





摘要:與傳統的醫(yī)學手段相比,貴金屬納米顆粒具有良好的生物相容性、穩(wěn)定性與強光散射等性質并且在可見光和近紅外區(qū)域可進行等離子吸收,因此在生物醫(yī)學領域迅速占據一席之地.在此基礎上,對貴金屬納米(Ag NPs、Au NPs與Pt NPs)及其與其他物質(TiO2、葡萄糖氧化酶、抗體與疫苗等)的組合在生物傳感、生物成像、藥物運輸和腫瘤治療等方面的性能進行探討.最后,對貴金屬納米顆粒所提及的納米醫(yī)用領域的應用優(yōu)勢進行總結,并指出現存問題和對未來的期望.
關鍵詞:貴金屬納米顆粒;生物傳感;生物成像;藥物運輸;腫瘤治療;生物醫(yī)學
中圖分類號:TB383.1;R318.08文獻標志碼:A
0引言
貴金屬納米材料是指由金(Au)、銀(Ag)、鉑(Pt)與鈀(Pb)等貴金屬制成的小尺寸納米材料.常見的形狀包括納米球、納米棒和納米星等.與其他金屬相比,貴金屬納米顆粒可調節(jié)其性質,使其具有不同的力學、電子、光學、磁性和熱力學性質.因其具有增強近紅外范圍的光吸收、大消光截面、增強光熱加熱能力、化學穩(wěn)定性和生物相容性等獨特的物理化學性質,貴金屬納米顆粒受到生物醫(yī)學領域的廣泛關注[1-3].
生物醫(yī)學領域中,目前對于生物傳感、生物成像、藥物運輸及腫瘤治療等方面的研究逐漸增多.首先是生物傳感方面.貴金屬納米材料易于修飾,通過與抗體或半導體等的結合可實現精準高效識別.借助貴金屬本身的等離激元共振可增強傳感器的靈敏度,因而通過貴金屬可制備高靈敏度、高穩(wěn)定性的生物傳感器.其次是生物成像方面.近些年來,生物成像在臨床醫(yī)學領域有廣泛的使用,以便能迅速了解組織和器官的病灶狀況從而進行及時治療.傳統的有機染料作為造影劑具有光穩(wěn)性差、量子產率低及穩(wěn)定性不足的缺點[4].因此,精準、穩(wěn)定且明顯的造影劑成為科研人員追逐的目標.貴金屬納米顆粒通過電子的相干振蕩引起的表面電場可有效地增強輻射特性,且其光截面和吸收面較高,使其作為造影劑在生物成像領域被廣泛使用.第三是藥物運輸方面.傳統的藥物半衰期短且藥物進入細胞前可能引起身體吞噬細胞的吞噬,因此治療效果不佳.除此之外,長期且大量的藥物使用會導致身體產生耐藥性,從而不能有效地治療疾病.由于貴金屬納米顆粒具有易于修飾、良好的生物相容性、穩(wěn)定性和裝載性,將其作為藥物載體,通過抗體的修飾可準確識別病變細胞,從而實現精準給藥[5-7].最后是腫瘤治療方面.貴金屬納米顆粒可將藥物或對應的抗體進行裝載,通過與受體的精準識別到達腫瘤.通過本身具有的化學性質誘導免疫反應進行腫瘤治療[8-10].綜上所述,貴金屬納米顆粒憑借優(yōu)越的光學、電學、生物相容性及穩(wěn)定性等物理化學性質在生物醫(yī)學領域占據重要位置[11-14].
1生物傳感
貴金屬納米材料因其獨特的化學性質(例如光致發(fā)光及高靈敏度等)而被廣泛應用于生物傳感方面[15-16].
Ren等[17]提出將葡萄糖氧化酶(glucose oxidase,GOx)固定在銀納米顆粒(silver nanoparticles,Ag NPs)的安培葡萄糖生物傳感器.與不含Ag NPs的傳感器進行對比,發(fā)現含Ag NPs的酶電極顯著提高了響應電流和電子轉移速率,同時也提高了生物傳感器的響應速度,穩(wěn)態(tài)響應時間至少提高了3倍.以此為基礎,科研人員發(fā)現借助半導體的高電子轉移性能和低過電位,可制備高靈敏度的貴金屬納米顆粒生物傳感器.Huang等[18]提出用以二氧化鈦(TiO2)作為表面增強拉曼散射(surface enhanced Raman scattering,SERS)基底,與Ag NPs結合后形成的SERS生物傳感器(Ag NPs/TiO2)來檢測尿嘧啶脫氧核糖核酸(deoxyribonucleic acid,DNA)糖醛酶(uracil DNA glycosylase,UDG).借助等離子共振與電荷轉移的協同效應,提高了拉曼強度和靈敏度,并且檢測限較低,約為1.200×10-5 U mL-1.
