廣東東莞市松山湖第二小學(523808)譚曉航
深度學習是一個動態發展的概念,其廣泛應用于人工智能領域和教育領域,但這兩大領域中的深度學習存在本質的區別。其中,在教育領域中主要是指在教師的引領下,學生圍繞具有挑戰性的學習主題全身心參與,開展抽象、運算與推理等思維活動,進而獲得數學核心知識,把握數學的本質和思想方法。在國外,研究者對深度學習策略的研究主要有兩種方式:一是從學習理論層面提出促進深度學習的策略,如Biggs提出的3P學習模型;二是在課堂教學的實驗研究中提出促進深度學習的策略,如有學者在多年的教學實踐中發現并提出,在課堂教學中采用思維導圖的方式可以為學生搭建深度學習的意識基礎,促進學生高階思維的持續發展。在國內,教師主要從重構教學設計出發,關注教學目標、教學內容、教學過程和教學評價等方面。結合以上分析,筆者從以下五個角度提出深度學習視域下的小學數學教學策略。
傳統教學中的學習單元有兩種來源:一是教材體系內的文本;二是教師在對內容的理解和對學生了解的基礎上提煉的學習單元。深度學習視域下的學習單元,需要教師全面地分析、挖掘并靈活地整合教材,這樣才有助于學生進行有意義的知識建構并發展其核心素養。
基于以上分析,筆者為深度學習視域下提煉小學數學學習單元提供兩點啟示:一是將反映學科的核心內容作為學習單元;二是依據知識結構提煉學習單元。以小學數學學科為例,小學數學的核心內容有數的認識、數的運算、圖形的度量、數據的收集與整理等。從數學知識結構出發,可知數學知識有縱向知識結構關聯、橫向知識結構關聯和縱橫融通的知識結構關聯。因此,教師可依據數學知識結構之間的聯系,提煉三種類型的學習單元:①縱向知識學習單元;②橫向知識學習單元;③縱橫融通學習單元。縱向知識學習單元是指單元知識之間具有上下位關系,如面積公式的教學讓學生經歷“平行四邊形的面積→三角形的面積→梯形的面積→組合圖形的面積”(運用度量和轉化策略解決問題)的過程。橫向知識學習單元是指一類知識在被認識的過程中蘊含相同的思維方式,如圓、圓錐和圓柱的學習蘊含著相同的思維方式,將圓錐的表面積類比圓柱的表面積進行展開,將圓柱的體積類比圓的面積進行切割。縱橫融通學習單元是指知識體系和思維方式都具有相似性,如整數除法和小數除法的學習都經歷“認識→概念→運算→應用”的過程,且兩者的本質均為十進制單位的細分。
傳統教學的學習目標是依據三維目標制訂的,在實際教學中,教師通常想要在一節課中實現“知識與技能、過程與方法、情感態度與價值觀”的三維目標,這種認識會導致學生的學習停留在“記憶、理解和簡單應用”的層面。然而,深度學習為學習目標的確定提供了新的視角,使學習目標向高階思維目標發展,表現為分析、綜合、評價和創造。筆者建議應將發展高階思維作為教學目標的一條暗線,伴隨學習目標而制訂,并在實施中遵循兩項原則:①重點關注“分析、綜合、評價和創造”思維能力的培養;②具有針對性、選擇性和層次性。
例如,在教學“分類與整理”后,學生已經掌握了簡單的分類與整理方法,為了使學生感受分類的價值與必要性,并經歷“收集數據→分析數據→抽象概括”的過程,在原有課時的基礎上,新增“垃圾分類”這一課時。
師:同學們已經把小紅家一天的生活垃圾分成了四類——可回收垃圾、廚余垃圾、有害垃圾和其他垃圾。可回收垃圾有哪些?
生1:舊報紙、可樂瓶、玻璃瓶。
師:廚余垃圾有哪些?
生2:剩飯、剩菜、西瓜皮。
師:有害垃圾和其他垃圾包括哪些?
