999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Metaheuristic Based Data Gathering Scheme for Clustered UAVs in 6G Communication Network

2022-08-23 02:19:44AhmedAlmasoudSiwarBenHajHassineNadhemNEMRIFahdAlWesabiManarAhmedHamzaAnwerMustafaHilalAbdelwahedMotwakelandMesferAlDuhayyim
Computers Materials&Continua 2022年6期

Ahmed S.Almasoud,Siwar Ben Haj Hassine,Nadhem NEMRI,Fahd N.Al-Wesabi,3,Manar Ahmed Hamza,Anwer Mustafa HilalAbdelwahed Motwakel and Mesfer Al Duhayyim

1Department of Information Systems,College of Computer and Information Sciences,Prince Sultan University,Saudi Arabia

2Department of Computer Science,College of Science&Arts at Mahayil,King Khalid University,Saudi Arabia

3Faculty of Computer and IT,Sana’a University,Sana’a,Yemen

4Department of Computer and Self Development,Preparatory Year Deanship,Prince Sattam bin Abdulaziz University,AlKharj,Saudi Arabia

5Department of Natural and Applied Sciences,College of Community-Aflaj,Prince Sattam bin Abdulaziz University,Saudi Arabia

Abstract: The sixth-generation (6G) wireless communication networks are anticipated in integrating aerial,terrestrial,and maritime communication into a robust system to accomplish trustworthy, quick, and low latency needs.It enables to achieve maximum throughput and delay for several applications.Besides,the evolution of 6G leads to the design of unmanned aerial vehicles(UAVs)in providing inexpensive and effective solutions in various application areas such as healthcare, environment monitoring, and so on.In the UAV network, effective data collection with restricted energy capacity poses a major issue to achieving high quality network communication.It can be addressed by the use of clustering techniques for UAVs in 6G networks.In this aspect, this study develops a novel metaheuristic based energy efficient data gathering scheme for clustered unmanned aerial vehicles(MEEDG-CUAV).The proposed MEEDG-CUAV technique intends in partitioning the UAV networks into various clusters and assign a cluster head (CH) to reduce the overall energy utilization.Besides, the quantum chaotic butterfly optimization algorithm (QCBOA) with a fitness function is derived to choose CHs and construct clusters.The experimental validation of the MEEDG-CUAV technique occurs utilizing benchmark dataset and the experimental results highlighted the better performance over the other state of art techniques interms of different measures.

Keywords: 6G network; mobile communication; uav networks; energy efficiency;clustering;metaheuristics

1 Introduction

The cutting edge wireless communication networks towards 6G are imagined to empower intellectual, secure, dependable, and boundless availability [1].It is anticipated that 6G will bring an undeniable structure for connected things and computerization framework from independent vehicles to unmanned aerial vehicles (UAVs) with tough and various prerequisites such as dependability,inertness, data rate, and energy proficiency.UAVs, normally known as drones, act as a vital part of a broad scope of utilization cases and situations that can go past 5G and 6G[2].The instances of UAV applications incorporate bundle conveyance,media creation,surveillance,and distant developments.The organization of UAVs is consistently expanding and, as anticipated by the Federal Aviation Administration (FAA), the quantity of business UAV armadas can reach up to 1.6 million by 2024.In the meantime,unmanned aircraft system(UAS)traffic management(UTM)frameworks are being created to provide danger free activity of low-height UAVs with their conceivably high traffic thickness.In an associated sky,the help of a huge scope arrangement of UAVs requires solid and secure remote correspondences that guarantee safe control and activity of UAVs [3].This will require productive framework plan for remote correspondence,canny calculation,and solid control instruments.Fig.1 illustrates the process of 5G.

Figure 1:Process of 5G

In multiUAV systems, UAV-to-UAV (U2U) and UAV-to-base station (U2BS) data sharing is a successful answer for excellent organization correspondence.Inferable from the high portability of UAVs,UAV localization is a significant specialized issue.UAV localization is acknowledged utilizing GPS; be that as it may, GPS experiences a normal area blunder of 10–30 m [4].Much of the time, for example, rural environments check under terrible climate conditions, the GPS signal has been inadequate or totally missing.Subsequently,a few techniques are presented for addressing this localization issue in UAV networks[5].The vast majority of these techniques,which utilize the distance estimation strategy,depend on bilateration and trilateration.Be that as it may,flip ambiguity(FA)is a significant issue in distance-estimation based localization techniques[6].Nonetheless,GPS is costly and energy burning-through[7].

