999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

鹽脅迫對(duì)砂糖橘幼樹(shù)生長(zhǎng)、生物量積累及光合生理的影響

2022-07-14 15:56:26郭雁君吉前華杜鵬飛尚荷斌鐘雅玲

郭雁君 吉前華 杜鵬飛 尚荷斌 鐘雅玲

摘要:【目的】明確砂糖橘對(duì)不同種類和水平的鹽脅迫的適應(yīng)性,為砂糖橘引種栽培和果園土壤管理提供科學(xué)支撐。【方法】分別以CaCO3、NaHCO3和NaCl模擬石灰質(zhì)土壤、堿土和鹽土的主要脅迫成分,并設(shè)0.3%和0.7% 2種含鹽量水平,以基質(zhì)中不加鹽為對(duì)照,栽培90 d后,測(cè)試分析鹽脅迫對(duì)植株生長(zhǎng)和生物量分配的影響及其基礎(chǔ)生理響應(yīng)?!窘Y(jié)果】鹽脅迫下砂糖橘單株落葉量較對(duì)照大1.85~17.66倍,鹽分含量越高落葉量越大,NaCl脅迫下落葉量顯著大于CaCO3和NaHCO3脅迫(P?0.05,下同)。鹽脅迫對(duì)株高生長(zhǎng)的抑制明顯大于對(duì)地徑和冠幅生長(zhǎng)的抑制,對(duì)植株生物量積累的影響以對(duì)葉生物量的影響最明顯,其次是對(duì)根生物量積累的抑制;2種含鹽量水平的NaHCO3、NaCl脅迫下各自植株根和葉生物量均較對(duì)照顯著降低。不同種類和水平的鹽脅迫均可導(dǎo)致砂糖橘葉片葉綠素含量降低,但0.7% CaCO3脅迫與0.3% NaHCO3脅迫、0.7% NaHCO3脅迫與0.3% NaCl脅迫的效應(yīng)相當(dāng)。砂糖橘葉片光合速率、蒸騰速率和氣孔導(dǎo)度對(duì)鹽脅迫敏感,鹽分含量越高3項(xiàng)光合生理指標(biāo)的降低幅度越大;同種性質(zhì)、2種水平的脅迫間植株葉片水分飽和虧缺均有顯著差異,含鹽量達(dá)0.3%即可使葉片丙二醛含量顯著升高、細(xì)胞質(zhì)膜透性顯著增大。【結(jié)論】砂糖橘對(duì)CaCO3含量較高的土壤具較強(qiáng)適應(yīng)性,對(duì)NaCl為主的鹽土及NaHCO3為主的堿土適應(yīng)性很差;對(duì)砂糖橘葉片葉綠素的破壞、光合生理的抑制及伴隨的水分虧缺和膜脂過(guò)氧化是不同種類鹽脅迫共同的作用特性。

關(guān)鍵詞:砂糖橘;鹽脅迫;光合生理;水分虧缺;膜脂過(guò)氧化

中圖分類號(hào):S666.2;Q945.78? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2022)04-1112-09

Effects of salt stress on plant growth, biomass accumulation and photosynthetic physiology of Shatangju saplings

GUO Yan-jun1, 2, JI Qian-hua1, 2*, DU Peng-fei2, SHANG He-bin2, ZHONG Ya-ling2

(1Fruit Research Institute, Zhaoqing University, Zhaoqing, Guangdong? 526061, China; 2College of Life Sciences, Zhaoqing University, Zhaoqing, Guangdong? 526061, China)

Abstract:【Objective】To investigate the adaptability of Shatangju sapling to salt stress, so as to provide scientific support for the introduction and cultivation of Shatangju and orchard soil management. 【Method】CaCO3, NaHCO3 and NaCl were used to simulate the main stress components of calcareous soil, alkaline soil and saline soil respectively, and the content levels of 0.3% and 0.7% were set. With no salt in the substrate as the control, the effects of salt and alkali types and contents on plant growth and biomass allocation and their basic physiological responses were tested and analyzed 90 days after cultivation. 【Result】For Shatangju saplings under salt stress, the amount of fallen leaves per plant was 1.85 to 17.66 times larger than that of the control. The amount of fallen leaves under NaCl stress was significantly greater than that under CaCO3 or NaHCO3 stress(P?0.05, the same as below). The inhibition of salt stress on plant height growth was significantly greater than that on ground diameter and crown width growth, and the effect on plant biomass accumulation was the greatest on leaf biomass, followed by the inhibition on root biomass accumulation. The root and leaf biomass of each plant under the two treatment intensities of NaHCO3 and NaCl stress were significantly reduced compared with the control, Different types and levels of salt stress could reduce the chlorophyll content of Shatangju leaves, but the effects of 0.7 % CaCO3 stress and 0.3 % NaHCO3 stress, 0.7 % NaHCO3 stress and 0.3 % NaCl stress were similar. The photosynthetic rate, transpiration rate and stomatal conductance of Shatangju leaves were sensitive to salt stress, and the higher the salt content, the greater the decrease of three photosynthetic physiological indexes. There were significant differences in leaf water saturation deficits between the same nature and two levels of stress. When the salt content reached 0.3%, the MDA content in leaves increased significantly and the membrane permeability of cytoplasm increased significantly. 【Conclusion】Shatangju leaves has strong adaptability to soil with high CaCO3 content, but poor adaptability to saline soil dominated by NaCl and alkaline soil dominated by NaHCO3. The damage to chlorophyll, the inhibition of photosynthetic physiology, and the accompanying water deficit and membrane lipid peroxidation in Shatangju leaves are the common characteristics of different types of salt stress.

