999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Nonlinear Degenerate Anisotropic Elliptic Equations with Variable Exponents and L1 Data

2020-05-26 01:34:08KHELIFIHichemandMOKHTARIFares
關(guān)鍵詞:檢察機關(guān)功能

KHELIFI Hichemand MOKHTARI Fares

1Department of Mathematics and Informatics,University of Algiers,Algiers,Algeria.2 Street Didouche Mourad Algiers.

2Applied Mathematics Laboratory,Badji Mokhtar University-Annaba B.P.12,Algeria.

Abstract.This paper is devoted to the study of a nonlinear anisotropic elliptic equation with degenerate coercivity,lower order term and L1 datum in appropriate anisotropic variable exponents Sobolev spaces. We obtain the existence of distributional solutions.

Key Words:Sobolev spaces with variable exponents;anisotropic equations;elliptic equations;L1 data.

1 Introduction

In this paper we prove the existence of solutions to the nonlinear anisotropic degenerate elliptic equations with variable exponents,of the type

where Ω?RN(N ≥3)is a bounded domain with smooth boundary?Ω and the righthan d sidefinL1(Ω),We suppose thatai:Ω×R×RN →R,i=1,...,Nare Carathéodory functions such that for almost everyxin Ω and for every(σ,ξ)∈R×RNthe following assumptions are satisfied for alli=1,...,N

whereβ >0,α >0,and(1,+∞)are continuous functions andis such that

We introduce the function

The nonlinear termg:Ω×R×RN →R is a Carathéodory function such that for a.e.x∈Ω and all(σ,ξ)∈R×RN,we have

whereb:R+→R+is a continuous and increasing function with finite values,c ∈L1(Ω)and?ρ>0 such that:

In[1],the authors obtain the existence of renormalized and entropy solutions for the nonlinear elliptic equation with degenerate coercivity of the type

Forg ≡0 andf ∈Lm(·)(Ω),withm(x)≥m-≥1,equation of the from(1.1)have been widely studied in[2],where the authors obtain some existence and regularity results for the solutions.Ifg≡|u|s(x)-1u,

andf ∈Lm(Ω),withm ≥1,existence and regularity results of distributional solutions have been proved in[3].

As far as the existence results for our problem(1.1)there are three difficulties associated with this kind of problems.Firstly,from hypothesis(1.2),the operator

the operatorAis not coercive.Because,iftends to infinity then

So,the classical methods used in order to prove the existence of a solution for(1.1)cannot be applied. The second difficulty is represented in the fact thatg(x,u,?u)can not be defined frominto its dual,but fromintoL1(Ω). The third difficulty appears when we give a variable exponential growth condition(1.2)forai. The operatorApossesses more complicated nonlinearities;thus,some techniques used in the constant exponent case cannot be carried out for the variable exponent case.For more recent results for elliptic and parabolic case,see the papers[4–8]and references therein.

The paper is organized as follows.In Section 2,we present results on the Lebesgue and Sobolev spaces with variable exponents both for the isotropic and the anisotropic cases,and state the main results.The proof of the main result will be presented in Section 3.We start by giving an existence result for an approximate problem associated with(1.1).The second part of Section 3 is devoted to proving the main existence result by using a priori estimates and then passing to the limit in the approximate problem.

2 Preliminaries and statement of the main result

2.1 Preliminaries

In this sub-section,we recall some facts on anisotropic spaces with variable exponents and we give some of their properties.For further details on the Lebesgue-Sobolev spaces with variable exponents,we refer to[9–11]and references therein.Let Ω be a bounded open subset of RN(N ≥2),we denote

and

LetWe define the space

then the expression

holds true.We define the variable exponents Sobolev spaces by

which is a Banach space equipped with the following norm

Next,we defineas the closure ofinW1,p(·)(Ω). Finally,we introduce a natural generalization of the variable exponents Sobolev spacesthat will enable us to study with sufficient accuracy problem(1.1).Letwhereare continuous functions.We introduce the anisotropic variable exponents Sobolev spaces

with respect to the norm

We introduce the following notationas

Then

where p+is defined as in(2.1)(1.5),and C is a positive constant independent of u.Thusis an equivalent norm on

Proof.Put

Thanks to(Proposition 2.1 in[3]),we have

Using the convexity of the applicationwe obtain

We will use through the paper,the truncation functionTkat heightk(k >0),that isTk(s):=max{-k,min{k,s}}.