生3:有害垃圾包括電池、壞了的溫度計,其他垃圾包括衛生間的廢紙。
師:現在請將以上的垃圾用自己喜歡的方式進行整理,想一想可以怎么整理?同桌進行討論,時間2分鐘。
生4:可以像之前“分氣球”一樣整理。
師:對!之前我們畫一個糖葫蘆形狀的圖案來統計糖葫蘆形狀的氣球。那在這里有什么辦法能讓我們一眼看出四類垃圾的數量呢?老師給同學們準備了一個“神奇”的圖(如圖1),請同學們按照之前分氣球的方法分一分。

圖1
(學生完成分類)
師:還有其他的方法讓我們一眼就能看出每一類垃圾有幾種嗎?
生5:畫表格。
師:你是怎么想到利用畫表格進行整理的?
生5:之前“春游”的學習我們就是用畫表格來整理不同的人數的。
師:剛剛同學們受到“分氣球”和“春游”的啟發,分別用了兩種不同的表示方法對四類不同的垃圾進行整理,可見,學過的知識可以作為我們學習新知識的工具。
上述教學中,學生在真實的“垃圾分類”情境中感受分類的價值以及數學與生活的聯系。在整理數據的過程中,學生將舊知遷移到新的情境中,使用圖表進行數據整理,其中就蘊含了高階思維的分析、綜合、評價和創造。
傳統教學中的情境創設往往只強調真實性,而忽略了批判性。因此,筆者建議創設的問題情境包含兩層含義:①真實性,是指問題情境要反映知識在生活中的應用,如此不僅能增強學生的體驗感,還有助于實現原理方法的遷移和運用。②批判性,具體來說,批判性的問題情境的表征是“識別”“討論”“評價”“判斷”,其為學生進行分析、比較、應用和綜合提供了信息載體,有助于發展學生的高階思維。
例如,“小數除法”這一課的問題情境為“買了5袋牛奶一共花了11.5元,一袋牛奶多少錢?”。雖然這個問題源于真實的情境,但在解決“一袋牛奶多少錢?”時,計算過程中商的小數點由被除數的小數點遷移而得,不利于學生理解小數點產生的本質,進而影響高階思維的發展。此時,教師可結合學生的理解(關于知識基礎,學生已經掌握了自然數的基本運算法則,以及獲得一定的運算能力;關于相關的前概念,學生已經理解“除法”的本質是十進制單位的細分)進行思考。基于以上分析,在深度學習視域下,筆者將“小數除法”學習單元設置的問題情境改為“買4本《格林童話》花了97元,一本多少錢?”。這個問題不但源于真實的情境,而且具有批判性:在學生計算一本《格林童話》多少錢的過程中,能自主做出判斷和辨析,為小數點的位置提出各種假設,并嘗試推理驗證,最終真正掌握小數除法的學習。
課堂中的“問題”分布在教學中的各個環節,盡管不同環節各有側重點,但都應當重視“核心問題”的提煉,這樣不僅能夠真正聚焦于課程內容的重難點,還有助于調動學生學習的積極性。
在設計核心問題的基礎上,教師需要引導學生進行批判性分析。建構主義教學觀指出,教師除了為學生解答困惑,還應該成為輔助學生學習知識的組織者和推動者。因此,筆者建議在設計核心問題基礎上,可從兩方面引導學生進行批判分析。其一,充分重視學生的語言交流和表達。表達是指教師給學生表述自己思想或觀點的機會,這樣不僅可以激發學生學習和思考的動機,還是學生對自己認知、思維過程的一種流露與展現。其二,采用多元的提問方式。多元的提問方式有追問、設問、反問和直問等,在多元提問的過程中學生會不斷對自己或他人闡述的觀點進行思考、評估和批判,及時調整自己的思維方式。
例如,在教學“兩位數加一位數(進位)”這節課時,筆者通過先創設“一共有多少根小棒?”的教學情境,然后提出數學問題,最后引出數學算式“28+5”。學生在自主思考,交流匯總不同的方法后,發現有幾種不同的算法。①連加法:先把8根小棒和5根小棒合在一起,為13根小棒,再將13根小棒和2捆小棒合起來。②湊十法:先把28根小棒與5根小棒中的2根合在一起,得到30根小棒,再加5根里面剩余的3根小棒。③先拆分再加:把28根小棒拆成23根小棒和5根小棒,這5根小棒和另外5根小棒合在一起為10根小棒,再和23根小棒合在一起。在經過擺一擺、圈一圈和畫一畫等操作后,筆者提出核心問題并進行追問。
師:在這幾種不同的方法中,為什么28的十位都從2變成3?