Key words: Shatangju; salt stress; photosynthetic physiology; water deficit; membrane lipid peroxidation

Foundation items: National Modern Agricultural Industrial Technology System Construction Special Project (CARS-26); Guangdong Rural Science and Technology Specialist Project (2021-1056-9-4)

0 引言

【研究意義】砂糖橘(Citrus reticulata Shatangju)果實(shí)皮薄多汁,果肉鮮滑脆嫩、甜酸適中、爽口化渣,深受消費(fèi)者歡迎,是華南地區(qū)栽培面積最大、產(chǎn)量最多的柑橘品種(吳文等,2020)。廣東肇慶砂糖橘栽培歷史悠久,是當(dāng)?shù)剞r(nóng)業(yè)的重要支柱產(chǎn)業(yè)(Wu et al.,2016;徐呈祥等,2021)。由于砂糖橘優(yōu)質(zhì)、早果、豐產(chǎn),全國(guó)多地引種栽培,涉及的園地土壤化學(xué)類型和立地條件多樣,包括濱海鹽土、次生鹽漬化土壤和內(nèi)陸的石灰質(zhì)土壤,且引種栽培后時(shí)有不良報(bào)道。因此,開(kāi)展砂糖橘果園土壤化學(xué)生態(tài)研究極有必要,特別是栽培中對(duì)鹽脅迫的適應(yīng)性。深入探究砂糖橘樹(shù)對(duì)土壤關(guān)鍵化學(xué)脅迫成分的適應(yīng)性,可為引種栽培和果園管理提供科學(xué)依據(jù)?!厩叭搜芯窟M(jìn)展】柑橘是世界大宗栽培的園藝植物。我國(guó)長(zhǎng)江以南尤其五嶺以南是柑橘類植物起源中心、栽培起源地和現(xiàn)代栽培中心之一,柑橘栽培歷史悠久(王劉坤和祁春節(jié),2018)。鹽脅迫是世界植物栽培生產(chǎn)中的重要非生物逆境,鹽脅迫下農(nóng)作物的生物學(xué)響應(yīng)、耐鹽性和機(jī)制,國(guó)內(nèi)外已有廣泛而深入的研究(Munns and Tester,2008;Ismail and Horie,2017;Song et al., 2021),在指導(dǎo)科學(xué)栽培、高效生產(chǎn)中發(fā)揮了重要作用。目前,國(guó)內(nèi)外對(duì)柑橘耐鹽生理已有一定研究,但深度和廣度遠(yuǎn)不及農(nóng)作物,主要研究鹽脅迫下柑橘生長(zhǎng)響應(yīng)和光合生理(馬翠蘭等,2004;Anjum,2007;Brito et al.,2016)、柑橘活性氧代謝和抗氧化物質(zhì)積累特性(吳強(qiáng)盛等,2010;Khoshbakht et al., 2018;Nayem et al.,2020)、柑橘砧木或誘導(dǎo)的柑橘愈傷組織的耐鹽性(Balal et al.,2011;蔡小東等,2012;朱世平等,2014;Etehadpour et al.,2020)及柑橘體內(nèi)鹽分離子含量和礦質(zhì)營(yíng)養(yǎng)狀況(Hussain et al., 2012;魏清江等,2016)。上述研究表明,柑橘耐鹽性因種質(zhì)不同而存在明顯差異,總體上對(duì)鹽脅迫敏感,鹽脅迫顯著抑制柑橘生長(zhǎng)和生理,易導(dǎo)致柑橘植株發(fā)生水分虧缺,對(duì)鹽脅迫最敏感的基因型體內(nèi)積累高濃度Na+和Cl–并產(chǎn)生毒害效應(yīng);鹽脅迫還顯著影響柑橘植株對(duì)其他礦質(zhì)元素的吸收,從而使體內(nèi)元素含量顯著失衡;糖類、醇類和氨基酸的積累有助滲透調(diào)節(jié),酶促系統(tǒng)和非酶類氧化劑能降低活性氧傷害,二者在柑橘對(duì)鹽脅迫的適應(yīng)中起重要作用。柑橘耐鹽性的調(diào)控機(jī)制近年來(lái)受到關(guān)注并取得一定進(jìn)展,相關(guān)研究得出,柑橘6個(gè)多胺氧化酶(Polyamine oxidase,PAO)基因中CsPAO4(定位于質(zhì)外體,以亞精胺和精胺為底物)參與H2O2產(chǎn)生,引起鹽脅迫下柑橘幼苗氧化損傷,下調(diào)PAO基因參與多胺末端分解代謝可能是提高柑橘耐鹽性的一種途徑(Wang and Liu,2016);50 mg/L腐胺(Putrescine,Put)、250 mg/L多效唑(Paclobutrazol,PBZ)單獨(dú)或聯(lián)合處理的柑橘砧木幼苗在鹽脅迫下具有較高的抗氧化酶活性、脯氨酸含量和K+、Ca2+等礦質(zhì)積累,減少Na+和Cl-在根和葉中的積累、降低膜損傷指數(shù)(Sharma et al., 2014);接種球囊霉(Glomus mosseae,G. intraradices,G. hoi)等叢枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)是鹽脅迫下提高柑橘產(chǎn)量的一種實(shí)用方法,可改善鹽脅迫下柑橘植株生長(zhǎng)和土壤結(jié)構(gòu)(Zhang et al., 2017;Bourazza et al., 2021),顯著促進(jìn)柑橘植株脅迫小蛋白(CaSISP)基因的表達(dá)(Hadian-Deljou et al., 2020)、誘導(dǎo)參與水分和小分子有機(jī)物運(yùn)輸?shù)乃ǖ赖鞍祝ˋQPs)(Cheng et al., 2021),從而提高細(xì)胞膜的透水性,刺激其水分運(yùn)輸。【本研究切入點(diǎn)】目前,對(duì)柑橘耐鹽生理的研究主要針對(duì)中性鹽(NaCl)脅迫,未見(jiàn)針對(duì)堿性鹽(CaCO3、NaHCO3)脅迫的研究,相關(guān)的生長(zhǎng)響應(yīng)和生理特性尚不清楚?!緮M解決的關(guān)鍵問(wèn)題】以砂糖橘為研究對(duì)象,把堿性鹽納入耐鹽性研究范圍,以CaCO3、NaHCO3和NaCl分別模擬石灰質(zhì)土壤、堿土和鹽土的主要脅迫成分,分析探究不同種類和水平的鹽脅迫下砂糖橘植株的落葉特性、生長(zhǎng)量和生物量差異以及光合作用、水分代謝、膜脂過(guò)氧化作用等基礎(chǔ)生理響應(yīng),揭示砂糖橘對(duì)鹽脅迫的適應(yīng)性及主要機(jī)制,為砂糖橘引種栽培和土壤管理提供科學(xué)支撐。

1 材料與方法

1. 1 植物材料及培養(yǎng)