鉑納米顆粒(platinum nanoparticles,Pt NPs)不僅具有良好的生物相容性和穩(wěn)定性,還可有效地降低過氧化氫氧化/還原的過電壓和快速響應[19-21].Kang等[22]制備金-鉑納米粒子修飾的TiO2納米管電極作為葡萄糖傳感器.該傳感器在0~1.800 mM范圍內具有較高的靈敏度,響應時間為3 s,檢測限為0.100 mM.后來,Zhang等[23]將Pt NPs的低過電位性與石墨烯(gragphene oxide,GO)的高比表面積性相結合,形成高靈敏度的安培生物傳感器.該傳感器在0.500 μM~3.475 mM范圍內,檢測限大約為0.200 μM,比Pt NPs具有更高的靈敏度(459±3 mA M-1cm-2,n=5).Pt NPs雖可有效降低過氧化氫的過電位,但是形成的傳感器的靈敏度和穩(wěn)定性仍不夠高且檢測限仍不夠低.
金納米顆粒(gold nanoparticles,Au NPs)具有可協調的光學特性、高穩(wěn)定性和生物相容性,并且在光穩(wěn)定性方面更為優(yōu)越[24-25].Lane等[26]發(fā)現功能化的金納米棒附著在癌細胞上時,拉曼信號得到極大增強.另外,功能化的金納米棒因與癌細胞有很強的親和力,因此選擇性檢測成為了可能.以此為基礎,Wang等[27]合成MoS2-Au免疫傳感器以檢測癌胚抗原(carcinoembryonic antigen,CEA)(見圖1(a)).該傳感器經過二硫化鉬(MoS2)的修飾,提高了電導率、生物相容性和比表面積,能更有效地固定抗體,可使CEA濃度在1 pg/mL至50 ng/mL的范圍內測定,檢測限為0.270 pg/mL(見圖1(b)).為提高傳感器的靈敏度,科研人員將抗體與貴金屬納米顆粒進行偶聯形成傳感器.Kabiraz等[28]使用抗體標記的Au NPs(Ab-Au NP)制備免疫傳感器.通過間接競爭抑制免疫分析法可知,該傳感器具有更低的檢測限(0.050 pg/mL),比抗體低50倍.借助GO的孔狀結構、高電導率和電子轉移速率,也可增強傳感器的性能.Wong等[29]借助協同作用,構建對腎上腺素和尿酸的Au NPs/GO傳感器.通過差分脈沖伏安法分析,傳感器對腎上腺素和尿酸的檢測限分別為1.000×10-7 mol/L和5.000×10-8 mol/L.后來,科研人員發(fā)現,共價有機框架(covalent organic framework,COFs)穩(wěn)定性和永久孔隙度高且低密度好,通過Au NPs和COFs結合使其具有更大比表面積,從而提供更多識別位點.檢測限可達到0.270 pg/mL,[27]樣品回收率可達87.000%~101.700%[30].
2生物成像
貴金屬中,電子在導帶內的相干集體振蕩引起了較大的表面電場,極大增強了輻射特性.因此,納米顆粒的光散射截面和吸收截面比其他有機染料更強,這使得貴金屬納米顆粒成為性能優(yōu)良的生物成像劑[31-32].
Au NPs具有穩(wěn)定性強等優(yōu)良的化學性質,且在輻射光譜的近紅外(near-infrared,NIR)區(qū)域活躍,可減少天然組織中固有的發(fā)色團的光滅絕[33-34].Wang等[31]合成平均直徑為135 nm的Au NPs作為造影劑,對其成像進行了深入研究.經過循環(huán)動力學的分析,在3次注射后,納米殼的光聲學對比度提高了63%,提高了皮質血容量測量的敏感度,后來應用金納米籠作為成像劑,與空白進行對比,注射2 h后的增強效果峰值為81%.Harmsen等[35]用表面增強共振拉曼散射Au NPs精確地顯示了腫瘤邊緣、腫瘤侵襲和多灶局部腫瘤擴散.在近乎臨床成像條件(激光功率為10~100 mW和實時成像)下,采用拉曼成像準確對原發(fā)性腫瘤的癌前病變進行標記.通過觀察到的胰腺上皮內瘤變前體,可知有發(fā)生癌變的可能,從而達到提前檢測的效果.
