2.

Wang L Y,Huang Y Q,Wang Y Z,Shan T Z. 2021. Effects of polyunsaturated fatty acids supplementation on the meat quality of pigs:A meta-analysis[J]. Frontiers in Nutrition,8:746765. doi:10.3389/fnut.2021.746765.

Wu L,Zhang H W,Na L,Zhou X H,Li X,Zhao Y R,Wen Z,He Q H. 2019. Methionine restriction at the post-weanling period promotes muscle fiber transition in piglets and improves intramuscular fat content in growing-fini-shing pigs[J]. Amino Acids,51(10-12):1657-1666. doi:10.1007/s00726-019-02802-6.

Yang B,Zhang W C,Zhang Z Y,Fan Y,Xie X H,Ai H S,Ma J W,Xiao S J,Huang L S,Ren J. 2013. Genome-wide association analyses for fatty acid composition in porcine muscle and abdominal fat tissues[J]. PLoS One,8(6):e65554. doi:10.1371/journal.pone.0065554.

Yokota S,Sugita H,Ardiyanti A,Shoji N,Nakajima H,Hosono M,Otomo Y,Suda Y,Katoh K,Suzuki K. 2012. Contributions of FASN and SCD gene polymorphisms on fatty acid composition in muscle from Japanese black cattle[J]. Animal Genetics,43(6):790-792. doi:10.1111/j.1365- 2052.2012.02331.x.

Yun J Y,Jin H G,Cao Y,Zhang L C,Zhao Y M,Jin X,Yu Y S. 2018. RNA-Seq analysis reveals a positive role of HTR2A in adipogenesis in Yan yellow cattle[J]. International Journal of Molecular Sciences,19(6):1760. doi:10.3390/ijms19061760.

Zappaterra M,Luise D,Zambonelli P,Mele M,Serra A,Costa L N,Davoli R. 2019. Association study between backfat fatty acid composition and SNPs in candidate genes highlights the effect of FASN polymorphism in large white pigs[J]. Meat Science 156:75-84. doi:10.1016/j.meatsci.2019.05.013.

收稿日期:2022-02-19

基金項目:貴州省科技計劃項目(黔科合支撐〔2019〕2278號,黔科合服企〔2018〕4007號,黔科合成果〔2020〕1Y027號);貴州省農業科學院科技成果轉化引導資金項目(黔農科院科技創新〔2022〕01號)

通訊作者:史開志(1981-),http://orcid.org/0000-0001-7255-7180,研究員,主要從事地方豬培育及產業化發展研究工作,E-mail:shkzjjp@163.com

第一作者:譚婭(1989-),http://orcid.org/0000-0003-2128-2396,主要從事豬遺傳與分子育種研究工作,E-mail:Tanya_Lee@126.com

主站蜘蛛池模板: 国产成人精品一区二区三区| 99手机在线视频| 日本一本在线视频| 国产美女一级毛片| 精品在线免费播放| 午夜国产不卡在线观看视频| 精品精品国产高清A毛片| 久久人人爽人人爽人人片aV东京热 | 91啪在线| 国产日韩精品欧美一区灰| 人妻无码一区二区视频| 色婷婷久久| 欧美日韩v| 在线永久免费观看的毛片| 91成人在线免费视频| 激情午夜婷婷| 亚洲人成在线精品| 91蜜芽尤物福利在线观看| 国产成人精品亚洲77美色| 97视频精品全国免费观看| 自拍偷拍欧美日韩| 亚洲一区二区三区麻豆| 高潮爽到爆的喷水女主播视频| 制服丝袜亚洲| 天堂网亚洲系列亚洲系列| 国产激爽爽爽大片在线观看| 亚洲二区视频| 国产黄色免费看| 国产麻豆精品手机在线观看| 91精品国产一区自在线拍| 五月婷婷中文字幕| 亚洲天堂日本| 国产主播在线一区| 亚洲一区波多野结衣二区三区| 亚洲Aⅴ无码专区在线观看q| 992tv国产人成在线观看| 亚洲国产成人久久77| 久久精品丝袜| 伊人久久久久久久| 黄色网在线| 国产精品尤物铁牛tv| jijzzizz老师出水喷水喷出| 狼友视频一区二区三区| 久久中文字幕不卡一二区| 99re在线免费视频| 久久人人爽人人爽人人片aV东京热 | 日韩精品久久无码中文字幕色欲| 国产农村妇女精品一二区| 毛片最新网址| 亚洲动漫h| 9啪在线视频| 国产男人天堂| 亚洲综合在线网| 亚洲天堂网在线观看视频| 国产福利拍拍拍| 国产一线在线| 国产久草视频| 国产小视频a在线观看| 亚洲综合狠狠| 精品一区二区无码av| 国产一区二区影院| 亚洲中文在线视频| 爱色欧美亚洲综合图区| 国产免费人成视频网| 91成人精品视频| 2021国产精品自产拍在线| 97无码免费人妻超级碰碰碰| 性做久久久久久久免费看| 丰满人妻一区二区三区视频| 国产欧美日韩视频怡春院| 国产精品久久久久久久久kt| 国产精选小视频在线观看| 亚洲区欧美区| 91精品专区国产盗摄| 国产成人亚洲毛片| 亚洲天堂首页| 国产第一页免费浮力影院| 国产一区二区三区夜色| 日韩久久精品无码aV| 免费国产在线精品一区| 国产欧美日本在线观看| 国产农村精品一级毛片视频|