董倩, 俞坤武, 杜以梅
TRPV4在心血管疾病中作用的研究進展*
董倩, 俞坤武, 杜以梅△
(華中科技大學同濟醫學院附屬協和醫院心內科,湖北 武漢 430000)
瞬時受體電位陽離子通道V亞家族成員4;心血管疾病;機制
瞬時受體電位陽離子通道V亞家族成員4(transient receptor potential cation channel subfamily V member 4, TRPV4)是瞬時受體電位陽離子通道(transient receptor potential cation channel, TRP)家族成員,是一種非選擇性陽離子通道,對Ca2+離子具有適中通透性,對Na+和Mg2+少量通透(Ca/Na約為6~10,Ca/Mg約為2~3)。TRPV4在心血管系統表達廣泛,主要表達于血管內皮細胞、血管平滑肌細胞、心肌細胞和成纖維細胞等,可調節血管張力和血管通透性,參與機械信號傳導等。已知TRPV4的表達和功能異常,參與了高血壓、動脈粥樣硬化、心肌缺血再灌注損傷、心力衰竭和肺水腫、心律失常等疾病的發生發展,本文旨在對心血管系統TRPV4的生理功能及其異常導致的相關疾病進行概述。
TRPV4是一種滲透機械敏感性的非選擇性陽離子通道,主要對Ca2+離子通透。TRPV4是由具有六個跨膜結構域的亞基形成的對稱四聚體,每個亞基共871個氨基酸,包含6次跨膜結構域(S1~S6),N端和C端均位于胞內,S5和S6以及它們之間的P環構成通透陽離子的孔區。此外,TRPV4也可與TRP家族其他單體(如TRPC1和TRPP2)組成異源四聚體發揮功能[1]。TRPV4廣泛表達在心血管系統,既可被機械(熱、腫脹、剪切力)和化學(花生四烯酸及其代謝產物、內源性大麻素、ATP、鈣調蛋白、4α-PDD、GSK1016790A)等多種刺激激活,也可被釕紅、鏈霉素、AB159908、HC-067047、GSK2193874和RN-1734等選擇性阻斷[2-3]。現已闡明TRPV4在生理狀態下維持機體滲透壓平衡和內皮細胞屏障,并調節血管通透性[4]。TRPV4激活后介導胞內Ca2+濃度的升高,不僅參與體溫調節、滲透壓、血管舒張等生理過程,同時參與缺血再灌注損傷、心律失常、心肌肥大、纖維化等病理過程[5-6]。
2.1TRPV4在高血壓中的作用高血壓發病機制復雜,其中內皮細胞功能障礙與高血壓聯系密切,兩者互為因果。研究表明,TRPV4是內皮細胞(endothelial cell, EC)中Ca2+流入的重要途徑[7],主要通過與肌內皮映射區(myoendothelial projection, MEP)定位的蛋白激酶C(protein kinase C, PKC)錨定蛋白150(A-kinase anchoring protein 150, AKAP150)組成耦合門控通道,介導胞外的Ca2+內流從而使得血管舒張[8]。見圖1。目前研究顯示,高血壓的危險因素,如肥胖、高鹽飲食、壓力應激等均可導致內皮功能障礙,加速高血壓的發生發展。Ottolini等[9]報道,高脂飲食可誘導肥胖小鼠血管EC中以一氧化氮(nitric oxide, NO)為底物的過氧亞硝酸鹽生成增多,進一步損傷AKAP150EC-TRPV4EC介導的鈣離子信號通路,使得血管舒張受阻,導致肥胖小鼠靜息狀態平均動脈血壓升高,從而揭示了肥胖所致高血壓的新機制。越來越多的證據表明,TRPV4在調節活性氧(reactive oxygen species, ROS)產生和血管舒張中起著重要作用。NADPH氧化酶2(NADPH oxidase 2, Nox2)已被證明是ROS生成的重要調節器[10]。以往的研究也證明,TRPV4-Nox2能夠形成復合物,調節氧化應激和血管舒張反應[11]。國內馬鑫教授團隊研究顯示,肥胖和ROS可導致小鼠血管內皮細胞TPRV4功能受損與血管舒張功能障礙;相反,通過調整肥胖小鼠的飲食結構或阻斷TRPV4與Nox2的耦合,可激活TRPV4的活性,改善血管的舒張功能[12-13],可見,TRPV4功能受損在肥胖癥小鼠血管內皮功能紊亂中扮演重要角色。此外,在高鹽誘導的高血壓小鼠模型中,葛根素可通過激活TRPV4-IKCa/SKCa軸,誘導小鼠腸系膜動脈的內皮依賴性舒張,有效降低血壓[14]。最近,馬鑫教授團隊開發了一種小分子藥物JNc-463,它可以增加TRPV4與主動脈內皮型NO合酶(endothelial NO synthase, eNOS)相互作用以增強血管舒張從而在小鼠中發揮抗高血壓作用[15]。由此可見,TRPV4可能成為治療高血壓新靶點,尤其適用于合并肥胖等相關危險因素的高血壓人群。然而,靶向血管內皮細胞TRPV4的藥物研發、進一步的臨床試驗、甚至藥物安全性皆有待研究。

Figure 1. Function of TRPV4 in the vasculature. MEP: myoendothelial projection. EC: Endothelialcells. SMC: Smooth muscle cells; PKC: Protein kinase C; AKAP150: A-kinase anchoring protein 150; eNOS: endothelial NOS; NO: nitric oxide.