Pt NPs具有較小的尺寸和較低的細胞毒性,與Au NPs相比,可在470 nm處發(fā)出更亮的熒光[36-37].除此之外,Pt NPs可通過π-π和封閉殼的親金屬之間的相互作用,從而降低環(huán)境變化的干擾.Tanaka等[38]利用簡單的化學法和高效液相色譜法(high performance liquid chromatography,HPLC)純化制得Pt NPs作為造影劑,通過結合蛋白將抗體與Pt團簇組合進行細胞成像,如圖2(a)所示.經過48 h后,細胞活性仍超過85%,如圖2(b)所示,這表明該造影劑具有較低的毒性.為獲得更高的發(fā)射量子產率和更長激發(fā)態(tài)壽命,Septiadi等[39]制備了高量子產率和低激發(fā)態(tài)的自組裝Pt(II)系統,其激發(fā)態(tài)低至543 nm.通過對金屬配合物進行標記,證明通過細胞對其的吸收進行定位,從而實現細胞成像.
NIR納米材料在活性組織中具有較高的透明度和較低的自熒光度,在生物成像方面具有較大的優(yōu)勢.但是,NIR納米材料具有高毒性.Ag NPs憑借著自身低毒性和高光學活性脫穎而出[33].除此之外,Ag NPs的光學截面也相較其他金屬而言更高,從而具有更好的散射性能.Wang等[40]通過簡單的水相法制備了硫化銀納米團簇(silver sulfide nanoclusters,Ag2S NCs).合成的Ag2S NCs可在624~724 nm范圍內進行調制發(fā)光.通過其在NIR區(qū)域連續(xù)24 h發(fā)射679 nm的光,能夠觀察到細胞的明亮視野(見圖3(a)),且在經過48 h后,細胞活性仍在80%以上(見圖3(b)).由于Ag NPs在小尺寸下具有一定的毒性,對細胞有損傷,因此Manivannan等[41]通過將SiO2包裹在Ag NPs表面達到降低毒性的目的.對其毒性進行檢測發(fā)現,即使在黑暗的環(huán)境下,90%細胞仍然存活,且在NIR光照射下,可以觀察到明亮的圖像.
3藥物運輸
傳統進行腫瘤治療的藥物可隨腫瘤組織擴散到健康組織,從而分散到全身各處.但是,藥物的半衰期較短,到達病灶的藥量較少,將造成大量的浪費和低治療效果,并且長期大量用藥可能會導致身體產生耐藥性,從而治療效果不明顯[42-43].為解決上述問題,科研人員將貴金屬納米顆粒作為藥物載體進行藥物傳輸.
Au NPs由于其具有易制備、生物惰性及可控制藥物釋放等優(yōu)勢,被廣泛應用于藥物載體.金屬納米顆粒為靶向藥物傳遞和增加藥物通透性提供了可能性.Dykman等[44]通過將肽和Au NPs組合,獲得用于藥物傳遞的載體.通過該載體控制免疫反應,比如小鼠的巨噬細胞能識別耦聯物而不能識別單獨的金屬納米顆粒或肽,因此在耦聯物存在的情況下巨噬細胞不會增殖且藥物可安全通過免疫屏障到達病灶.除此之外,為了提高靶向效果,將Au NPs與RGD肽進行組合.對實驗進行分析可知,基于RGD功能化Au NPs的小干擾RNA(small interfering RNA,siRNA)傳遞系統可以成功抑制腫瘤細胞增殖,減小腫瘤大小.除了對腫瘤藥物進行輸送外,在疫苗佐劑方面也具有巨大潛力.Xu等[45]制備了表面工程金納米棒(gold nanorods,Au NRs)作為疫苗佐劑,用于艾滋病病毒治療.與體內裸艾滋病病毒-1包膜糖蛋白抗體(HIV-1 Env)相比,Au NRs可以通過激活抗原達到較強的免疫應答及T細胞增殖的效果.為制備具有更強的載藥能力和穩(wěn)定性的高效載體,Wang等[46]建立了基于硫醇功能化的兩親性二嵌段共聚物穩(wěn)定的Au NPs的給藥體系.根據紫外分析得知,與其他小分子修飾的Au NRs相比,構建的復合材料在14 d內具有良好的穩(wěn)定性,并且載藥能力更強.每個Au NPs可裝載460個藥物分子.