試驗(yàn)材料為砂糖橘嫁接苗(2015年夏季嫁接),砧木為枳殼(Poncirus trifoliata),于2017年1月下旬(18月齡)栽植于盆高40 cm、上口直徑35 cm、下口直徑25 cm的陶瓷盆中,每盆1株。栽培基質(zhì)為普通耕作土+150 g/kg草炭+50 g/kg河沙,拍碎、混勻、過(guò)篩。盆栽基質(zhì)中含有機(jī)質(zhì)1.72%、速效氮55.6 mg/kg、速效磷32.5 mg/kg、速效鉀115.8 mg/kg,pH 6.5。稱量基質(zhì)重量,保持每盆一致。在溫室中避雨栽培,期間視季節(jié)和天氣情況,每周澆水1~2次、每次每株1000 mL,每30 d施復(fù)合肥1次、每次每株5~7 g。盆底放置圓形淺壁塑料托盤(pán)。溫室內(nèi)氣溫高于30 ℃,濕簾降溫系統(tǒng)自動(dòng)啟動(dòng)。于2018年7月下旬選擇生長(zhǎng)勢(shì)及樹(shù)體大小相當(dāng)?shù)?年生嫁接苗進(jìn)行鹽脅迫。處理前7 d暫停澆水。

1. 2 試驗(yàn)設(shè)計(jì)

設(shè)6種不同含鹽量水平的CaCO3、NaHCO3和NaCl脅迫:(1)0.3% CaCO3;(2)0.7% CaCO3;(3)0.3% NaHCO3;(4)0.7% NaHCO3;(5)0.3% NaCl;(6)0.7% NaCl。以在溫室中常規(guī)栽培、不進(jìn)行鹽脅迫的植株為對(duì)照(CK)。每處理3次重復(fù),每重復(fù)3株,參試植株共63株,共栽培90 d。CaCO3、NaHCO3和NaCl均為化學(xué)純(國(guó)藥集團(tuán)產(chǎn)品),添加量基于盆中基質(zhì)干重,充分溶解在1000 mL自來(lái)水中后緩緩澆入盆中,1 h內(nèi)偶有滲漏至托盤(pán)中的澆灌液返澆入盆。至90 d時(shí)收獲(從盆中取出)。處理后的水分管理同常規(guī)管理,第30和60 d時(shí)每株各施復(fù)合肥7 g,期間每天定時(shí)收集落葉,分別記錄每株的落葉數(shù)并稱重;收獲前3 d,測(cè)試葉片葉綠素含量和氣體交換參數(shù)、葉片含水量和膜脂過(guò)氧化狀況以及植株生長(zhǎng)量;收獲后,立即按植株分別稱量根、莖、葉鮮生物量。

1. 3 測(cè)定項(xiàng)目及方法

以植株為單位收集落葉,統(tǒng)計(jì)葉片數(shù)量,及時(shí)烘至恒干重,以FA1004型電子天平(0.001 g)稱重,按1~30、31~60、61~90和1~90 d匯總。生長(zhǎng)量指標(biāo)株高、冠幅用WK331025型鋼卷尺測(cè)量,地徑用530-118型游標(biāo)卡尺測(cè)量。使用VP1002型電子天平稱重生物量,根、莖和葉生物量之和即為全株生物量;收獲時(shí),立即稱量鮮生物量,編號(hào)帶回實(shí)驗(yàn)室分?jǐn)傞_(kāi)存放45 d(自然干燥)后再次稱重(干重)。本研究中使用的生物量均為干重。

葉綠素提取及含量測(cè)定:每一株植株取中部葉片3片,擦凈表面污物,去除中脈后用打孔器(內(nèi)徑1.15 cm)打取葉圓片,每份3片,每處理3份,剪成寬2~3 mm的細(xì)絲,用95%乙醇浸提至白色為止。以UV-6300B型紫外可見(jiàn)分光光度計(jì)測(cè)定浸提液A665 nm、A649 nm的值,分別計(jì)算葉綠素a和葉綠素b濃度(Ca、Cb,mg/L),其中:Ca=13.95A665 nm-6.88A649 nm,Cb=24.96A649 nm-7.32A665 nm。葉綠素濃度為Ca與Cb之和。葉綠素(Chl)含量(mg/dm2)=(葉綠素濃度×提取液體積×稀釋倍數(shù))/樣品面積。

葉片氣體交換參數(shù)凈光合速率[Pn,μmol/(m2·s)]、蒸騰速率[Tr,mmol/(m2·s)]和氣孔導(dǎo)度[Gs,mmol/(m2·s)],采用LI-6400 XT便攜式光合儀測(cè)定。測(cè)定條件:溫度為20~25 ℃,光強(qiáng)為800 μmol/(m2·s),葉室CO2濃度400 μmol/mol,流速500 μmol/s。測(cè)定時(shí)間為上午9:30—11:30、下午2:00—4:00,在不同處理的砂糖橘植株上各選取5片葉進(jìn)行。各處理的測(cè)試結(jié)果取上午和下午的平均值。

按飽和重量法測(cè)定葉片相對(duì)含水量(Relative water content,RWC),RWC(%)=(Wf–Wd)/(Wt–Wd)×100。式中,Wf指葉片自然鮮重;Wt指葉片被水分飽和后的重量;Wd指葉片恒干重;以O(shè)LABO型電子天平(0.0001 g)稱重;每處理3次重復(fù),每樣取2片完整葉片。水分飽和虧(Water saturation deficiency,WSD)=1–RWC。葉片丙二醛(Malondialdehyde,MDA)含量采用硫代巴比妥酸反應(yīng)法測(cè)定(張朝坤等,2018);葉片細(xì)胞質(zhì)膜相對(duì)透性(Relative permeability of plasma membrane,RPP)使用電導(dǎo)儀法測(cè)定(林麗仙等,2013)。