2.2TRPV4通道在動脈粥樣硬化中的作用已知內皮功能障礙、白細胞粘附和巨噬細胞泡沫化是動脈粥樣硬化的標志[16]。Xu等研究顯示:TRPV4激動劑GSK1016790A可通過CaMKK/AMPK通路促進主動脈內皮細胞中eNOS的磷酸化,并減少TNF-α誘導的單核細胞和內皮細胞粘附,在體實驗進一步驗證口服GSK1016790A可減少-/-小鼠的動脈粥樣硬化斑塊形成,表明激活TRPV4可能作為治療動脈粥樣硬化的潛在方法[17]。然而,另一項研究表明,牙齦卟啉單胞菌脂多糖或機械壓力刺激可激活TRPV4,加劇巨噬細胞泡沫化,預示阻斷或敲除TRPV4可能對動脈粥樣硬化有治療作用,但未進一步行動物實驗和機制研究[18]。另外,腹主動脈瘤(abdominal aortic aneurysm, AAA)死亡率極高,而動脈粥樣硬化是其重要的病因[19]。Shannon等驗證,在彈性蛋白酶處理的WT小鼠和Ang II誘導的-/-小鼠所建立的AAA模型中,阻斷TRPV4可抑制中性粒細胞的跨內皮遷移和炎癥因子的釋放,從而延緩AAA形成[20]。上述研究結果表明TRPV4在動脈粥樣硬化中的作用不一致,甚至相反,故TRPV4在動脈粥樣硬化中的確切作用有待深入探討。
2.3TRPV4通道在心肌梗死中的作用急性心肌梗死是全球死亡率最高的疾病之一,急性心肌梗死后進行血運重建是有效的治療方法,但缺血再灌注后可伴發心肌損傷加重即心肌缺血再灌注損傷(myocardial ischemia/reperfusion injury, MIRI)。目前普遍認為MIRI的發生機制與再灌注后Ca2+超載、ROS攻擊、以及炎癥反應等有關[21]。TRPV4激活后可升高[Ca2+]i,導致Ca2+超載,從而介導心肌損傷。我們課題組前期通過建立MIRI小鼠模型,觀察到MIRI(1~72 h)后,梗死周邊心肌組織TRPV4表達明顯增多,而腹腔注射TRPV4阻斷劑HC-06747可顯著縮小MIRI小鼠的心梗面積,而其機制與抑制心肌細胞凋亡、ROS的產生和炎癥細胞的浸潤有關[22]。我們及他人課題組建立心肌細胞缺氧模型,進一步證實阻斷TRPV4通道減輕心肌細胞[Ca2+]i,可通過活化AKT/Nrf2途徑,增加抗氧化酶活性,使ROS產生減少,減輕線粒體損傷,從而減少心肌細胞凋亡壞死[23-25]。為了深入探討TRPV4參與心肌缺血/再灌注(ischemia/reperfusion, I/R)的機制,我們分離小鼠心臟進行Langendorff灌流試驗,觀察到TRPV4可通過促進JNK-CaMKII磷酸化,從而導致細胞凋亡,加劇心肌I/R損傷。而阻斷TRPV4可抑制GSK101誘導的上述作用[26]。此外,在老年小鼠離體灌流I/R模型中也驗證了TRPV4的表達和功能顯著增強,而阻斷TRPV4可抑制老年小鼠MIRI誘導的心肌細胞死亡,該研究對MI風險增加的老年人群具有潛在臨床意義[27]?;谀壳耙延械难芯?,我們推測在心肌I/R中,TRPV4有望成為治療MIRI的新靶點。