In multi-UAV systems,clustering is utilized to control the organization of UAVs in the network.Due to energy limits,the network lifespan has been critical boundary in UAV systems[8].Additionally,attributable to the high versatility of UAVs, geography control is fundamental to decrease correspondence impedance[9].The clustering approach addresses the significant distance correspondence issue, expands network versatility, improves network lifetime, and builds the unwavering quality of the whole organization.Moreover,clustering can furnish proficient and consistent courses with low correspondence overhead during the course disclosure and sending measures [10].It can be result of their effortlessness,adequacy in taking care of complicated streamlining issues,and neighborhood least aversion[11].A greater part of these calculations is motivated by creature conduct,developmental ideas,and actual wonders.

Pustokhina et al.[12] proposed a novel energy-efficient cluster based UAV network with DL based scene classification technique.The presented technique contains a clustering with parameter tuned residual network (C-PTRN) technique that functions on 2 important stages namely cluster construction as well as scene classification.Primarily,the UAV is clustered,and selected CH transfer the taken images to BS.Secondary level, a DL-based ResNet50 approach was utilized to scene classification.For tuning the hyperparameter of ResNet50 technique,water wave optimization(WWO)technique was utilized.

In Turgut et al.[13], an analytical structure has been given for analyzing the SINR coverage probabilities of UAV helped cellular networks by clustered user equipment(UE).The place of UAVs as well as ground BS have been demonstrated as Poison point procedures,and UE has been considered distributed based on Poisson cluster technique about the predictions of UAV on the ground.Primarily,the complementary cumulative distribution purpose and probabilities density purpose of path losses to combine of UAV as well as ground BS tiers are resultant.

In Na et al.[14], an efficient iterative technique was presented for addressing it.Initially, to set UAV path, every terminal is clustered and sub-slot allocation technique dependent upon Lagrange multiplier and bisection technique was presented.Afterward,to set clustering state and sub-slot time,it can optimize the UAV path.Spyridis et al.[15] regarded the aim of locating mobile IoT devices of unknown places,utilizing the set of UAVs which are equipped by RSSI sensor.The UAV utilized measurement of objective’s radio frequency(RF)signal power for modelling the objective as rapidly as feasible.In DL technique carried out clustering from the UAV networks at regular intervals depending upon graph convolutional network(GCN)framework that utilized data on RSSI and UAV places.

In Liu et al.[16], a new non-stationary multi-mobility UAV-to-ship channel technique was presented,containing 3 types of modules,for instance,the line-of-sight(LoS),single-bounce(SB)modules resultant in the variation of seawater,and multi-bounce(MB)modules presented by waveguide result on sea surface.Minhas et al.[17] proposed the Reinforcement Learning (RL) and UAV helped multipath routing technique to PSN.The goal is for increasing network lifespan by enhancing the energy-efficiency of PSN.Initial,network configurations have been created utilizing varying clustering methods.The RL is then implemented for configuring the routing topology which regards combined immediate energy cost and entire distance cost of communication path.

1.1 Objective of the Paper

The major objective of the study is to design an intelligent data gathering scheme for clustered UAVs in such a way that the energy efficiency is accomplished.

1.2 Contribution of the Paper

This article presents a novel metaheuristic based energy efficient data gathering scheme for clustered unmanned aerial vehicles(MEEDG-CUAV).The proposed MEEDG-CUAV technique intends in partitioning the UAV networks into various clusters and assign a cluster head(CH)to reduce the overall energy utilization.Besides, the quantum chaotic butterfly optimization algorithm(QCBOA)with a fitness function is derived to choose CHs and construct clusters.The experimental validation of the MEEDG-CUAV technique takes place using benchmark dataset and the experimental results highlighted the better performance over the other state of art techniques interms of different measures.

1.3 Organization of the Paper

The rest of the paper is organized as follows.Section 2 offers the detailed discussion of the MEEDG-CUAV technique and Section 3 provides a brief performance validation process.Finally,Section 4 draws the conclusion.

2 The Proposed MEEDG-CUAV Technique

In this study,a MEEDG-CUAV technique is derived for energy efficient data collection in UAV enabled 6G networks.The MEEDG-CUAV technique involves the design of QCBOA technique by integrating the concepts of quantum theory and chaotic map into the classical BOA.In addition,the QCBOA technique derives a fitness function involving three input variables to elect CHs like residual energy (RDE), average distance to neighboring UAVs (ADTN), and UAV degree (DEG).Fig.2 demonstrates the overall process of presented MEEDG-CUAV technique.