1. 4 統(tǒng)計(jì)分析

采用Microsoft Excel 2010進(jìn)行統(tǒng)計(jì)分析制圖;各處理間差異顯著性采用Duncan’s多重比較法檢驗(yàn)。

2 結(jié)果與分析

2. 1 鹽脅迫下砂糖橘幼樹(shù)落葉量差異分析

鹽脅迫后2周,幾乎所有植株每天均有落葉,時(shí)期集中在處理后60 d之前(圖1-A和圖1-B,圖2-A和圖2-B),處理60 d后基本穩(wěn)定(圖1-C,圖2-C)。不同種類的鹽脅迫下植株落葉量差異明顯:含鹽量相同,以NaCl脅迫下落葉量最大,其次為NaHCO3脅迫,CaCO3脅迫下落葉量最小。由圖1-D和圖2-D可見(jiàn),鹽脅迫90 d,砂糖橘單株的落葉重量和落葉數(shù)量在不同種類鹽脅迫間均存在顯著差異(P?0.05,下同);期間CK單株落葉重量為2.49 g,同期0.3% CaCO3、0.3% NaHCO3、0.3% NaCl、0.7% CaCO3、0.7% NaHCO3和0.7% NaCl脅迫下單株落葉量分別較CK增加1.85、5.01、8.94、3.75、10.62和17.66倍;期間CK單株落葉數(shù)量為21.9片,同期0.3% CaCO3、0.3% NaHCO3、0.3% NaCl、0.7% CaCO3、0.7% NaHCO3和0.7% NaCl脅迫下單株落葉數(shù)量分別較CK增加1.99、5.16、11.20、4.34、11.85和16.23倍。植株落葉特點(diǎn)初步表明不同種類鹽脅迫各有特性,對(duì)砂糖橘的作用機(jī)制存在差異。

2. 2 鹽脅迫下砂糖橘幼樹(shù)生長(zhǎng)量和生物量差異分析

參試的砂糖橘在春季開(kāi)花時(shí)見(jiàn)花即被疏除,故生長(zhǎng)主要是營(yíng)養(yǎng)生長(zhǎng)。從圖3可知,鹽脅迫下栽培90 d,植株冠幅只在0.7% NaCl脅迫下顯著降低,其他5種鹽脅迫間以及與CK均無(wú)顯著性差異(P?0.05,下同)。由圖3-A~圖3-C可知,鹽分含量越高,砂糖橘株高、地徑和冠幅的降低幅度越大,株高指標(biāo)的差異性大于地徑,以冠幅的差異性最小;同種鹽脅迫下因基質(zhì)含鹽量水平不同而導(dǎo)致的株高、地徑和冠幅差異不顯著,差異主要因鹽脅迫種類不同而導(dǎo)致,但0.3% CaCO3脅迫下株高、地徑和冠幅均與CK無(wú)顯著性差異。

由圖3-D~圖3-G可知,鹽脅迫下砂糖橘植株根、莖、葉及全株生物量的變化同株高、地徑的響應(yīng)相似,但不同處理間以葉生物量的差異性最大,其次是根生物量,莖生物量的差異性最小;差異性主要受鹽脅迫種類支配,同種鹽脅迫下2種水平間根、莖、葉及全株生物量無(wú)顯著性差異;莖生物量只在0.7% NaHCO3和0.7% NaCl脅迫下顯著小于CK;0.3%和0.7% CaCO3脅迫對(duì)根生物量的抑制作用均不顯著,但0.7% CaCO3脅迫下葉生物量顯著減小,較CK減小22.7%。

與CK相比,NaHCO3和NaCl脅迫下,砂糖橘根、葉及全株生物量均顯著減小,其中:0.3% NaHCO3脅迫下分別減少16.7%、28.3%和19.1%,0.7% NaHCO3脅迫下分別減少28.3%、39.4%和28.6%,0.3% NaCl脅迫下分別減少36.4%、56.7%和32.6%,0.7% NaCl脅迫下則分別減少46.9%、62.0%和43.4%。上述結(jié)果進(jìn)一步表明,鹽脅迫對(duì)砂糖橘的抑制作用主要與鹽脅迫種類有關(guān),葉片是響應(yīng)最靈敏的器官。

2. 3 鹽脅迫對(duì)砂糖橘葉片葉綠素含量和氣體交換參數(shù)的影響

鹽脅迫下栽培90 d,砂糖橘葉片Chl含量與3項(xiàng)氣體交換參數(shù)的響應(yīng)趨勢(shì)一致,且較生物量的響應(yīng)更敏感。由圖4-A可知,砂糖橘CK葉片Chl含量為6.05 mg/dm2,除0.3% CaCO3脅迫下降低幅度與CK無(wú)顯著性差異外,其余鹽脅迫處理均與CK存在顯著差異,0.7% CaCO3、0.3% NaHCO3、0.7% NaHCO3、0.3% NaCl、0.7% NaCl處理分別較CK降低16.5%、15.4%、39.7%、31.4%和49.4%;同時(shí),NaHCO3和NaCl脅迫內(nèi)部2種含鹽量水平間差異性也達(dá)顯著水平,但0.7% CaCO3脅迫與0.3% NaHCO3脅迫、0.7% NaHCO3脅迫與0.3% NaCl脅迫效應(yīng)相當(dāng),這種現(xiàn)象也存在于Pn和Tr的響應(yīng)。由圖4-B可知,CK植株葉片Pn值為8.1 μmol/(m2·s),0.3% CaCO3脅迫下降低但與CK無(wú)顯著性差異,0.7% CaCO3、0.3% NaHCO3、0.7% NaHCO3、0.3% NaCl、0.7% NaCl脅迫下均顯著低于CK,分別較CK降低23.5%、18.5%、46.9%、43.2%和65.4%,降低幅度明顯大于Chl含量。

鹽脅迫下栽培90 d,砂糖橘葉片Tr、Gs均較CK降低,分別為2.89和0.163 mmol/(m2·s),變化趨勢(shì)近乎一致,但Gs降低幅度更大。由圖4-C可知,0.3% CaCO3、0.7% CaCO3和0.3% NaHCO3脅迫下,砂糖橘葉片Tr間差異性均不顯著,分別較CK降低3.8%、8.3%和11.8%,但0.7% NaHCO3、0.3% NaCl和0.7% NaCl脅迫下與CK的差異均達(dá)顯著水平,分別降低32.9%、38.4%和62.9%。由圖4-D可知,0.3% CaCO3脅迫下,砂糖橘葉片Gs較CK的降低幅度很小(2.5%),但0.7% CaCO3、0.3% NaHCO3、0.7% NaHCO3、0.3% NaCl和0.7% NaCl脅迫下與CK差異顯著,分別降低10.4%、19.0%、36.2%、46.0%和65.6%。鹽脅迫種類和含鹽量水平顯著影響砂糖橘葉片Chl含量和氣體交換狀況,尤其是葉片Pn和Gs。