Ag NPs因具有低毒性和可調控的光學能力,且在藥物運輸方面具有裝載和釋放效率高且穩(wěn)定性高、生物相容性好等重要作用[47]而受到關注.Wang等[48]通過一步合成法使用葉酸包被Ag NPs和阿霉素(doxorubicin,DOX),用于藥物DOX的輸送.利用Ag NPs的增強拉曼散射和葉酸與癌細胞表面受體的結合對癌細胞進行定位,從而實現SERS成像.通過對DOX檢測發(fā)現,4 h后DOX釋放到細胞質.值得注意的是,該載體雖比單獨DOX毒性小,但與其他組合形式相比仍具有較高的毒性.Ravindra等[49]通過將Ag NPs和姜黃素嵌入到水凝膠中,用于姜黃素的輸送.通過對照實驗發(fā)現,含有Ag NPs的藥物加載率(79.2%)最高.與普通聚水凝膠相比,姜黃素負載Ag NPs或銀離子復合水凝膠的釋放效率更高且釋放較為緩慢,這為長期有效治療傷口提供了可能.
4腫瘤治療
貴金屬納米顆粒不僅可以作為生物傳感器、生物成像的造影劑與藥物運輸的載體,其本身與藥物的結合也可以作為癌癥治療的藥物.貴金屬納米材料的低毒性和高細胞活性是臨床腫瘤治療的優(yōu)勢條件,為腫瘤治療提供了新的方向.
Au NPs由于其表面等離子共振增強的光散射和吸收,在癌癥診斷和治療方面具有巨大潛力.Jain等[50]首先提出借助Au NPs吸收的光轉化的局部熱和靶向標記癌細胞實現特異性的癌癥治療.在光能量為19 W/cm2和25 W/cm2 的照射下,Au NPs作為光熱劑可對口腔鱗狀癌細胞進行細胞消融.4 min后,癌細胞遭受光熱損傷至半,而未被Au NPs標記的細胞無任何損傷[50].以此實驗為基礎,科研人員對Au NPs進行了深入研究.Yang等[51]在2018年提出對DOX結合的多孔Pt NPs包裹Au NPs的納米顆粒(Au@Pt NPs)在化學—光熱共療法中抑制腫瘤生長作用進行研究.通過對腫瘤的細胞存活率進行檢測發(fā)現,光照后癌細胞急劇下降,腫瘤的體積明顯收縮.為解決仿生納米酶在缺氧腫瘤中未得到更優(yōu)的活性,Yang等[52]在2020年提出一種棒狀仿生雜交無機納米酶(MnO2-Au).合成的納米酶即使在高濃度下對細胞的毒性也非常小,細胞活性在95%以上,如圖4(a)所示.Au NPs可以穩(wěn)定且有效地催化葡萄糖在惡劣的腫瘤微環(huán)境下氧化,從而使腫瘤細胞對熱消融敏感,實現光熱治療,如圖4(b)所示.通過此過程,可有效解決缺氧問題,從而提高物理療法(physical therapy,PT)的療效.
Ag NPs作為貴金屬納米顆粒具有多功能性,可使藥物與親和配體在同一載體上,用于靶向和可追蹤的藥物傳遞,解決耐藥性和深入腫瘤治療的難題[53-54].Chen等[55]為解決癌癥異質性和適應性耐藥性帶來的困難,將活性腫瘤靶向三肽與Ag NPs結合,用于DOX的釋放以消除腫瘤細胞.通過對小鼠成活情況進行監(jiān)測,得知該方式對腫瘤有明顯的抑制效果,其抑制率約為70%,小鼠的成活率在70%以上,并且腫瘤周圍和腫瘤中心均表現出大面積凋亡和壞死.Shi等[56]借助GO與Ag NPs的協同作用成功提高載藥能力和靶向治療能力.合成的納米顆粒(GO@Ag)載藥能力達到82%,且具有良好的穩(wěn)定性.在腫瘤的靶向治療中,除藥物體系(Ag2S-DOX-cRGD)本身可釋放DOX外,NIR照射也可刺激DOX的釋放.當Ag2S-DOX-cRGD濃度達到4 μg/mL時,腫瘤細胞的活性不到10%(如圖5(a)所示),且通過對體內X射線成像可明顯地觀察到腫瘤細胞的減小(如圖5(b)所示).建立的腫瘤治療系統雖具有較優(yōu)的治療效果,但對腫瘤深度穿透能力仍有限.為解決此問題,Xu等[57]提出了一種高效的金銀納米復合材料(Au-Ag-BTSHNTs).該復合材料不僅可促進線粒體凋亡因子的表達,還可以利用被酸性腫瘤微環(huán)境觸發(fā)生成的二氧化硫(SO2)進行深度腫瘤的治療.在光熱治療時,該復合材料誘導釋放的SO2氣體可深入腫瘤細胞誘導產生活性氧和熱療,從而引起凋亡因子的表達,最終導致細胞凋亡.