生1:8根小棒加上5根小棒,就有13根小棒。而每10根小棒為1捆,13根小棒就變成1捆和3根小棒。原來有2捆小棒,現在多了1捆,所以十位上的2變成了3。
師:這里的1是代表1個一嗎?

表1 原有課時和“垃圾分類”學習目標
生1:不是,是1個十,因為多了1捆小棒,所以是由10個一組成的。
生2:我有補充,把5分成2和3,2個一加上8個一等于1個十,多了1個十,所以十位上的2變成了3。
生3:5+5=10,10+23=33。
師:這里的5+5=10怎么理解?
生3:這里的10是1捆小棒,就是1個十。
上述教學中,筆者通過核心問題“為什么28的十位都從2變成了3?”引發學生交流和表達。筆者通過不斷追問和反問,讓學生基于不同的算法回答問題,使學生逐步理解:無論哪一種算法,均為將10根小棒合在一起變成1捆小棒,即10個一等于1個十(個位滿十向十位進一)。
持續評價、及時反饋是引導學生反思自身學習狀況和學習策略的有效途徑。反思是指學習者以元認知為指導,自覺地對自身認知結構、學習活動及其所涉及的相關因素進行批判性審視。具體而言,反思涉及“元認知監控”,如怎樣分析問題,發現問題后采取了哪些補救措施;如何制訂、調整和執行方案,采取了何種策略。換言之,教師可通過持續性的評價將學生的注意力集中到問題解決的監控上,從而有助于學生評價能力的提高。
例如,案例“投籃比賽派誰去”設計3個活動。活動1:根據貼照片決定派誰去。學生剛開始會回答派籃球隊的同學去,后面會主動以數據來判斷投籃成績,這樣的設計是為了培養學生用數據說話的意識。活動2:根據6次投籃的數據決定派誰去。學生在教師的啟發下,小組繪制了統計表、復式條形統計圖和折線統計圖,完成“學習單”上的任務并對4名選手進行選擇,最后派小組代表張貼在展示板上并說明理由。學生在這個過程中能體會到不同統計圖的特點并在此基礎上學會分析數據、表達觀點。活動3:根據12次投籃的數據決定派誰去。由于在活動2的選擇中學生對原數據的分析出現了困惑,故教師在活動2的數據基礎上增加了6次4名選手的投籃成績,學生基于更多的數據做出了第二次選擇并說明理由,深刻體會了數據的隨機性。
為體現“教、學、評”一一對應關系,依據學生的思維發展水平,以上3個活動分別設置了不同的評價標準。水平一:評價標準憑主觀判斷,具體表現是某位同學在籃球隊就應該派他去。水平二:有數據意識,具體表現是根據投籃數據決定派誰去。水平三:有深度分析,考慮是否需要更多的數據以及如何實現,具體表現為再增加幾組數據作為判斷的依據。學生可根據自身所達到的水平層次對之前選擇使用的思維方法和策略進行反思。與此同時,教師可在具體的教學中給予積極的診斷性評價,為學生營造一個輕松愉悅的學習氛圍,有助于增強學生問題解決的信念。
綜上所述,筆者對深度學習視域下的小學數學教學策略的選擇與使用進行了總結:首先,教師需要理解數學知識的本質,選擇適合的學習單元進行深度學習;其次,結合具體的課時發展高階思維的學習目標;再次,設計真實的問題情境,通過核心問題引導學生批判分析;最后,選擇持續性評價,引導學生對自身選擇的方法和策略進行反思。