2. 4 鹽脅迫對(duì)砂糖橘葉片水分虧缺和膜脂過(guò)氧化的影響

鹽脅迫下栽培90 d,與CK相比,砂糖橘葉片RWC降低、WSD加重、MDA含量升高、PRP增大,但不同處理間降低或增大的幅度不同。如圖5-A所示,與CK(葉片RWC為93.5%)相比,鹽脅迫植株葉片RWC均顯著降低,0.3% CaCO3、0.3% NaHCO3、0.3% NaCl、0.7% CaCO3、0.7% NaHCO3和0.7% NaCl脅迫下降幅分別為5.2%、9.8%、13.8%、7.6%、9.7%、15.5%和22.5%,響應(yīng)與葉片Chl含量和Pn、Tr、Gs的響應(yīng)基本一致。

不同處理間砂糖橘葉片WSD的差異較明顯,同種鹽脅迫的2種含鹽量水平間差異顯著(圖5-B);葉片MDA含量(圖5-C)和PRP(圖5-D)對(duì)鹽脅迫的響應(yīng)趨勢(shì)同葉片WSD的響應(yīng)趨勢(shì)基本一致,均表現(xiàn)為增大趨勢(shì),脅迫愈重增幅愈大。與CK相比,0.3% CaCO3、0.3% NaHCO3、0.3% NaCl、0.7% CaCO3、0.7% NaHCO3和0.7% NaCl脅迫處理葉片WSD分別增大46.2%、124.6%、136.9%、198.5%、223.1%和323.1%,MDA含量分別增大11.1%、14.4%、77.8%、111.1%、122.2%和133.3%,葉片PRP分別增大25.9%、50.9%、74.1%、99.1%、120.5%和163.4%。

3 討論

引起植物器官非正常脫落的主因是逆境脅迫、內(nèi)源激素及相關(guān)酶類的代謝,尤以非生物脅迫導(dǎo)致的脫落最易發(fā)生且危害嚴(yán)重(Goldental-Cohen et al., 2017)。至今,對(duì)于植物器官異常脫落研究最多的是落花落果,主要因?yàn)槁浠涔苯佑绊懝麑?shí)產(chǎn)量甚至導(dǎo)致嚴(yán)重減產(chǎn)(Yang et al.,2015;Chersicola et al.,2017;Einhorn and Arrington,2018)。本研究結(jié)果表明,砂糖橘植株以NaCl脅迫下落葉量最大、落葉的單葉重量最重,CaCO3脅迫下落葉量最小、落葉的單葉重量最輕,NaHCO3脅迫下居中;鹽脅迫加重,這些落葉特性更為突出,暗示這三類鹽脅迫的作用機(jī)制有差異。落葉特性應(yīng)是評(píng)價(jià)砂糖橘植株對(duì)鹽脅迫適應(yīng)性的重要方面之一。

生長(zhǎng)狀況是植物對(duì)脅迫響應(yīng)的綜合表現(xiàn),特別是新梢生長(zhǎng)對(duì)脅迫很敏感。果樹(shù)對(duì)脅迫的適應(yīng)性或耐逆性,研究者們大多基于生理生化指標(biāo)鑒評(píng),結(jié)合生長(zhǎng)量特別是生物量等基礎(chǔ)生物學(xué)響應(yīng)作為鑒評(píng)指標(biāo)的為數(shù)不多(馬翠蘭等,2004;Anjum,2007;Brito et al., 2016)。本研究對(duì)鹽脅迫下砂糖橘植株生長(zhǎng)量和生物量響應(yīng)的分析結(jié)果表明,生物量較生長(zhǎng)量更能準(zhǔn)確地反映其植株對(duì)鹽脅迫的響應(yīng),但不同指標(biāo)的響應(yīng)差異顯著:生長(zhǎng)量指標(biāo),不同處理間以冠幅的差異性最小、株高差異性最大、地徑差異性居中;生物量指標(biāo),不同處理間以葉生物量的差異性最大、是對(duì)脅迫響應(yīng)最敏感的器官,其次是根生物量,莖生物量差異性最小,全株生物量的差異性居中;株高應(yīng)是反映其脅迫響應(yīng)的生長(zhǎng)量關(guān)鍵指標(biāo),葉和根生物量是反映其脅迫響應(yīng)的生物量關(guān)鍵指標(biāo)。鹽脅迫下砂糖橘表現(xiàn)出的這些生長(zhǎng)特性對(duì)于果樹(shù)是否具有普適性需更多測(cè)試,但無(wú)疑給現(xiàn)在的栽培生產(chǎn)提供了重要鑒評(píng)指標(biāo)。

植物對(duì)土壤鹽度的反應(yīng),即使同一植物種的不同品種間也可能存在顯著差異。淡土植物耐鹽閾值一般在0.60%以下。柑橘對(duì)鹽漬環(huán)境敏感,主要源于土壤中含量過(guò)高的鹽分離子。砧木是柑桔商業(yè)化栽培的重要元素,對(duì)鹽分離子的吸收、積累主要通過(guò)砧木控制,使用耐鹽砧木是解決其栽培中鹽害問(wèn)題的關(guān)鍵(周心智和張?jiān)瀑F,2019)。國(guó)內(nèi)外柑橘耐鹽性研究中使用最多的材料是柑橘砧木,但尚未見(jiàn)有研究涉及柑橘種質(zhì)的絕對(duì)耐鹽性。目前,通過(guò)傳統(tǒng)育種手段獲得的柑橘耐鹽砧木和栽培品種很有限,主要使用NaCl模擬脅迫,處理液中NaCl濃度多為50~80 mmol/L,即0.295%~0.468% NaCl。本研究使用CaCO3、NaHCO3和NaCl等單質(zhì)鹽模擬鹽脅迫,在栽培基質(zhì)中的施用量均為0.3%和0.7%量級(jí),這是砂糖橘生物學(xué)研究中首次開(kāi)展,含鹽量0.3%處理的植株生長(zhǎng)量和生物量關(guān)鍵指標(biāo)顯著減小,同時(shí),對(duì)NaCl脅迫最敏感,其次為NaHCO3脅迫,對(duì)CaCO3脅迫抗性強(qiáng),說(shuō)明砂糖橘和大多數(shù)寬皮柑橘類品種一樣不耐鹽,對(duì)NaCl為主的鹽土及NaHCO3為主的堿土適應(yīng)性差,但對(duì)鈣質(zhì)土壤具有潛在的較強(qiáng)適應(yīng)性。