纖維化主要由肌成纖維細胞產生過多的細胞外基質(extracellular matrix, ECM)引起,是MI后心室重塑的關鍵機制,而Ca2+信號傳導對調控心肌纖維化至關重要。研究表明,TRPV4通道可促進TGF-β1誘導的心肌成纖維細胞分化為肌成纖維細胞,加劇MI后心臟重塑[28]。近期,Adapala團隊研究表明,在MI后8周,與WT小鼠相比,TRPV4的缺失保留了小鼠的心臟功能,Masson染色顯示梗死區域纖維化顯著減輕,更令人意外的是梗死周邊區無纖維化,而進一步驗證顯示敲除可通過Rho/MRTF-A途徑抑制心臟成纖維細胞的分化,改善MI后心室重塑[29]。見圖2。上述研究表明,TRPV4在心肌缺血后心肌細胞凋亡和心臟纖維化過程中起重要作用。因此,抑制TRPV4可用于防治急性心肌梗死和MIRI。

Figure 2. The mechanisms of TRPV4-induced myocardial ischemia/reperfusion injury and fibrosis. I/R: ischemia/reperfusion; JNK-P: c-Jun N-terminal kinase phosphorylation; CaMKII-P: calmodulin-dependent protein kinase II phosphorylation; ROS: reactive oxygen species; mPTP: mitochondrial permeability transition pore; MRTF-A: myocardin-related transcription factor-A.
2.4TRPV4通道在心力衰竭中的作用心力衰竭(heart failure, HF)不僅影響心臟和血管,還影響肺臟。隨著肺血管中壓力升高,最終引起肺靜脈壓升高和肺水腫,是心衰患者死亡的主要原因。心衰傳統治療策略側重于降低肺血管內壓力,即通過利尿劑減少總血管內容量,或者通過血管擴張劑減少后負荷。鑒于TRPV4在維持肺血管內皮完整性中的重要作用,以TRPV4為靶點或可改善心衰患者的臨床預后,已有研究顯示激活TRPV4可使內皮細胞分離,進而破壞肺內皮屏障導致肺水腫和肺泡液的增加[30-31]。見圖3。Thorneloe等[32]觀察顯示:心衰患者肺血管內皮和肺血管平滑肌內TRPV4的表達顯著增強,而TRPV4阻斷劑GSK2193874(30 nmol/L)可抑制高靜脈壓(30 cmH2O)灌注引起的肺水腫。在大鼠主動脈縮窄和小鼠心梗所致的心衰模型中,口服GSK2193874可抑制肺靜脈的升高,有效緩解肺水腫,增加血氧含量。另外,在化學氣體誘導的肺損傷中,內皮損傷所致蛋白的漏出也是肺水腫形成的原因之一,TRPV4阻斷劑GSK2220961和GSK2337429還可以降低肺泡灌洗液中蛋白的濃度和炎癥細胞的浸潤[33]。進一步,TRPV4阻斷劑在臨床2a期試驗中顯示出較好的療效,可有效改善急慢性心衰患者肺充血,這或許將成為標準心衰藥物療法的補充[34-35]。

Figure 3. Mechanisms of TRPV4 contributing to pulmonary edema. ROS: reactive oxygen species; NO: nitric oxide.