Lemma 2.1([12]).Let g∈Lp(·)(Ω)and gn∈Lp(·)(Ω)with‖gn‖p(·)≤C.If gn(x)→g(x)almost everywhere inΩ,then gn ?g in Lp(·)(Ω).

2.2 Statement of main result

We will extend the notion of distributional solution,see[12,13],to problem(1.1)as follows:

Definition 2.1.Let f ∈L1(Ω)a measurable function u is said to be solution in the sense of distributions to the problem(1.1),if

Our main result is as follows

Theorem 2.2.Let f ∈L1(Ω).Assume(1.2)-(1.8)and(2.4).Then problem(1.1)has at least one solution in the sense of distributions.

3 Proof of the main result

3.1 Approximate solution

Let(fn)nbe a sequence inL∞(Ω)such thatfn →finL1(Ω)with|fn|≤|f|(for examplefn=Tn(f))and we consider the approximate problem

Lemma 3.1.Let f ∈L1(Ω).Assume(1.2)-(1.8)and(2.4).Then,problem(3.1)has at least one solution in the sense of distributions.

Consider the following problem

Lemma 3.2.Let f ∈L1(Ω).Assume that(1.2)-(1.8)and(2.4)hold,then the problem(3.2)has at least one solution unk in the sense of distributions.

Then by using(3.3)and(3.4)we conclude thatis bounded.For the coercivity,by using(1.4),(1.7),and(2.5),we get

then

It remains to show thatis pseudo-monotone.Let(um)mbe a sequence insuch that

We will prove that

Using(3.5),(3.8),(3.9),and thatum →uinwe have

therefore,thanks to(3.5),(3.9),and(3.10),we write

On the other hand,by(1.3),we obtain

在刑事訴訟過程中,檢察機關(guān)天生擁有比被告人更為強大的公訴權(quán),處于絕對的優(yōu)勢地位。如果檢察機關(guān)的這種天生的權(quán)力不受到外部程序控制的話很容易被濫用。庭前會議制度擁有對公訴權(quán)進行司法審查與控制的功能,能夠有效地防止檢察機關(guān)濫用公訴權(quán),可以把一些不符合起訴條件的案件排除在審判程序之外,對進入審判程序的案件起到一個篩選和過濾的功能。

In view of Lebesgue dominated convergence theorem and(3.6),we have

By(3.7)and(3.5),we get

this implies,thanks to(3.11),that

Proof.The proof uses the same technique as in(Lemma 4.1 of[3])and is omited here.

Proof.It is similar to the proof of Theorem 4.2 of[13].

3.2 A priori estimates

Proof.Leth>0.TakingTh(un)as a test function in(3.1),then

By dropping the nonnegative term in(3.13),(1.7),and(1.4)we get

then

Consequently,

TakingTh(un)as a test function in(3.1),and dropping the first nonnegative term in the left-hand side,we obtain

By combining(1.8),(3.14)and(3.15),forh=ρ,we deduce that

This ends the proof of Lemma 3.6.

3.3 The strong convergence of the truncation

Proof.Leth ≥j >0 andwn=T2j(un-Th(un)+Tj(un)-Tj(u)).We setφj(s)=s·exp(δs2),whereδ=(l(j)/(2α))2,l(j)=b(j)(1+|j|)γ++,and

LetM=4j+h.SinceDiwn=0 on{|un|>M}andφj(wn)has the same sign asunon the set{|un|>j}(indeed,ifun >jthenun-Th(un)≥0 andTj(un)-Tj(u)≥0,it follows thatwn ≥0).Similarly,we show thatwn ≤0 on the set{un <-j}.

By takingφj(wn)as a test function in(3.1),we obtain

Takingyn=un-Th(un)+Tk(un)-Tk(u),we have

that is equivalent to

where

Arguing as in[13],we can prove that

By(3.16)and(3.17)we conclude that

Using(3.18)and arguing as in[13],we get

Thanks to(3.18)and(3.19),we obtain

Then by lettinghtends to infinity in the previous inequality,we get

Thanks to Lemma 2.2,we obtain

3.4 The equi-integrability of g(x,un,?un)and passage to the limit

Thanks to(3.20),we have

Using that(ai(x,un,?un))nis bounded in,and Lemma 2.1,we obtain

Now,letEbe a measurable subset of Ω.For allm>0,we have by using(1.6)

Since(DiTm(un))nconverges strongly inthen for allε>0,there existsδ>0 such thatmeas(E)<δand

On the other hand,usingT1(un-Tm-1(un))as a test function in(3.1)form>1,we obtain

there existsm0>0 such that

Using(3.21)and(3.22),we deduce the equi-integrability ofg(x,un,?un).In view of Vitali’s theorem,we obtain

Lettingn →+∞,we can easily pass to the limit in this equation,to see that this last integral identity is true foruinstead ofun.This proves Theorem(2.2).