在光動力治療(photodynamic therapy,PDT)和電動力治療(electrodynamic therapy,EDT)中,Pt NPs因具有良好的生物相容性、NIR吸收特性和較高的腫瘤富集效果而占據重要的位置[58-59].眾所周知,大多數腫瘤中的缺氧性質會降低PDT的治療效果.為解決此問題,Wei等[60]建立了Pt NPs包裹鈀納米顆粒與光敏劑相結合的納米系統(Pd@Pt-PEG-Ce6),如圖6(a)所示.Pd@Pt具有高過氧化氫酶活性,可解決缺氧的限制.進行體內腫瘤治療時,若沒有激光或只有激光存在,則不能觀察到對癌細胞的抑制.在808 nm和660 nm激光照射下,可觀察到腫瘤在第6 d完全消除,如圖6(b)所示.除此之外,利用Pt與碳的結合(Pt/C),也可實現PDT治療.Pt/C借助本身的過氧化氫酶性質,分解過氧化氫以提供氧,通過光敏劑上的光將氧轉化為活性氧,從而殺死癌細胞[61].對于Pt在EDT中的性能,Lu等[62]進行了詳細研究.通過GOx消耗癌細胞內的葡萄糖可造成癌細胞的“饑餓”,從而對癌細胞進行傷害.而分解葡萄糖產生的過氧化氫可通過Pt進行分解產生氧氣,從而促進葡萄糖的分解形成循環(huán).通過對體內抗腫瘤實驗的分析,在5 mA方波電刺激下,經過14 d EDT治療后發(fā)現腫瘤的重量至少降低70%(約為0.2 g).因此,該復合材料可使EDT治療發(fā)揮良好的效果.
5結論與展望
貴金屬納米顆粒具有優(yōu)良的物理化學性質,在生物傳感、生物成像、藥物運輸及腫瘤治療方面發(fā)揮了重要作用,其易于修飾且通過與半導體結合的協同作用成功提高了傳感器的靈敏度.除此之外,借助貴金屬納米顆粒高光散截面和吸收截面,實現了對腫瘤和癌細胞的精準標記和明顯成像.在生物成像觀察到病灶的組織情況后,科研人員把貴金屬納米顆粒用于腫瘤治療,其高載藥率和釋放率可有效避免半衰期短和耐藥性差的缺陷,并且可引發(fā)其他反應(例如誘導癌細胞產生裂解酶等)進行腫瘤治療.
貴金屬納米顆粒對生物醫(yī)學領域的發(fā)展具有一定的助力,但仍存在一些問題.在生物傳感方面,納米顆粒進行傳感時靈敏度和檢測限仍不夠好.在生物成像方面,納米顆粒毒性仍不能被忽略或消除,且納米顆粒不能全部與被成像細胞結合,仍有損失.在藥物運輸方面,雖裝載量較高,但是不能實現與藥物的完全結合,并且藥物的釋放率不能達到100%,因此對癌癥治療效果仍有影響.在腫瘤治療方面,雖然可以明顯地看出腫瘤治療的效果,但治療的成功率仍需提高.貴金屬納米顆粒具有如此多的缺點,但其獨特且優(yōu)異的化學性質若在未來與其他物質的性能相結合,必將對現存問題的解決及生物醫(yī)學的發(fā)展有極大的推動.
參考文獻:
[1]Tarkistani M a M,Komalla V,Kayser V.Recent advances in the use of iron-gold hybrid nanoparticles for biomedical applications[J].Nanomaterials (Basel),2021,11(5):1227-1-1227-23.
[2]Vines J B,Yoon J H,Ryu N E,et al.Gold nanoparticles for photothermal cancer therapy[J].Front Chem,2019,7:167-1-167-16.
[3]Yang W,Liang H,Ma S,et al.Gold nanoparticle based photothermal therapy:development and application for effective cancer treatment[J].Sustain Mater Technol,2019,22:e00109-1-e00109-12.
