999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

夯實基礎重規范拓展思維應變化

2022-07-23 09:26:02孟憲良
數理天地(高中版) 2022年7期
關鍵詞:立德樹人核心素養

孟憲良

【摘 要】 縱觀近兩年高考,試卷命題整體以全國教育大會精神為指引,全面貫徹落實“五育并舉”的教育方針,突出學科核心素養,著重考查考生的閱讀能力、思維能力以及綜合運用能力.本文以近兩年高考天津卷中的數列題型為例,提出幾點教學思考.

【關鍵詞】 核心素養;立德樹人;課程評價

1 2021年天津卷整體結構分析

試卷秉承“穩中有新,穩中有變”的命題原則,在知識結構、能力結構、難度結構上完整統一,考查基礎知識的同時,注重考查能力,以數學學科核心素養為導向,將知識、能力、素養融為一體,全面檢測考生的數學學科素養.

第1題集合的交并補運算,第2題充分必要條件,這兩道題注重考查學生的數學運算的核心素養.第3題考查圖象辨析,培養學生綜合運用函數的基本性質,發現函數的變化趨勢.

第4題統計中頻率分布直方圖,以大家熟悉的網絡平臺推送影視作品為選材,以實際生活為背景,需要學生能從具體生活實際中抽象出數學模型,從統計圖表中發現關鍵信息,處理生活中的概率統計問題.第5題比較大小,借助指對函數圖像及指對函數性質,題型穩定,變化不大.第6題球的接切問題,注重學生空間想象能力的培養,提升學生直觀想象的核心素養.第7題為一道指對運算的題目.第8題為圓錐曲線的考查,雙曲線與拋物線的結合.第9題是以函數零點問題為背景,考查學生分析函數的方法,強調從代數化簡推導到幾何作圖,充分考查了考生的數形結合思想與轉化化歸思想,考驗學生分析問題、解決問題的綜合能力.

填空第10題和11題仍然是復數與二項式定理的考查,旨在考查數學運算核心素養.第12題是直線與圓的考查,注重幾何與代數結合的考查,難度適中.第13題基本不等式的考查,注重學生對于基礎知識的運用和綜合分析能力的考查.第14題作為概率與統計知識的考查.第15題是平面向量知識的考查,同樣是采用了雙空的形式,面向全體學生.

解答題第16題是利用正余弦定理解三角形,考查學生的基礎性應用.第17題立體幾何知識的考查.第18題圓錐曲線橢圓解答題的考查,本題意在考查學生題目的綜合分析能力以及計算能力,從提升學生的數學核心素養的角度出發.第19題數列,第一問還是等差等比數列的基本量運算;第二問為數列求和問題;在第三問加大了難度,尤其是放縮方法的結合,求和時需要先放縮去除根號,才能用錯位相減法求和,提高了數列題型的技巧性.第20題,作為試卷的最后一題,綜合了函數與導數知識,既有對函數、導數基本知識方法的考查,又有對導數與不等式綜合能力的考查.

2 夯實基礎,注重解題規范

例如 2020年、2021年天津卷的數列題,我們要注重解題規范,首先獲得基礎分值.例如第一問:求an和bn的通項公式,屬于對學生基本公式和基礎能力的考查.

2020年19題 已知an為等差數列,bn為等比數列,a1=b1=1,a5=5a4-a3,b5=4b4-b3.

(Ⅰ)求an和bn的通項公式;

(Ⅱ)記an的前n項和為Sn,求證:SnSn+2<S2n+1n∈N*;

(Ⅲ)對任意的正整數n,

設cn=3an-2bnanan+2,n為奇數,an-1bn+1,n為偶數.

求數列cn的前2n項和.

思路分析 (Ⅰ)由題意分別求得數列的公差、公比,然后利用等差、等比數列的通項公式得到結果;

(Ⅱ)利用(Ⅰ)的結論首先求得數列an前n項和,然后利用作差法證明即可;

(Ⅲ)分類討論n為奇數和偶數時數列的通項公式,然后分別利用指數型裂項求和和錯位相減求和計算∑nk=1c2k-1和∑nk=1c2k的值,據此進一步計算數列cn的前2n項和即可.

詳解過程 (Ⅰ)設等差數列an的公差為d,等比數列bn的公比為q.

由a1=1,a5=5a4-a3,可得d=1.

從而an的通項公式為an=n.

由b1=1,b5=4b4-b3,

又q≠0,可得q2-4q+4=0,解得q=2,

從而bn的通項公式為bn=2n-1.

(Ⅱ)證明:由(Ⅰ)可得Sn=n(n+1)2,

故SnSn+2=14n(n+1)(n+2)(n+3),S2n+1=14n+12n+22,

從而SnSn+2-S2n+1=-12(n+1)(n+2)<0,

所以SnSn+2<S2n+1.