Figure 2:Overall process of MEEDG-CUAV model

2.1 Algorithmic Design of QCBOA Technique

The nature simulated metaheuristic technique is presented, called BOA that reproduces the foraging as well as mating performance of the butterfly.The most essential feature of BOA altered in other metaheuristics is which all butterflies have their individual unique scent.The fragrance was expressed as:

wherefiimplies the supposed magnitude of smell,csignifies the sensory modalities,andIrefers the stimulation intensities,andadefines the power exponents dependent upon degree of smell absorption.In theory,some value of sensory morphologies coefficientcfrom the range of 0 and ∞is taken.But,their value has been defined as the particularity of optimized issues from the iterative procedure of BOA.The sensory modalitycfrom the optimum search phase of technique is expressed as:

whereTmaxrepresents the maximal amount of iterations during this technique,and the primary value of parameterchas been fixed to 0.01.

Besides, there are 2 important steps from the technique, it can be correspondingly, global as well as local search phases [18].The mathematical process of butterfly global search movement is written as:

whereindicates the solution vectorxiofithbutterfly fromtiteration andrsignifies an arbitrary number from 0 and 1.At this point,gbestrefers the present optimum solution establish amongst every solution from the present stage.Mostlyfidefines the smell ofithbutterfly.The local search phase is written as:

whereandarejth andkth butterflies selected arbitrarily under the solution spaces.Whenandaffect the similar iterations, it implies that butterfly develops local random walk.Otherwise, this type of arbitrary effort alters the solutions.

Combined of global as well as local searches to food and mating partner with butterfly by its nature is taking place.So, the switch probabilityphas been fixed to change the usual global search and intensive local search.During all the iterations, the BOA arbitrarily creates the number from 0 and 1 that is related to switch probabilitypfor deciding that for conducting global/local searches.

The chaos model is a division of mathematics which acts on non-linear dynamical system.Nonlinear represents that it can be inconceivable for predicting the system response with relating the input, and dynamical mean alters from the system in one state to another over time.The chaos purpose signifies the dynamic model with deterministic formula.But, according to the primary condition, chaotic functions are generated wildly unpredictable and divergent feature performances[19].Therefore,the chaos function is improve the intensification as well as diversification of optimized techniques that is prevent local optimal solutions and change nearby global optimal.These purposes follow very easy principles and have some interrelating parts; but, during all iterations, the created value was based on the earlier value and primary condition.

During this case, it can be executed 3 varying chaotic maps such as logistic mapping, iterative mapping, and tent mapping with sensory modality (c) and power exponents (p) computations from the BOA.The chaos purposes have been established for exhibiting higher efficiency related to other chaos purposes.

Logistic map:

At this point,xtimplies the value from some iterationst,andrdenotes the rate of growth that is proceeds values in[3.0–4.0].

Iterative map:

During the iterative map, the value ofPis chosen amongst [0,1], and the outcomexthas been chaotic variable which takes values in[0–1].

Tent map:

The tent map has 1D map which similar to logistic map.At this point,the outcomexthas been chaotic variable which takes values in[0,1].

During the presented QCBOA, the sensory modality value was changed with more disturbance tocvalue under the new BOA utilizing a chaos function.It can change the sensory modality value as:

wherec-mod(t)refers the changed sensory modality value from some iterationst.For implementing the logistic, iterative, and tent chaos maps, (5), (6), and (7) are utilized for replacingxtin (8)correspondingly.Also, the constant value of power exponents on every iteration from the original BOA has been exchanged as:

The variances in the sensory modality and power exponent amongst the new BOA and presented QCBOA with logistic map.Thec-modanda-modvalues don’t differ linearly,and these values aren’t constants on every iteration.

The change of sensory-modality value is affected by premature convergence.In addition, the implementation of constant value to the power exponents are generate a locally minimal output.The intensification as well as diversification of exploring manner is intensified and diversified with more chaotic disturbance and so help the effort near global solutions.