鹽脅迫對(duì)植物的傷害及植物的適應(yīng)機(jī)制,至今已有大量研究。鹽脅迫下柑橘類果樹(shù)葉綠素含量和光合生理指標(biāo)的降低幅度與鹽脅迫水平、砧木耐鹽性以及是否接種菌根菌等的影響有關(guān)(Wei et al., 2018;Shahid et al., 2019;Nayem et al.,2020)。本研究中雖只使用了1種砧木,但設(shè)計(jì)了2種含鹽量水平、3種脅迫成分不同的鹽類在脅迫下進(jìn)行90 d栽培,其結(jié)果對(duì)實(shí)際生產(chǎn)具有重要的指導(dǎo)意義。綜觀砂糖橘在鹽脅迫下的生物學(xué)響應(yīng),不同種類和水平的鹽脅迫對(duì)其幼樹(shù)生長(zhǎng)、生物量積累的抑制作用有著深刻的生理基礎(chǔ):光合作用是其植株正常生長(zhǎng)發(fā)育所需的能量和物質(zhì)基礎(chǔ),鹽脅迫導(dǎo)致的植株水分虧缺是脅迫效應(yīng)的重要生理生態(tài)因子,而膜脂過(guò)氧化作用進(jìn)一步加劇光合及水分生理失調(diào)。但這些方面在設(shè)定的試驗(yàn)條件下主要受鹽脅迫種類支配,其次是鹽分含量的影響,暗示栽培基質(zhì)的化學(xué)性狀、鹽分組成很重要。鹽脅迫對(duì)砂糖橘鹽分離子吸收分配的影響今后將進(jìn)一步研究。

4 結(jié)論

砂糖橘對(duì)CaCO3含量較高的土壤具較強(qiáng)適應(yīng)性,對(duì)NaCl為主的鹽土及NaHCO3為主的堿土適應(yīng)性很差。對(duì)砂糖橘葉片葉綠素的破壞、光合生理的抑制及伴隨的水分虧缺和膜脂過(guò)氧化是不同種類鹽脅迫共同的作用特性。

參考文獻(xiàn):

蔡小東,黃穎,曹文娟. 2012. 鹽脅迫對(duì)柑橘愈傷組織生理效應(yīng)的影響[J]. 湖北農(nóng)業(yè)科學(xué),51(12): 2493-2495. [Cai X D,Huang Y,Cao W J. 2012. Effect of salt stress on physio-logical characteristics of cotrus callus[J]. Hubei Agricultural Sciences,51(12):2493-2495.] doi:10.14088/j.cnki.issn0439-8114.2012.12.058.

林麗仙,李惠華,張雪芹,張慶美. 2013. 甲醛對(duì)吊蘭等植物細(xì)胞質(zhì)膜相對(duì)透性和光合特性的影響[J]. 熱帶作物學(xué)報(bào),34(4):719-726. [Lin L X,Li H H,Zhang X Q,Zhang Q M. 2013. Effect of formaldehyde on relative permeability of plasma membrane and photosynthetic characteristics of several plants[J]. Chinese Journal of Tropical Crops,34(4):719-726.] doi:10.3969/j.issn.1000-2561.2013.04.025.

馬翠蘭,劉星輝,王湘平. 2004. 鹽脅迫下柚實(shí)生苗生長(zhǎng)、礦質(zhì)營(yíng)養(yǎng)及離子吸收特性研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),10(3):319-323. [Ma C L,Liu X H,Wang X P. 2004. Study on the growth,mineral nutrition and ion absorption characteristics of pomelo seedlings under salt stress[J]. Plant Nutrition and Fertilizer Science,10(3):319-323.] doi:10.3321/j.issn:1008-505X.2004.03.019.

王劉坤,祁春節(jié). 2018. 中國(guó)柑橘主產(chǎn)區(qū)的區(qū)域比較優(yōu)勢(shì)及其影響因素研究——基于省級(jí)面板數(shù)據(jù)的實(shí)證分析[J]. 中國(guó)農(nóng)業(yè)資源與區(qū)劃,39(11):121-128. [Wang L K,Qi C J. 2018. Research on the comparative advantage and its influencing factors of in Chinese citrus main produ-cing region—Empirical analysis based on inter-provincial panel data[J]. Chinese Journal of Agricultural Resources and Regional Planning,39(11):121-128.] doi:10.7621/cjarrp.1005-9121.20181117.

魏清江,馮芳芳,古湘,寧少君,蘇受婷,辜青青. 2016. NaCl脅迫對(duì)水培枳和枸頭橙幼苗生長(zhǎng)及鹽離子分布的影響[J]. 中國(guó)南方果樹(shù),45(5): 7-11. [Wei Q J,F(xiàn)eng F F,Gu X,Ning S J,Su S T,Gu Q Q. 2016. Effect of NaCl stress on seedling growth and saline ions distribution in trifoliate and Citrus aurantium cv. Goutoucheng[J]. South China Fruits,45(5):7-11.] doi:10.13938/j.issn.1007-1431.2016 0282.

吳強(qiáng)盛,柳威,翟華芬,葉賢鋒,趙倫杰. 2010. 鹽脅迫下AM真菌對(duì)枳實(shí)生苗生長(zhǎng)和根系抗氧化酶的影響[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào),32(4):759-762. [Wu Q S,Liu W,Zhai H F,Ye X F,Zhao L J. 2010. Influences of AM fungi on growth and root antioxidative enzymes of trifoliate orange seedlings under salt stress[J]. Acta Agriculturae Universitatis Jiangxiensis,32(4):759-762.] doi:10.3969/j.issn. 1000-2286.2010.04.023.

吳文,張瑞敏,朱從一,曾繼吾,馬培恰,黃永敬. 2020. 隔年交替結(jié)果對(duì)砂糖橘產(chǎn)量、品質(zhì)的影響及效益研究[J]. 廣東農(nóng)業(yè)科學(xué),47(8):30-36. [Wu W,Zhang R M,Zhu C Y,Zeng J W,Ma P Q,Huang Y J. 2020. Effect of alternate year bearing technology on yield and quality of Shatangju mandarin and its economic benefits analysis[J]. Guangdong Agricultural Sciences,47(8):30-36.] doi:10.16768/j.issn.1004-874X.2020.08.005.