(Ⅲ)當n為奇數時,cn=3an-2bnanan+2=(3n-2)2n-1n(n+2)=2n+1n+2-2n-1n,

當n為偶數時,cn=an-1bn+1=n-12n,

對任意的正整數n,有

∑nk=1c2k-1=∑nk=122k2k+1-22k-22k-1=22n2n+1-1,

和∑nk=1c2k=∑nk=12k-14k=14+342+543+…+2n-34n-1+2n-14n ,①

由①得14∑nk=1c2k=142+343+544+…+2n-34n+2n-14n+1,②

由①②得34∑nk=1c2k=14+242+…+24n-2n-14n+1=241-14n1-14-14-2n-14n+1,

由于241-14n1-14-14-2n-14n+1=23-23×14n-14-2n-14n×14=512-6n+53×4n+1,

從而得:∑nk=1c2k=59-6n+59×4n.

因此,∑2nk=1ck=∑nk=1c2k-1+∑nk=1c2k=4n2n+1-6n+59×4n-49.

所以,數列cn的前2n項和為4n2n+1-6n+59×4n-49.

命題意圖 本題主要考查數列通項公式的求解,分組求和法,指數型裂項求和,錯位相減求和等,屬于中等題.

命題方向 這類試題在考查題型上主要以解答題的形式出現.多為中檔題,數列是歷年高考的熱點,主要考查數列的通項公式及前n項和.

方法總結 高考命制綜合題時,常將等差、等比數列結合在一起,形成兩者之間的相互聯系和相互轉化,破解這類問題的方法是首先尋找通項公式,利用性質之間的對偶與變式進行轉化.

常見錯誤解法及教學建議

第1問常見錯誤解法:

錯誤解法1 在第一問中,出現計算錯誤.

錯解 a5=5(a4-a3)

a1+4d=5(a1+3d-a1+2d),(此時的符號運算已經出現錯誤)

21d=1,所以d=121.

錯誤解法2:等比數列通項公式的記憶錯誤,很多學生把通項公式記成:bn=b1qn

從而,得到bn=2n的錯解.

教學建議 注意基本公式的準確性.

第2問常見錯誤解法:

錯誤解法1 等差數列前n項公式錯誤

例如 錯誤公式1:Sn=na1+n(n+1)2d

錯誤公式2:Sn=n(an-a1)2=n(n-1)2

錯誤解法2 證明方法隨意、不規范,對于作差、作商、分析法,沒有規范的書寫格式.

錯誤解法3 把an的前n項和為Sn誤當做bn前n項和計算,

即Sn=1-2n1-2=2n-1,

在此時的情況下,Sn+1=2n+1-1;

Sn+2=2n+2-1,

SnSn+2=(2n-1)(2n+2-1)=22n+2-2n+2-2n+1,

S2n+1=(2n+1-1)2=22n+2-2n+2+1.

利用作差等方法比較大小.

教學建議 注意解題方法的規范性.

第3問常見錯誤解法:

錯誤解法1 當n為奇數時,裂項形式錯誤

高頻錯誤方式有:

(1)3n-2·2n-1nn+2=(3n-2)·2n-2·(1n-1n+2);

(2)3n-2·2n-1nn+2=(2n+2n+2-2nn).

錯誤解法2 不清楚前2n項最后一個奇數項是哪一個.

2021年19題

已知{an}是公差為2的等差數列,其前8項和為64.{bn}是公比大于0的等比數列,b1=4,b3-b2=48.

(Ⅰ)求an和bn的通項公式;

(Ⅱ)記cn=b2n+1bn,n∈N.

(i)證明cn2-c2n是等比數列;

(ii)證明∑nk=1akak+1ck2-c2k<22(n∈N).

詳解過程

(Ⅰ)解:記等差數列an的公差為d,前n項和為Sn,由題意知d=2,S8=64,

代入公式Sn=na1+n(n-1)2d,解得a1=1,所以an的通項公式為an=2n-1.

設等比數列bn的公比為q,由b1=4,b3-b2=48,可得q2-q=12,又q>0,

解得q=4,所以bn的通項公式為bn=4n.

(Ⅱ)(i)證明:由(Ⅰ)可得cn2=(b2n+1bn)2=(42n+14n)2=44n+142n+2×4n,

cn2-c2n=44n+142n+2×4n-(44n+142n)=2×4n,

因為對任意n∈N,有c2n+1-c2(n+1)cn2-c2n=2×4n+12×4n=4,所以cn2-c2n是等比數列.

(ii)證明:由(Ⅰ)和(Ⅱ)(i),有

akak+1ck2-c2k=(2k-1)(2k+1)2×4k=4k2-12×4k<4k22×4k=2·k2k,

則∑nk=1akak+1ck2-c2k<2∑nk=1k2k.