Example 3.1.As a prototype example,we consider the model problem

wheref ∈L1(Ω)andas in Theorem 2.2.

Acknowledgments

The authors would like to thank the referees for the useful comments and suggestions that substantially helped improving the quality of the paper.

猜你喜歡
檢察機關(guān)功能
也談詩的“功能”
中華詩詞(2022年6期)2022-12-31 06:41:24
關(guān)于非首都功能疏解的幾點思考
懷孕了,凝血功能怎么變?
媽媽寶寶(2017年2期)2017-02-21 01:21:24
“簡直”和“幾乎”的表達功能
檢察機關(guān)業(yè)務(wù)運行機制面臨的難題及解決之道
檢察機關(guān)適用刑事和解制度淺析
檢察機關(guān)預(yù)防職務(wù)犯罪探析
檢察機關(guān)強化刑事訴訟監(jiān)督權(quán)的法理闡釋
淺議檢察機關(guān)會計司法鑒定的主要職責(zé)
中西醫(yī)結(jié)合治療甲狀腺功能亢進癥31例
主站蜘蛛池模板: 国产在线专区| 成人国内精品久久久久影院| 精品视频第一页| 日韩无码视频网站| 亚洲久悠悠色悠在线播放| 性欧美久久| 国产又大又粗又猛又爽的视频| 91免费片| 久久午夜夜伦鲁鲁片无码免费| 午夜成人在线视频| 国产乱人视频免费观看| 久综合日韩| 亚欧美国产综合| 一本色道久久88| 国产在线自乱拍播放| 91麻豆精品国产91久久久久| 国产精品久线在线观看| 国产黄网站在线观看| 国产精品亚洲一区二区三区在线观看| 亚洲综合婷婷激情| 日本妇乱子伦视频| 亚洲视频免费播放| 亚洲综合激情另类专区| 2022国产91精品久久久久久| 欧美特级AAAAAA视频免费观看| 最近最新中文字幕在线第一页 | 一区二区偷拍美女撒尿视频| 精品久久香蕉国产线看观看gif| 亚洲 欧美 偷自乱 图片| 在线日本国产成人免费的| 亚洲国产精品不卡在线| 日韩在线永久免费播放| 亚洲欧美成人| 亚洲男人的天堂久久香蕉| 蝴蝶伊人久久中文娱乐网| 日韩东京热无码人妻| 国产色图在线观看| 国产青榴视频| 成人在线第一页| 99在线国产| 国产一级毛片在线| 在线日韩一区二区| 毛片三级在线观看| 亚洲国产日韩一区| 欧美人人干| 欧美不卡在线视频| 久久国产精品波多野结衣| 国产美女一级毛片| 午夜欧美理论2019理论| 一级黄色网站在线免费看| 国产欧美日韩18| 国产成人久视频免费| 国产熟睡乱子伦视频网站| 婷婷午夜天| 亚洲综合激情另类专区| 另类综合视频| 亚洲国产日韩在线成人蜜芽| 亚洲高清在线天堂精品| 亚洲国产亚综合在线区| 欧美97色| 日韩无码黄色| 国产呦精品一区二区三区网站| 毛片久久网站小视频| 91成人免费观看| 欧美色伊人| 亚洲嫩模喷白浆| 亚洲欧洲日韩综合| 激情無極限的亚洲一区免费| 伊人久久精品无码麻豆精品| 99999久久久久久亚洲| 91小视频在线| 欧美乱妇高清无乱码免费| 欧美在线天堂| 97在线公开视频| 亚洲成aⅴ人片在线影院八| 欧洲熟妇精品视频| 国产人成在线视频| 无码国内精品人妻少妇蜜桃视频| 香蕉久久国产超碰青草| 亚洲天堂视频网站| 亚洲欧美综合在线观看| 亚洲一区无码在线|