最近,我們課題組在小鼠主動脈弓縮窄(transverse aortic constriction, TAC)模型中觀察到,激活TRPV4可通過促進心肌細胞Ca2+內流,激活CaMKII磷酸化和隨后的NFκB-NLRP3途徑,促進心肌炎癥和纖維化,而阻斷TRPV4可緩解TAC誘導的心臟肥大、心功能障礙和纖維化,表明TRPV4可成為心臟肥大和心力衰竭的治療靶點[36]。
2.5TRPV4通道在心律失常中的作用心房顫動(atrial fibrillation, AF)是臨床上常見的心律失常,其發生主要是由于心房的電重構和結構重構[37]。我們課題組率先觀察到,在無菌性心包炎大鼠中,TRPV4在心房肌細胞和成纖維細胞中表達增加,口服TRPV4阻斷劑GSK2193874可減少大鼠房顫的誘發率和持續時間,機制研究揭示,一方面TRPV4通過減少心房肌細胞動作電位的延長減輕心房電重構,另一方面其可通過抑制心房成纖維細胞的活化和炎癥細胞的浸潤減輕心房結構重構[38]。進一步,我們課題組在-/-小鼠模型中驗證,阻斷TRPV4可通過ERK/NF-κB信號通路抑制NLRP3炎癥小體的活化,減輕心房纖維化,從而降低AF的發生[39]。由此可見,TRPV4有望作為治療房顫,尤其是心臟外科術后房顫的靶點。
再灌注療法是急性心肌梗死患者的標準治療方法,然而 I/R損傷可能引發危及生命的惡性心律失常,是急性心肌梗死患者猝死的重要原因。Peana等[40]研究觀察到,在老年小鼠離體心臟I/R時,TRPV4通道功能增強,介導的Ca2+內流增多,增加細胞鈣超載及肌質網(sarcoplasmic reticulum, SR)鈣容量,而阻斷TRPV4通道改善SR鈣負載和鈣泄露,減少室性心律失常的發生。目前,尚不清楚抑制TRPV4的抗心律失常作用是通過對心肌細胞的影響,抑或是對心肌成纖維細胞的抗纖維化作用。未來需深入研究TRPV4在房、室心律失常發生中的作用機制。
近年來,TRPV4通道在心血管系統中的作用受到國內外研究者越來越多的重視。大量研究表明,TRPV4在血管內皮細胞和心肌細胞中表達豐富,可作為心血管疾病潛在治療靶點,具有廣泛的治療前景。
由于TRPV4的全身激活會引起肺水腫和急性循環衰竭,故TRPV4激動劑的發展滯后于阻斷劑,但如果開發新型TRPV4激動劑用來局部給藥或可繞過全身性TRPV4激活帶來的安全問題,可為TRPV4激動劑作為治療提供一種獨特的方法。與TRPV4激動劑相反,TRPV4的大部分治療興趣都集中在通道阻斷劑上。目前的臨床研究提示,TRPV4阻斷劑在治療充血性心力衰竭顯示出良好的應用前景。但TRPV4阻斷劑仍存在一些亟待解決的問題,一方面,已有的TRPV4阻斷劑在大多數情況下特異性和選擇性較差,且不能滿足口服需要。另一方面,TRPV4 阻斷劑研發尚處于初始階段,臨床報道較少。未來,尋找更為安全有效TRPV4通道阻斷劑,更為精準靶向特定器官和細胞的方法可能會為TRPV4從基礎向臨床轉化帶來曙光。
[1] Inoue R, Jensen LJ, Shi J, et al. Transient receptor potential channels in cardiovascular function and disease[J]. Circ Res, 2006, 99(2):119-131.
[2] Darby WG, Grace MS, Baratchi S, et al. Modulation of TRPV4 by diverse mechanisms[J]. Int J Biochem Cell Biol, 2016, 78:217-228.
[3] Rosenbaum T, Benítez-Angeles M, Sánchez-Hernández R, et al. TRPV4: a physio and pathophysiologically significant ion channel[J]. Int J Mol Sci, 2020, 21(11):3837.
[4] Kitsuki T, Yoshimoto RU, Aijima R, et al. Enhanced junctional epithelial permeability in TRPV4-deficient mice[J]. J Periodontal Res, 2020, 55(1):51-60.
[5]王斌斌, 吳瓊峰, 廖杰, 等. TRPV4通道與缺血再灌注損傷的研究進展[J]. 臨床心血管病雜志, 2018, 34(7):636-639.
Wang BB, Wu QF, Liao J, et al. Recent progress of TRPV4 channel and ischemia reperfusion injury[J]. J Clin Cardiol, 2018, 34(7):636-639.
[6]楊翠, 陳閩偉, 黃崢嶸, 等. TRPV4在纖維化中的作用機制[J]. 臨床心血管病雜志, 2020, 36(3):215-219.