徐呈祥,鄭福慶,馬艷萍,張少平,陳小婷,葉思敏. 2021. 貯藏溫度對(duì)耐貯性不同的柑橘品種果皮蠟質(zhì)含量及其化學(xué)組成的影響[J]. 食品科學(xué),42(13):223-232. [Xu C X, Zheng F Q,Ma Y P,Zhang S P,Chen X T,Ye S M. 2021. Effect of storage temperature on peel wax content and chemical composition of citrus cultivars with different storability[J]. Food Science,42(13):223-232.] doi:10. 7506/spkx1002-6630-20190617-167.

張朝坤,陳洪彬,康仕成,劉劍鋒,周文龍. 2018. 不同品種番石榴果實(shí)耐藏性和采后品質(zhì)變化比較[J]. 南方農(nóng)業(yè)學(xué)報(bào),49(7):1409-1414. [Zhang C K,Chen H B,Kang S C,Liu J F,Zhou W L. 2018. A comparative study of fruit storability and postharvest quality changes among different Psidium guajava L. cultivars[J]. Journal of Sou-thern Agriculture,49(7):1409-1414.] doi:10.3969/j.issn. 2095-1191.2018.07.23.

周心智,張?jiān)瀑F. 2019. NaCl脅迫對(duì)5種柑橘砧木生長(zhǎng)及生理特性的影響[J]. 西南大學(xué)學(xué)報(bào)(自然科學(xué)版),41(11): 1-6. [Zhou X Z,Zhang Y G. 2019. Evaluation of salinity tolerance in five citrus rootstock seedlings[J]. Journal of Southwest University(Natural Science),41(11):1-6.] doi:10.13718/j.cnki.xdzk.2019.11.001.

朱世平,陳嬌,劉小豐,曹立,陸智明,趙曉春. 2014. 15種柑橘砧木出苗期耐鹽堿性評(píng)價(jià)[J]. 西南大學(xué)學(xué)報(bào)(自然科學(xué)版),36(6):1-7. [Zhu S P,Chen J,Liu X F,Cao L,Lu Z M,Zhao X C. 2014. Evaluation of salinity and alkalinity tolerances of 15 citrus rootstocks by in vitro culture[J]. Journal of Southwest University(Natural Science),36(6):1-7.] doi:10.13718/j.cnki.xdzk.2014.06.008.

Anjum M A. 2007. Effect of NaCl concentration in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance[J]. Acta Physiologia Plantrum,30(1):43-52. doi:10.1007/s11738-007-0089-3.

Balal R M,Ashraf M Y,Khan M M,Jaskani M J,Ashfaq M. 2011. Influence of salt stress on growth and biochemical parameters of citrus rootstocks[J]. Pakistan Journal of Botany,43(4):2135-2141. doi:10.1186/1746-4811-7-25.

Bourazza M,Chetto O,Talha A,F(xiàn)arih A,Douira A,Benyahia H. 2021. The influence of arbuscular mycorrhizal colonization on key growth parameters of five citrus cultivars under salt stress[J]. Plant Cell Biotechnology and Mole-cular Biology,22(41-42):125-138.

Brito M E B,da Silva Sá F V,F(xiàn)ilho W D S,de Andrade S L,F(xiàn)ernandes P D. 2016. Gas exchange and chlorophyll fluorescence of citrus rootstock varieties under salt stress[J]. Revista Brasileira de Fruticultura,38(2). doi:10.1590/01 00-29452016951.

Cheng X F,Wu H H,Zou Y N,Wu Q S,Ku?a K. 2021. Mycorrhizal response strategies of trifoliate orange under well-watered,salt stress,and waterlogging stress by regulating leaf aquaporin expression[J]. Plant Physiology and Biochemistry,162:27-35. doi:10.1016/j.plaphy.2021. 02.026.

Chersicola M,Kladnik A,Tu?ek-?nidari? M,Mrak T,Gruden K,Dermastia M. 2017. 1-aminocyclopropane 1-carboxylate oxidase induction in tomato flower pedicel phloem and abscission related processes are differentially sensitive to ethylene[J]. Frontiers in Plant Science,8:464. doi:10.3389/fpls.2017.00464.

Einhorn T C,Arrington M. 2018. ABA and shading induce ‘Bartlett’pear abscission and inhibit photosynthesis but are not additive[J]. Journal of Plant Growth Regulation,37(1):300-308. doi:10.1007/s00334-017-9729-z.

Etehadpour M,F(xiàn)atahi R,Zamani Z,Golein B,Naghavi M R,Gmitter F. 2020. Evaluation of the salinity tolerance of Iranian citrus rootstocks using morph-physiological and molecular methods[J]. Scientia Horticulturae,261:109012. doi:10.1016/j.scienta.2019.109012.

Goldental-Cohen S,Burstein C,Biton I,Ben Sasson S,Sadeh A,Many A,Doron-Faigenboim A ,Zemach H,Mugira Y,Schneider D,Birger R,Meir S,Philosoph-Hadas S,Irihomovitch V,Lavee S,Avidan B,Ben-Ari G. 2017. Ethephon induced oxidative stress in the olive leaf abscission zone enables development of a selective abscission compound[J]. BMC Plant Biology,17(1): 87. doi:10.1186/s12870-017-1035-1.

Hadian-Deljou M,Esna-Ashari M,Mirzaie-asl A. 2020. Alleviation of salt stress and expression of stress-responsive gene through the symbiosis of arbuscular mycorrhizal fungi with sour orange seedlings[J]. Scientia Horticulturae,268: 109373. doi:10.1016/j.scienta.2020.109373.

Hussain S,Luro F,Costantino G,Ollitrault P,Morillon R. 2012. Physiological analysis of salt stress behaviour of citrus species and genera: low chloride accumulation as an indicator of salt tolerance[J]. South African Journal of Botany,81: 103-112. doi:10.1016/j.sajb.2012.06.004.

Ismail A M,Horie T. 2017. Genomics,physiology,and molecu-lar breeding approaches for improving salt tolerance[J]. Annual Review of Plant Biology,68(1): 405-434. doi:10.1146/annurev-arplant-042916-040936.

Khoshbakht D,Asghari M R,Haghithi M. 2018. Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence,photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress[J]. Photosynthetica,56(4):1313-1325. doi:10.1007/s11099-018-0839-z.

Munns R,Tester M. 2008. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology,59:651-681. doi:10.1146/annurev.arplant.59.032607.092911.