記Tn=∑nk=1k2k,即

Tn=12+222+323+…+n2n.?? (1)

由(1)得12Tn=122+223+…+n-12n+n2n+1. ??(2)

由(1)(2)得12Tn=12+122+123+…+12n-n2n+1=12(1-12n)1-12-n2n+1,從而得

Tn=2-n+22n<2.

所以,∑nk=1akak+1ck2-c2k<2Tn<22(n∈N).

3 拓展數學思維,應對題型變化

數學是思維的科學,數學教學的根本任務就是優化學生的思維品質.在高考復習的過程,始終要堅持思維有邏輯,知識常梳理,賦予學生獨立探索的過程,體會高考題中的內在聯系,促進“高考經驗”的形成,從而提升學生解決實際問題的能力,提高課堂復習效率,從容面對題型變化,獲得更加優異的成績.

參考文獻:

[1]錢詣文.問題導向下的數學教育研究進展與展望——第二屆江蘇數學教育學術研討會述評[J].數學教育學報,2021,30(05):99-102.

[2]杜曉霞,王勇.當數學文化與解析幾何相遇[J].求學,2021(37):43-44.

[3]謝雪晶.新課改背景下高中數學校本課程的開發與運用[J].試題與研究,2021(28):137-138.

猜你喜歡
立德樹人核心素養
立德樹人視閾下的服務型基層黨支部構建方式探究
科教導刊(2016年28期)2016-12-12 06:04:24
談當代大學生思想政治教育的根本任務
淺析以“立德樹人”為目標的初中音樂教學策略
淺談在小學數學課堂教學中實踐立德樹人
學校體育器材管理自助化
體育師友(2016年5期)2016-11-28 11:20:01
思想教育視域下公民核心素養教育的研究
考試周刊(2016年86期)2016-11-11 08:51:29
新常態視閾下高校輔導員做好學生思想政治工作研究
文教資料(2016年19期)2016-11-07 07:35:01
如何培養學生的化學核心素養
考試周刊(2016年79期)2016-10-13 23:11:06
作為“核心素養”的傾聽
今日教育(2016年7期)2016-10-08 09:44:23
“1+1”微群閱讀
主站蜘蛛池模板: 国产精品女人呻吟在线观看| 国产一国产一有一级毛片视频| 久久人与动人物A级毛片| 亚洲一区波多野结衣二区三区| 亚洲色无码专线精品观看| 91无码视频在线观看| 国产一级在线播放| 亚洲乱码在线播放| 99精品视频九九精品| 免费毛片网站在线观看| 成人一区专区在线观看| 国产精品亚洲一区二区在线观看| 国产成人精品第一区二区| 精品人妻一区无码视频| 18禁影院亚洲专区| 91娇喘视频| 亚洲天堂网在线观看视频| 亚洲黄色视频在线观看一区| 色婷婷亚洲十月十月色天| 欧美精品在线观看视频| 久久精品免费看一| 亚洲成aⅴ人片在线影院八| 香蕉久久国产超碰青草| 久久亚洲中文字幕精品一区| 国产精品一区不卡| 亚洲精品无码AV电影在线播放| 91毛片网| 色亚洲成人| 全色黄大色大片免费久久老太| 欧美日韩激情在线| 青青久久91| 波多野结衣第一页| 精品伊人久久大香线蕉网站| 毛片免费在线视频| 久久 午夜福利 张柏芝| 91精品国产福利| 色天天综合| 人妻丰满熟妇av五码区| 亚洲国产成人精品一二区| 亚洲精品动漫在线观看| 亚洲欧洲日韩国产综合在线二区| 久久99蜜桃精品久久久久小说| 欧美午夜精品| 青青青国产视频手机| 午夜丁香婷婷| 国产精品一区二区不卡的视频| 少妇极品熟妇人妻专区视频| 精品国产黑色丝袜高跟鞋| 国产在线精彩视频论坛| 亚洲欧美天堂网| 日本午夜影院| 国产真实乱子伦视频播放| 国产高清免费午夜在线视频| 国产综合色在线视频播放线视| 毛片大全免费观看| 亚洲天堂日本| 波多野结衣一二三| 毛片免费网址| 天堂岛国av无码免费无禁网站| 国产91线观看| 亚洲AV色香蕉一区二区| 免费看av在线网站网址| 国产精品第页| 亚洲国产精品无码AV| 欧美日在线观看| 色婷婷久久| 欧美在线免费| 2020最新国产精品视频| 狠狠v日韩v欧美v| 91网红精品在线观看| 特级aaaaaaaaa毛片免费视频 | 天堂久久久久久中文字幕| 精品国产成人a在线观看| 在线观看免费AV网| 婷婷99视频精品全部在线观看| 国产激情无码一区二区APP| 久久伊人色| 9cao视频精品| 在线毛片免费| 午夜成人在线视频| 亚洲国产欧美国产综合久久 | 国产成人在线小视频|