Yang C, Chen MW, Huang ZZ, et al. The mechanism of TRPV4 in fibrosis[J]. J Clin Cardiol, 2020, 36(3):215-219.
[7] Gao F, Sui D, Garavito RM, et al. Salt intake augments hypotensive effects of transient receptor potential vanilloid 4: functional significance and implication[J]. Hypertension, 2009, 53(2):228-235.
[8] Sonkusare SK, Dalsgaard T, Bonev AD, et al. AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension[J]. Sci Signal, 2014, 7(333):a66.
[9] Ottolini M, Hong K, Cope EL, et al. Local peroxynitrite impairs endothelial transient receptor potential vanilloid 4 channels and elevates blood pressure in obesity[J]. Circulation, 2020, 141(16):1318-1333.
[10] Sul OJ, Ra SW. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-κB in lung epithelial cells[J]. Molecules, 2021, 26(22):6949
[11] Song Q, Zhang Y. Application of high-fat cell model in steady-state regulation of vascular function[J]. Saudi J Biol Sci, 2019, 26(8):2132-2135.
[12] Gao M, Han J, Zhu Y, et al. Blocking endothelial TRPV4-Nox2 interaction helps reduce ROS production and inflammation, and improves vascular function in obese mice[J]. J Mol Cell Cardiol, 2021, 157:66-76.
[13] Zhu Y, Wen L, Wang S, et al. Omega-3 fatty acids improve flow-induced vasodilation by enhancing TRPV4 in arteries from diet-induced obese mice[J]. Cardiovasc Res, 2021, 117(12):2450-2458.
[14] Zhou T, Wang Z, Guo M, et al. Puerarin induces mouse mesenteric vasodilation and ameliorates hypertension involving endothelial TRPV4 channels[J]. Food Funct, 2020, 11(11):10137-10148.
[15] Mao A, Zhang P, Zhang K, et al. Endothelial TRPV4-eNOS coupling as a vital therapy target for treatment of hypertension[J]. Br J Pharmacol, 2022, 179(10):2297-2312.
[16] Libby P. The changing landscape of atherosclerosis[J]. Nature, 2021, 592(7855):524-533.
[17] Xu S, Liu B, Yin M, et al. A novel TRPV4-specific agonist inhibits monocyte adhesion and atherosclerosis[J]. Oncotarget, 2016, 7(25):37622-37635.
[18] Gupta N, Goswami R, Alharbi MO, et al. TRPV4 is a regulator inlipopolysaccharide-induced exacerbation of macrophage foam cell formation[J]. Physiol Rep, 2019, 7(7):e14069.
[19] Golledge J. Abdominal aortic aneurysm: update on pathogenesis and medical treatments[J]. Nat Rev Cardiol, 2019, 16(4):225-242.
[20] Shannon AH, Elder CT, Lu G, et al. Pharmacologic inhibition of transient receptor channel vanilloid 4 attenuates abdominal aortic aneurysm formation[J]. FASEB J, 2020, 34(7):9787-9801.
[21] Yellon DM, Hausenloy DJ. Myocardial reperfusion injury[J]. N Engl J Med, 2007, 357(11):1121-1135.
[22] Dong Q, Li J, Wu QF, et al. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice[J]. Sci Rep, 2017, 7:42678.
[23] Wu QF, Qian C, Zhao N, et al. Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes[J]. Cell Death Dis, 2017, 8(5):e2828.
[24] Wu Q, Lu K, Zhao Z, et al. Blockade of transientreceptor potential vanilloid 4 enhances antioxidation after myocardial ischemia/reperfusion[J]. Oxid Med Cell Longev, 2019, 2019:7283683.
[25] 陳卓, 秦昆, 何玥穎, 等. TRPV4在心肌細胞缺氧損傷中的作用及機制研究[J]. 中國病理生理雜志, 2022, 38(7):1194-1200.
Chen Z, Qin K, He YY, et al. Role and mechanism of TRPV4 in myocardial hypoxia injury[J]. Chin J Pathophysiol, 2022, 38(7):1194-1200.
[26] Zhang S, Lu K, Yang S, et al. Activation of transient receptor potential vanilloid 4 exacerbates myocardial ischemia-reperfusion injury via JNK-CaMKII phosphorylation pathway in isolated mice hearts[J]. Cell Calcium, 2021, 100:102483.