[4]Kaushal S,Nanda S S,Samal S,et al.Strategies for the development of metallic-nanoparticle-based label-free biosensors and their biomedical applications[J].Chembiochem,2020,21(5):576-600.
[5]Erkoc P,Yasa I C,Ceylan H,et al.Mobile microrobots for active therapeutic delivery[J].Adv Ther-Germany,2019,2(1):1800064-1-1800064-18.
[6]Nikezic A V V,Bondzic A M,Vasic V M.Drug delivery systems based on nanoparticles and related nanostructures[J].Eur J Pharm Sci,2020,151:105412-1-105412-18.
[7]Zahin N,Anwar R,Tewari D,et al.Nanoparticles and its biomedical applications in health and diseases:special focus on drug delivery[J].Environ Sci Pollut Res Int,2020,27(16):19151-19168.
[8]Behzad F,Naghib S M,Kouhbanani M a J,et al.An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications[J].J Ind Eng Chem,2021,94:92-104.
[9]Conde J,Doria G,Baptista P.Noble metal nanoparticles applications in cancer[J].J Drug Deliv,2012,2012:751075-1-751075-13.
[10]Zhao R,Xiang J,Wang B,et al.Recent advances in the development of noble metal NPs for cancer therapy[J].Bioinorg Chem Appl,2022,2022:2444516-1-2444516-14.
[11]Marouzi S,Sabouri Z,Darroudi M.Greener synthesis and medical applications of metal oxide nanoparticles[J].Ceram Int,2021,47(14):19632-19650.
[12]Wang L,Hasanzadeh Kafshgari M,Meunier M.Optical properties and applications of plasmonic-metal nanoparticles[J].Adv Funct Mater,2020,30(51):2005400-1-2005400-28.
[13]Yaqoob A A,Ahmad H,Parveen T,et al.Recent advances in metal decorated nanomaterials and their various biological applications:a review[J].Front Chem,2020,8:341-1-341-23.
[14]Yaqoob S B,Adnan R,Rameez Khan R M,et al.Gold,silver,and palladium nanoparticles:a chemical tool for biomedical applications[J].Front Chem,2020,8:376-1-376-15.
[15]Doria G,Conde J,Veigas B,et al.Noble metal nanoparticles for biosensing applications[J].Sensors (Basel),2012,12(2):1657-1687.
[16]Singh H,Bamrah A,Bhardwaj S K,et al.Recent advances in the application of noble metal nanoparticles in colorimetric sensors for lead ions[J].Environ Sci-Nano,2021,8(4):863-889.
[17]Ren X,Meng X,Chen D,et al.Using silver nanoparticle to enhance current response of biosensor[J].Biosens Bioelectron,2005,21(3):433-437.
[18]Huang S,Wu C,Wang Y,et al.Ag/TiO2 nanocomposites as a novel SERS substrate for construction of sensitive biosensor[J].Sensor Actuat B-Chem,2021,339:129843-1-129843-8.
[19]Boluda A,Casado C,Alonso B,et al.Efficient oxidase biosensors based on bioelectrocatalytic surfaces of electrodeposited ferrocenyl polycyclosiloxanes—Pt nanoparticles[J].Chemosensors,2021,9(4):81-1-81-19.
[20]Lee S,Lee Y J,Kim J H,et al.Electrochemical detection of H2O2 released from prostate cancer cells using Pt nanoparticle-decorated rGO-CNT nanocomposite-modified screen-printed carbon electrodes[J].Chemosensors,2020,8(3):63-1-63-13.
[21]Zhang C,Cui M,Ren J,et al.Facile synthesis of novel spherical covalent organic frameworks integrated with Pt nanoparticles and multiwalled carbon nanotubes as electrochemical probe for tanshinol drug detection[J].Chem Eng J,2020,401:126025-1-126025-10.
[22]Kang Q,Yang L,Cai Q.An electro-catalytic biosensor fabricated with Pt-Au nanoparticle-decorated titania nanotube array[J].Bioelectrochemistry,2008,74(1):62-65.
[23]Zhang Y,Bai X,Wang X,et al.Highly sensitive graphene-Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection[J].Anal Chem,2014,86(19):9459-9465.
[24]Siddique S,Chow J C L.Gold nanoparticles for drug delivery and cancer therapy[J].Appl Sci,2020,10(11):3824-1-3824-21.