Besides,the quantum computing technique increases the solutions of many real world issues from soft computation methods.Most of their important application was enhancing optimized techniques for exploring the search space further effectively and efficiently.During this technique,every particle is considered for moving in quantum mechanical procedures before typical Newtonian arbitrary movement.During the quantum wave model, a particle has been considered for moving from 1D wellδ,and the place of particle X is computed as:

In Eq.(10),refers the local attractor points(also named as particle motion center)at timet.The convergence to better solution is attained rapidly when all particles move nearby their local attractors.The local attractor point is determined as arbitrary average of global as well as local optimum particles from the swarm as:

At this point,φrepresents the arbitrary number with uniform distribution function on the interval amongst [0,1],denotes the local optimum, andindicates the global optimum amongst every particle.Besides,usignifies the arbitrary number from the range of[0,1], anddefines the typical length of potential wellδat timet,and this value has been directly compared with convergence speed and search capability of technique.is written as:

At this time,Ctdemonstrates the mean optimum place,for instance,the mean of optimum places of every particle contributing from the quantum computing.

Now,Mrepresents the population size,andimplies the personal optimum place of particlesi.Moreover,αstands for tunable parameter(for instance,the contraction-expansion(CE)coefficient)for controlling the convergence speed of technique.Noticeable parameterαcan be decreased under the development of iterations as:

At this point,α1andα0defines the last and primary values ofαcorrespondingly,Trefers the entire amount of iterations,andtsignifies the present iteration number.

2.2 Process Involved in the QCBOA Based Clustering Technique

The presented MEEDG-CUAV based clustering is mostly dependent upon the QCBOA technique.The aim of MEEDG-CUAV approach has for dividingn UAVnodes as to existing or optimal amount of clustersCopt.During the clustering, the adjacent nodes have been selected to CH with means of Euclidean distance that generate user which minimal transmission range outcomes from decreased energy consumption.However, it can be tedious for identifying the distance from extremely mobile conditions.In order to resolve the problem,the distance for neighboring UAVs is defined with utilize of MEEDG-CUAV approach.For selecting CH and creating cluster, the MEEDG-CUAV manner considers this issue as maximization issue and derive as FF containing RDE,ADTN,and DEG.The fitness function(FF)has been determined as:

whereα+β+γ= 1.Primarily,the RDE of UAV(x)in the communication ofkbit data for getting UAV(y)that is placed at distanced,has demonstrated in Eq.(16):

whereErefers to the current energy level of UAV andETstands for the energy spent on data broadcast.

whereEedefines the energy of electrons andEasignifies the vital amplified energy,ER(k)indicates the energy spent on data receptions that are defined in Eq.(18):

In addition, the AADTN signifies the average value of distance of the neighbroing UAV from their 1-hop communication range[20].It is determined in Eq.(19):

wheredist(i,nbj)refers the distance in the UAV to closerjth UAV.

At a time t,the DEG implies the UAV degree representing the amount of adjacent nodes current to UAV that is formulated as:

whereN(x)={ny/dist(x,y)<transrange}xy,anddist(x,y)demonstrates the distance among 2 UAVsnxandny,transrangeimplies the transmission range of UAVs.

3 Experimental Validation

The performance validation of the MEEDG-CUAV technique takes place under varying dimensions.

Tab.1 and Fig.3 offer the energy consumption(EC)analysis of the MEEDG-CUAV technique with existing approaches under distinct UAV count.The outcomes depicted that the MEEDG-CUAV technique has gained effective outcomes with minimal EC.

Table 1: Energy consumption analysis of proposed MEEDG-CUAV method

For instance, with 10 UAVs, the MEEDG-CUAV technique has attained a lower EC of 87 mJ whereas the SOCS, BICSF, EALC, and MPCA techniques have obtained higher EC of 96, 100,102, and 111 mJ respectively.In line with, with 40 UAVs, the MEEDG-CUAV system has reached a minimum EC of 131 mJ whereas the SOCS, BICSF, EALC, and MPCA techniques have gained superior EC of 155, 164, 167, and 196 mJ correspondingly.At the same time, with 80 UAVs, the MEEDG-CUAV approach has achieved a lesser EC of 189 mJ whereas the SOCS, BICSF, EALC,and MPCA methods have obtained higher EC of 217, 234, 248, and 253 mJ respectively.Finally,with 100 UAVs,the MEEDG-CUAV technique has gained a lower EC of 210 mJ whereas the SOCS,BICSF,EALC,and MPCA methodologies have obtained maximal EC of 230,252,269,and 278 mJ correspondingly.