[27] Jones JL, Peana D, Veteto AB, et al. TRPV4 increases cardiomyocyte calcium cycling and contractility yet contributes to damage in the aged heart following hypoosmotic stress[J]. Cardiovasc Res, 2019, 115(1):46-56.
[28] Adapala RK, Thoppil RJ, Luther DJ, et al. TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals[J]. J Mol Cell Cardiol, 2013, 54:45-52.
[29] Adapala RK, Kanugula AK, Paruchuri S, et al. TRPV4 deletion protects heart from myocardial infarction-induced adverse remodeling via modulation of cardiac fibroblast differentiation[J]. Basic Res Cardiol, 2020, 115(2):14.
[30] Alvarez DF, King JA, Weber D, et al. Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury[J]. Circ Res, 2006, 99(9):988-995.
[31] Hamanaka K, Jian MY, Weber DS, et al. TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs[J]. Am J Physiol Lung Cell Mol Physiol, 2007, 293(4):L923-L932.
[32] Thorneloe KS, Cheung M, Bao W, et al. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure[J]. Sci Transl Med, 2012, 4(159):148r-159r.
[33] Balakrishna S, Song W, Achanta S, et al. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(2):L158-L172.
[34] Stewart GM, Johnson BD, Sprecher DL, et al. Targeting pulmonary capillary permeability to reduce lung congestion in heart failure: a randomized, controlled pilot trial[J]. Eur J Heart Fail, 2020, 22(9):1641-1645.
[35] Goyal N, Skrdla P, Schroyer R, et al. Clinical pharmacokinetics, safety, and tolerability of a novel, first-in-class TRPV4 ion channel inhibitor, GSK2798745, in healthy and heart failure subjects[J]. Am J Cardiovasc Drugs, 2019, 19(3):335-342.
[36] Zou Y, Zhang M, Wu Q, et al. Activation of transient receptor potential vanilloid 4 is involved in pressure overload-induced cardiac hypertrophy[J]. Elife, 2022, 11:e74519.
[37] Kornej J, Borschel CS, Benjamin EJ, et al. Epidemiology of atrial fibrillation in the 21st century: novel methods and new insights[J]. Circ Res, 2020, 127(1):4-20.
[38] Liao J, Wu Q, Qian C, et al. TRPV4 blockade suppresses atrial fibrillation in sterile pericarditis rats[J]. JCI Insight, 2020, 5(23):e137528.
[39] Yang S, Zhao Z, Zhao N, et al. Blockage of transient receptor potential vanilloid 4 prevents postoperative atrial fibrillation by inhibiting NLRP3-inflammasome in sterile pericarditis mice[J]. Cell Calcium, 2022, 104:102590.
[40] Peana D, Polo-Parada L, Domeier TL. Arrhythmogenesis in the aged heart following ischaemia-reperfusion: role of transient receptor potential vanilloid 4[J]. Cardiovasc Res, 2022, 118(4):1126-1137.
Progress in role of TRPV4 in cardiovascular diseases
DONG Qian, YU Kun-wu, DU Yi-mei△
(,,,,430000,)
Transient receptor potential cation channel subfamily V member 4 (TRPV4) is a non-selective cation channel that is widely expressed in the cardiovascular system. Activation of TRPV4 induces an increase in intracellular calcium concentration and plays an important role in both physiological and pathological conditions. Recent studies have revealed that TRPV4 plays an important role in many pathophysiological processes closely related to cardiovascular diseases, including regulating vasodilation and protecting the integrity of the endothelial cell barrier, etc. This review discusses the evidence and its potential mechanisms of TRPV4 in diverse responses including hypertension, myocardial infarction, cardiac remodeling, congestive heart failure-induced pulmonary edema, atherosclerosis, and arrhythmia.
Transient receptor potential cation channel subfamily V member 4; Cardiovascular diseases; Mechanism
R54; R363
A
10.3969/j.issn.1000-4718.2023.02.021
1000-4718(2023)02-0373-06
2022-08-31
2022-12-13
[基金項目]國家自然科學基金青年科學基金資助項目(No. 82100339)
Tel: 027-85726462; E-mail: yimeidu@mail.hust.edu.cn
(責任編輯:林白霜,羅森)