[25]Sortino A L,Censabella M,Munzi G,et al.Laser-based synthesis of Au nanoparticles for optical sensing of glyphosate:a preliminary study[J].Micromachines (Basel),2020,11(11):989-1-989-14.
[26]Lane L A,Qian X,Nie S.SERS nanoparticles in medicine:from label-free detection to spectroscopic dagging[J].Chem Rev,2015,115(19):10489-10529.
[27]Wang X,Chu C,Shen L,et al.An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels[J].Sensor Actuat B-Chem,2015,206:30-36.
[28]Kabiraz D C,Morita K,Sakamoto K,et al.Mechanism of surface plasmon resonance sensing by indirect competitive inhibition immunoassay using Au nanoparticle labeled antibody[J].Talanta,2017,172:1-7.
[29]Wong A,Silva T A,Fatibello-Filho O.Graphite oxide and gold nanoparticles as alternative materials in the design of a highly sensitive electrochemical sensor for the simultaneous determination of biological species[J].Electroanal,2017,29(11):2491-2497.
[30]Gu Y,Wang Y,Wu X,et al.Quartz crystal microbalance sensor based on covalent organic framework composite and molecularly imprinted polymer of poly(o-aminothiophenol) with gold nanoparticles for the determination of aflatoxin B1[J].Sensor Actuat B-Chem,2019,291:293-297.
[31]Wang M,Ye M,Iocozzia J,et al.Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites[J].Adv Sci (Weinh),2016,3(6):1600024-1-1600024-14.
[32]Zada A,Muhammad P,Ahmad W,et al.Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals:design,Synthesis,and applications[J].Adv Funct Mater,2019,30(7):1906744-1-1906744-29.
[33]Chen H,Cheng Z,Zhou X,et al.Emergence of surface-enhanced raman scattering probes in near-onfrared windows for biosensing and bioimaging[J].Anal Chem,2022,94(1):143-164.
[34]Cheng K,Chen H,Jenkins C H,et al.Synthesis,characterization,and biomedical applications of a targeted dual-modal near-infrared-II fluorescence and photoacoustic imaging nanoprobe[J].ACS Nano,2017,11(12):12276-12291.
[35]Harmsen" S,Huang R,Wall M A,et al.Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging[J].Sci Transl Med,2015,7(271):271ra7-1-271ra7-12.
[36]Alshamrani M.Broad-spectrum theranostics and biomedical application of functionalized nanomaterials[J].Polymers (Basel),2022,14(6):1221-1-1221-35.
[37]Samanta A,Medintz I L.Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology[J].Nanoscale,2016,8(17):9037-9095.
[38]Tanaka S,Miyazaki J,Tiwari D K,et al.Fluorescent platinum nanoclusters:synthesis,purification,characterization,and application to bioimaging[J].Angew Chem Int Ed Engl,2011,50(2):451-455.
[39]Septiadi D,Aliprandi A,Mauro M,et al.Bio-imaging with neutral luminescent Pt(II) complexes showing metal…metal interactions[J].RSC Adv,2014,4(49):25709-25718.
[40]Wang C,Wang Y,Xu L,et al.Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging:tunable photoluminescence from red to near infrared[J].Small,2012,8(20):3137-3142.
[41]Manivannan K,Cheng C C,Anbazhagan R,et al.Fabrication of silver seeds and nanoparticle on core-shell Ag@SiO2 nanohybrids for combined photothermal therapy and bioimaging[J].J Colloid Interface Sci,2019,537:604-614.
[42]Calzoni E,Cesaretti A,Polchi A,et al.Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies[J].J Funct Biomater,2019,10(1):4-1-4-15.
[43]Xin Y,Yin M,Zhao L,et al.Recent progress on nanoparticle-based drug delivery systems for cancer therapy[J].Cancer Biol Med,2017,14(3):228-241.
[44]Dykman L A,Khlebtsov N G.Immunological properties of gold nanoparticles[J].Chem Sci,2017,8(3):1719-1735.
[45]Xu L,Liu Y,Chen Z,et al.Surface-engineered gold nanorods:promising DNA vaccine adjuvant for HIV-1 treatment[J].Nano Lett,2012,12(4):2003-2012.
[46]Wang Z,Jia L,Li M H.Gold nanoparticles decorated by amphiphilic block copolymer as efficient system for drug delivery[J].J Biomed Nanotechnol,2013,9(1):61-68.
[47]Liu R,Dai L,Xu C,et al.Lignin-based micro- and nanomaterials and their composites in biomedical applications[J].ChemSusChem,2020,13(17):4266-4283.