Nayem S A,M. Chowdhury M S M,Sultana N,Masum G Z H,Rahman Md S,Jamal M A H M. 2020. Combined effect of salt stress and Xanthomonas axonopodis pv citri on citrus(Citrus aurantifolia)[J]. Heliyon,6(2): e03403. doi:10.1016/j.heliyon.2020.e03403.

Shahid M A,Balal R M,Khan N,Simón-Grao S,Alfosea-Simón M,Cámara-Zapata J M,Mattson N S,Garcia-Sanchez F. 2019. Rootstocks influence the salt tolerance of Kinnow mandarin trees by altering the antioxidant defense system,osmolyte concentration,and toxic ion accumulation[J]. Scientia Horticulturae,250:1-11. doi:10.1016/j.scienta.2019.02.028.

Sharma D K,Dubey A K,Srivastav M,Singh A K,Sairam R K,Pandey R N,Dahuja A,Kaur C. 2014. Effect of putrescine and paclobutrazol on growth,physiochemical parameters,and nutrient acquisition of salt-sensitive citrus rootstock Karna khatta(Citrus karna Raf.) under NaCl stress[J]. Journal of Plant Growth Regulation,30:301-311. doi:10.1007/s00344-011-9192-1.

Song T Z,Shi Y Y,Shen L K,Cao C J,Shen Y,Jing W,Tian Q X,Lin F,Li W Y,Zhang W H. 2021. An endoplasmic reticulum-localized cytochrome b5 regulates high-affinity K+ transport in response to salt stress in rice[J]. Procee-dings of the National Academy of Sciences,118(50): e2114347118. doi:10.1073/pnas.2114347118.

Wang W,Liu J H. 2016. CsPAO4 of Citrus sinensis functions in polyamine terminal catabolism and inhibits plant growth under salt stress[J]. Scientific Reports,6:31384. doi:10.1038/srep31384.

Wei Q J,Ma Q L,Ning S J,Su S T,Gu Q Q. 2018. Molecular characterization and functional analysis of a cation-chloride cotransporter gene from trifoliate orange(Poncirus trifoliate L.)[J]. Trees: Struction and Function,32(1):165-173. doi:10.1007/s00468-017-1621-8.

Wu X L,Zheng F Q,Xu C X,Tang W W. 2016. Genetic diversity analysis of Shatangju mandarin(Citrus reticulata)? by SCoT-PCR[J]. Agricultural Science & Technology,17(1): 34-37. doi:10.16175/j.cnki.1009-4229.2016.01.010.

Yang Z Q,Zhong X M,F(xiàn)an Y,Wang H C,Li J G,Huang X M. 2015. Burst of reactive oxygen species in pedicel mediated fruit abscission after carbohydrate supply was cut off in longan(Dimocarpus longan)[J]. PhytoKeys,6: 360. doi:10.3389/fpls.2015.00360.

Zhang Y C,Wang P,Wu Q H,Zou Y N,Bao Q,Wu Q S. 2017. Arbuscular mycorrhizas improve plant growth and soil structure in trifoliate orange under salt stress[J]. Archives of Agronomy and Soil Science,63(4):491-500. doi:10.1080/03650340.2016.1222609.

收稿日期:2021-09-30

基金項(xiàng)目:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-26);廣東省農(nóng)村科技特派員項(xiàng)目(2021-1056-9-4)

通訊作者:吉前華(1972-),https://orcid.org/0000-0003-2280-2074,博士,教授,主要從事柑橘遺傳育種及生理研究工作,E-mail:qhgee@163.com

第一作者:郭雁君(1973-),https://orcid.org/0000-0003-3127-148X,副教授,主要從事柑橘栽培及生理研究工作,E-mail:yjguo@163.com

主站蜘蛛池模板: 色国产视频| 98精品全国免费观看视频| 亚洲人成在线免费观看| 亚洲国产成熟视频在线多多| 亚洲中文无码av永久伊人| 狠狠色噜噜狠狠狠狠色综合久| 国产一区二区丝袜高跟鞋| 91色在线观看| 99国产精品一区二区| 欧美成人精品一区二区| 综合亚洲网| 狼友视频国产精品首页| 9久久伊人精品综合| 亚洲天堂网视频| 国产精品入口麻豆| 亚洲精品动漫| 亚洲久悠悠色悠在线播放| 久久国产拍爱| 精品欧美一区二区三区在线| 69av在线| 国内熟女少妇一线天| 99久久精品无码专区免费| 大香伊人久久| 国产在线视频二区| 午夜国产不卡在线观看视频| 亚洲国产精品日韩欧美一区| 精品久久久久久成人AV| 国产乱子伦精品视频| 全午夜免费一级毛片| 四虎永久免费地址| 国产精品天干天干在线观看| 亚洲美女视频一区| 伊人久久久大香线蕉综合直播| 精品人妻AV区| 久久亚洲欧美综合| 老熟妇喷水一区二区三区| 国产精品精品视频| 欧美激情第一区| 干中文字幕| 日本精品视频一区二区| 亚洲精品无码久久毛片波多野吉| 亚洲天堂区| 日韩精品免费一线在线观看| 青青草原国产| 色婷婷天天综合在线| 成年网址网站在线观看| 波多野结衣国产精品| 无码日韩精品91超碰| 九九线精品视频在线观看| 国产一区二区三区免费观看| 亚洲中文在线看视频一区| 久久精品无码一区二区日韩免费| 99re经典视频在线| 免费在线a视频| 欧美一道本| 亚洲天堂久久| 国产在线观看高清不卡| 国产一在线| 99视频全部免费| 99无码中文字幕视频| 超清无码熟妇人妻AV在线绿巨人| 国产精品女熟高潮视频| 国产超薄肉色丝袜网站| 亚洲制服中文字幕一区二区| 狠狠久久综合伊人不卡| 97人人做人人爽香蕉精品| 亚洲欧美另类专区| 无码国产偷倩在线播放老年人| 日本国产精品一区久久久| av尤物免费在线观看| 欧美成人综合视频| 拍国产真实乱人偷精品| 九九九九热精品视频| 911亚洲精品| 丁香六月激情综合| 91亚洲免费| 国产在线观看91精品亚瑟| 五月婷婷丁香色| 不卡无码网| 国产美女一级毛片| 欧美精品导航| 免费国产在线精品一区|