Figure 3:Energy consumption analysis of MEEDG-CUAV model

A brief NLT analysis of the MEEDG-CUAV technique with recent approaches takes place in Tab.2 and Fig.4.The experimental results portrayed that the MEEDG-CUAV technique has accomplished improved NLT over the other techniques.For instance, with 10 UAVs, the MEEDGCUAV technique has resulted in an increased NLT of 5920 rounds whereas the SOCS,BICSF,EALC,and MPCA techniques have attained reduced NLT of 5570,5520,5330,and 4770 rounds respectively.Likewise,with 40 UAVs,the MEEDG-CUAV system has resulted in an enhanced NLT of 5410 rounds whereas the SOCS,BICSF,EALC,and MPCA techniques have achieved reduced NLT of 5250,4950,4600,and 4180 rounds correspondingly.Moreover,with 80 UAVs,the MEEDG-CUAV approach has resulted in an improved NLT of 4430 rounds whereas the SOCS,BICSF,EALC,and MPCA techniques have attained lower NLT of 4080, 3840, 3760, and 3590 rounds respectively.Furthermore, with 100 UAVs, the MEEDG-CUAV method has resulted in an increased NLT of 4160 rounds whereas the SOCS,BICSF,EALC,and MPCA systems have attained reduced NLT of 3550,3380,3280,and 3210 rounds correspondingly.

Table 2: Network lifetime analysis of MEEDG-CUAV method

Table 2:Continued

Figure 4:NLT analysis of MEEDG-CUAV model

Detailed throughput analysis of the MEEDG-CUAV manner with recent algorithms occurs in Tab.3 and Fig.5.The experimental results portrayed that the MEEDG-CUAV technique has accomplished increased throughput over the other algorithms.For instance, with 10 UAVs, the MEEDGCUAV manner has resulted in a higher throughput of 99 Mbps whereas the SOCS, BICSF, EALC,and MPCA methods have attained lesser throughput of 93,92,90,and 86 Mbps correspondingly.In addition, with 40 UAVs, the MEEDG-CUAV technique has resulted in maximal throughput of 87 Mbps whereas the SOCS,BICSF,EALC,and MPCA techniques have attained reduced throughput of 72,66,60,and 53 Mbps respectively.Followed by,with 80 UAVs,the MEEDG-CUAV technique has resulted in a higher throughput of 78 Mbps whereas the SOCS,BICSF,EALC,and MPCA techniques have attained reduced throughput of 61,53,52,and 42 Mbps correspondingly.Finally,with 100 UAVs,the MEEDG-CUAV system has resulted in an increased throughput of 74 Mbps whereas the SOCS,BICSF,EALC,and MPCA techniques have attained minimum throughput of 57,49,48,and 39 Mbps correspondingly.

Table 3: Throughput analysis of MEEDG-CUAV method

Figure 5:Throughput analysis of MEEDG-CUAV model

Tab.4 and Fig.6 provide the ARD analysis of the MEEDG-CUAV system with existing approaches in different UAV counts.The results depicted that the MEEDG-CUAV algorithm has gained effective outcomes with a minimum ARD.For instance,with 10 UAVs,the MEEDG-CUAV manner has reached a lesser ARD of 4.04 s whereas the SOCS,BICSF,EALC,and MPCA techniques have obtained maximum ARD of 4.17,4.20,4.27,and 4.86 s correspondingly.Along with that,with 40 UAVs,the MEEDG-CUAV technique has attained a decreased ARD of 5.76 s whereas the SOCS,BICSF,EALC,and MPCA techniques have obtained increased ARD of 6.27,6.85,7.67,and 9.86 s correspondingly.Simultaneously,with 80 UAVs,the MEEDG-CUAV approach has attained a reduced ARD of 8.43 s whereas the SOCS,BICSF,EALC,and MPCA manners have obtained improved ARD of 9.17,9.82,10.36,and 12.39 s respectively.At last,with 100 UAVs,the MEEDG-CUAV method has attained a lower ARD of 8.98 s whereas the SOCS,BICSF,EALC,and MPCA systems have reached superior ARD of 10.16,10.92,11.19,and 13.89 s correspondingly.