[48]Wang Y,Newell B B,Irudayaraj J.Folic acid protected silver nanocarriers for targeted drug delivery[J].J Biomed Nanotechnol,2012,8(5):751-759.
[49]Ravindra S,Mulaba-Bafubiandi A F,Rajinikanth V,et al.Development and characterization of curcumin loaded silver nanoparticle hydrogels for antibacterial and drug delivery applications[J].J Inorg Organomet P,2012,22(6):1254-1262.
[50]Jain P K,El-Sayed I H,El-Sayed M A.Au nanoparticles target cancer[J].Nano Today,2007,2(1):18-29.
[51]Yang Q,Peng J,Xiao Y,et al.Porous Au@Pt nanoparticles:therapeutic platform for tumor chemo-photothermal co-therapy and alleviating doxorubicin-induced oxidative damage[J].ACS Appl Mater Inter,2018,10(1):150-164.
[52]Yang L,Ren C,Xu M,et al.Rod-shape inorganic biomimetic mutual-reinforcing MnO2-Au nanozymes for catalysis-enhanced hypoxic tumor therapy[J].Nano Res,2020,13(8):2246-2258.
[53]Barui S,Cauda V.Multimodal decorations of mesoporous silica nanoparticles for improved cancer therapy[J].Pharmaceutics,2020,12(6):527-1-527-33.
[54]Yang W,Veroniaina H,Qi X,et al.Soft and condensed nanoparticles and nanoformulations for cancer drug delivery and repurpose[J].Adv Ther (Weinh),2020,3(1):1900102-1-1900102-26.
[55]Chen H,Li B,Zhang M,et al.Characterization of tumor-targeting Ag2S quantum dots for cancer imaging and therapy in vivo[J].Nanoscale,2014,6(21):12580-12590.
[56]Shi J,Wang L,Zhang J,et al.A tumor-targeting near-infrared laser-triggered drug delivery system based on GO@Ag nanoparticles for chemo-photothermal therapy and X-ray imaging[J].Biomaterials,2014,35(22):5847-5861.
[57]Xu M,Lu Q,Song Y,et al.Enhanced Bax upregulating in mitochondria for deep tumor therapy based on SO2 prodrug loaded Au-Ag hollow nanotriangles[J].Biomaterials,2020,250:120076-1-120076-14.
[58]Hong G,Diao S,Antaris A L,et al.Carbon nanomaterials for biological imaging and manomedicinal therapy[J].Chem Rev,2015,115(19):10816-10906.
[59]Yu M,Zheng J.Clearance pathways and tumor targeting of imaging nanoparticles[J].ACS Nano,2015,9(7):6655-6674.
[60]Wei J,Li J,Sun D,et al.A novel theranostic nanoplatform based on Pd@Pt-PEG-Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment[J].Adv Funct Mater,2018,28(17):1706310-1-1706310-12.
[61]Xu Z,Sun P,Zhang J,et al.High-efficiency platinum-carbon nanozyme for photodynamic and catalytic synergistic tumor therapy[J].Chem Eng J,2020,399:125797-1-125797-10.
[62]Lu Z,Gao J,Fang C,et al.Porous Pt nanospheres incorporated with GOx to enable synergistic oxygen-inductive starvation/electrodynamic tumor therapy[J].Adv Sci (Weinh),2020,7(17):2001223-1-2001223-9.
(實習編輯:黃愛明)
Application Progress of Noble Metal Nanomaterials
in Biomedical Field
LIU Xiaoyang,CHEN Jiaqi,FENG Wei(School of Mechanical Engineering,Chengdu University,Chengdu 610106,China)Abstract:Compared with traditional medical methods,noble metal nanoparticles have good biocompatibility,stability,strong light absorption and other properties,and can perform plasma absorption in the visible and near-infrared regions.Therefore,it quickly occupies a place in the biomedical field.On this basis,the performances of noble metal nanoparticles (Ag NPs,Au NPs,Pt NPs) and their combinations with other substances (TiO2,glucose oxidase,antibodies,vaccines,etc.) in biosensor,bioimaging,drug transport and tumor treatment are discussed in this paper.Finally,the application advantages of noble metal nanoparticles in the field of nanomedicine are summarized and the existing problems and expectations for the future are pointed out.
Key words:noble metal nanoparticles;biosensing;bioimaging;drug delivery;cancer therapy;biomedicine