Table 4: Average delay analysis of MEEDG-CUAV method

Figure 6:Average delay analysis of MEEDG-CUAV model

Tab.5 and Fig.7 gives the NCHC analysis of the MEEDG-CUAV method with existing manners under varying UAV speed rate.The outcomes demonstrated that the MEEDG-CUAV technique has reached effective outcomes with minimal NCHC.For instance,with 2 m/s speed rate,the MEEDGCUAV system has reached a lower NCHC of 9 whereas the SOCS, BICSF, EALC, and MPCA techniques have achieved higher NCHC of 11,13,16,and 19 respectively.Also,with 4 m/s speed rate,the MEEDG-CUAV system has attained a lower NCHC of 8 whereas the SOCS,BICSF,EALC,and MPCA methods have obtained higher NCHC of 10,15,18,and 22 correspondingly.Moreover,with 8 m/s speed rate,the MEEDG-CUAV algorithm has attained a lower NCHC of 15 whereas the SOCS,BICSF, EALC, and MPCA systems have obtained higher NCHC of 19, 22, 25, and 28 respectively.Eventually,with 10 m/s speed rate,the MEEDG-CUAV system has attained a minimal NCHC of 17 whereas the SOCS,BICSF,EALC,and MPCA manners have obtained superior NCHC of 20,24,29,and 33 correspondingly.

Table 5:Results analysis of proposed MEEDG-CUAV method under different speed of mobile nodes

Figure 7:NCHC analysis of MEEDG-CUAV model

4 Conclusion

In this study,a MEEDG-CUAV technique is derived for energy efficient data collection in UAV enabled 6G networks.The MEEDG-CUAV technique involves the design of QCBOA technique by integrating the concepts of quantum theory and chaotic map into the classical BOA.In addition,the QCBOA technique derives a fitness function involving three input variables to elect CHs namely RDE,ADTN, and DEG.The experimental validation of the MEEDG-CUAV technique occurs utilizing benchmark dataset and the experimental results highlighted the better performance over the other state of art techniques interms of different measures.Therefore,the MEEDG-CUAV technique can be utilized as a proficient tool for data collection in clustered UAV enabled 6G networks.In future,task scheduling and resource allocation strategies can be developed for UAV enabled 6G networks.

Acknowledgement:The authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges(APC)of this publication.

Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number (RGP 1/279/42).www.kku.edu.sa.

Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

主站蜘蛛池模板: 99久久精品免费看国产免费软件| 久草中文网| 精品无码一区二区三区在线视频| 久久www视频| 国产成人盗摄精品| 中文字幕va| 亚洲天堂视频在线观看免费| 国产产在线精品亚洲aavv| 成人av手机在线观看| 男女性午夜福利网站| 999精品色在线观看| 无码福利视频| 亚洲人成网站观看在线观看| 精品福利网| 亚洲精品男人天堂| 免费女人18毛片a级毛片视频| 韩国v欧美v亚洲v日本v| 久久夜色精品国产嚕嚕亚洲av| 色亚洲成人| 天天摸夜夜操| 国产精品妖精视频| 波多野结衣的av一区二区三区| 亚洲区视频在线观看| 亚洲激情99| 久久99热这里只有精品免费看| 一本久道热中字伊人| 欧美自慰一级看片免费| 国产精品天干天干在线观看| 亚洲日本精品一区二区| 亚洲中文字幕无码mv| 天堂在线视频精品| 亚洲综合激情另类专区| 久久国产av麻豆| 激情无码视频在线看| 中文字幕有乳无码| 日本精品视频一区二区| 精品久久人人爽人人玩人人妻| 99热这里只有精品2| 国产成人av一区二区三区| 色老头综合网| 国产一级视频久久| 精品国产网| 色精品视频| 高清无码不卡视频| 国产精品高清国产三级囯产AV | 玖玖精品在线| 91蝌蚪视频在线观看| 精品无码国产一区二区三区AV| 国内熟女少妇一线天| 91色爱欧美精品www| 国产黄色爱视频| 尤物国产在线| 亚洲91在线精品| 亚洲av无码牛牛影视在线二区| 日韩欧美中文在线| 国产高清毛片| 99视频在线免费| 黄色网在线免费观看| 一级成人a毛片免费播放| 在线国产91| 国产高清无码麻豆精品| av色爱 天堂网| 日韩成人午夜| 99久久国产综合精品2020| 国产精品入口麻豆| www亚洲天堂| 5555国产在线观看| 国产精品久久精品| 人妻中文字幕无码久久一区| 天天摸夜夜操| 无码啪啪精品天堂浪潮av| 久久久无码人妻精品无码| 色噜噜久久| 免费激情网址| 97青青青国产在线播放| 二级特黄绝大片免费视频大片| 国产精品午夜福利麻豆| 欧美一区二区三区香蕉视| 少妇人妻无码首页| 日韩欧美中文在线| 午夜福利在线观看成人| 免费毛片视频|